Write your name here Surname Other names Statistics S1

SWANASH

A^{*} Practice Paper

Time: 1 hours 30 minutes | Paper - H

Year: 2017-2018

The formulae that you may need to answer some questions are found at the end of this A star practice paper.

A student may use any basic scientific calculator except: facility for symbolic algebra manipulation, differentiation, integration, retrievable mathematical formulae.

Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more/less space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Practicing many **Swanash A-star** papers will enhance your final exam grades

www.swanash.com

Turn over 🗐

1.

(a)

x	1	5	8	4	2	6	7
у	3	11	17	m	5	13	15

Table 1

Given that in Table 1 the product moment correlation coefficient, r, between the variables x and y is 1. Find the value of m.

(3)

(b)

x	у
2 ⁵⁰⁰	143027
$-\sqrt{123}$	5 ²⁵⁰

Table 2

Find the *exact* value of product moment correlation coefficient, r, between the variables x and y in Table 2. Give a reason for your answer.

(2)

X	1	2	3	4	5	6
P(X=x)	d	k	2 <i>d</i>	2 <i>d</i>	k	d

(a) Write down E(X + 5) to 1 decimal place.

(1)

(b) Calculate Var(X+5) to 2 decimal places.

(5)

(c) Six jam tins, of which two are defective and four are good, are to be tested one after another in random order until both defective jam tins are *identified*. The random variable *Y* represents the number of jam tins that are tested to *identify* both defectives.

Y	2	3	4	5
P(Y=y)	1 15	p	q	r

(i) Find the value of p

(3)

(ii) Find the value of q

(5)

Figure 1

The Venn diagram in Figure 1 shows two events A and B for 100 adults.

(a) Draw a tree diagram to represent the above information.

(4)

The tree diagram in Figure 2 shows that some of the girls and boys play tennis whilst the remainder are engaged in other activities.

Figure 2

Let G, B and T denote the events that Girls, Boys and Tennis.

(b) Draw a Venn diagram to represent the events G, B and T. Calculate the probabilities associated with each region and write them in the appropriate places on the Venn diagram.

(5)

estion 3 continued	

4. The marks, x, of 45 students randomly selected from those students who sat a mathematics examination in class A are shown in the stem and leaf diagram below.

$2 \cdot (0.0)$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
4 0 1 2 2 3 4 (6)	
4 56p78 (5)	
5 0 2 3 3 4 4 (6)	
5 5 5 6 7 7 9 (6)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
6 5 6 7 8 9 9 (6)	
7 1 2 3 3 (4)	

(a) For these students the interquartile range is 19. Find the value of p and value of q

(2)

The marks of class B students who sat a mathematics examination are shown in the table below.

marks	1	2	3	4	5	6	7
number of students	10	14	10	2x	x	2	3

(b) Write down the value of x if the median of these marks is 2.5

(1)

The study time on a typical week night, in minutes, of class C students are given below

200	90	310	260
160	70	250	40
180	140	220	80
250	210	320	100

(c) Construct a stem and leaf diagram to represent the study time for the class C students

(4)

X	2	5	4	7	•••	•••	•••	•••
у	90	160	170	210				•••
m = x + 10	12	15	14	17	•••	•••		
$f = \frac{y}{10}$	9	16	17	21				

(a) Given that for 8 pair (some values are missing) the equation of regression line y on x is y = 57.3 + 20.0 x

(i) Find the equation of the regression line y on m

(2)

(ii) Write down the equation of the regression line f on m

(1)

(b)

k	2	5	4	7	7
n	4	p	6	2	3

The equation of the regression line for the above five set of data in the table is $n = 7.2\overline{2} - 0.44\overline{4}k$

(i) Find the exact value of p

(4)

(ii) When k = 5 find the exact value of n using the above regression line

(1)

(iii) Given that the product moment correlation coefficient is -0.298.

Explain why your predicted value of n in (ii) is different from the value of p in (i)

(1)

6.

Given that,

$$P(C \cap B) = 0.3,$$

$$P(A' \cap B' \cap C) = 0.15,$$

$$P(A \cup B') = 0.7$$

$$P(A \cap B \cap C') = 0.2$$
,

$$P(C \cup A') = 0.6$$

(a) Complete the above Venn diagram.

(6)

(b) Find P(A)

(1)

(c) Find P(A|B)

(2)

(d) Hence, show that A and B are independent events.

(1)

estion 6 continued	

The times, in seconds, taken by Mr.Swarna to run 400 metres on nine successive	ve days were
53.2, 55.7, 54.2, 52.7, 53.6, 56.8, 54.0, 53.7, 59.8	
(a) Show that the mean of the times is 54.9 seconds to 1 decimal place.	(2)
Given that $\Sigma x^2 = 27122.59$	
(b) Calculate the standard deviation of the times.	
	(3)
(c) The times, in seconds, taken by <i>Mr.Swarna</i> to run 200 metres on nine successive a mean of 25 and range of 4.9. Explain why none of his time could be	•
The mean and standard deviation of the times, in seconds, taken by <i>Mr.Swarr</i> . 200 metres are 25 and 2 respectively. If each time scaled by adding 1 minute reducing the time by a further 5%.	
(d) Find the mean and standard deviation of the scaled times.	(4)

www.swanash.com

Two electric devices D1 and D2 have life-length in hours of X and Y respectively. Where,

$$X \sim N(\mu, 49)$$
 and $Y \sim N(\mu, 169)$

(a) If P(X < 110) = P(Y > 70) then find μ

(3)

(b) Find the probability that a device D1 will last for at least 90 hours.

(2)

(c) Find the probability that a device D1 which has already operated for 90 hours will last at most another 15 hours.

(3)

(d) Third device D3 has life-length in hours of M. Where,

$$M \sim N(80, 100)$$

If,
$$P(M < 78 + \sqrt{10}) = P(M > b)$$
. Find the exact value of b (2)

Question 8 continued		
		<
		*
		*
		Ċ
		AA CITC
		7
		TTC
	(Total 10 marks) TOTAL FOR PAPER: 75 MARKS	

Formulae for Statistics S1

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$P(A \cap B) = P(A) P(B|A)$$

Continuous distributions

Distribution of X	Mean	Variance
Normal N(μ , σ^2)	μ	σ^2

Correlation and regression

For a set of *n* pairs of values (x_i, y_i)

$$S_{xx} = \Sigma (x_i - \overline{x})^2 = \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}$$

$$S_{yy} = \Sigma (y_i - \overline{y})^2 = \Sigma y_i^2 - \frac{(\Sigma y_i)^2}{n}$$

$$S_{xy} = \Sigma (x_i - \overline{x})(y_i - \overline{y}) = \Sigma x_i y_i - \frac{(\Sigma x_i)(\Sigma y_i)}{n}$$

The product moment correlation coefficient is

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\Sigma(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\{\Sigma(x_i - \overline{x})^2\}\{\Sigma(y_i - \overline{y})^2\}}} = \frac{\Sigma x_i y_i - \frac{(\Sigma x_i)(\Sigma y_i)}{n}}{\sqrt{\left(\Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}\right)\left(\Sigma y_i^2 - \frac{(\Sigma y_i)^2}{n}\right)}}$$

The regression coefficient of y on x is $b = \frac{S_{xy}}{S_{xx}} = \frac{\Sigma(x_i - \overline{x})(y_i - \overline{y})}{\Sigma(x_i - \overline{x})^2}$

Least squares regression line of y on x is y = a + bx where $a = \overline{y} - b\overline{x}$

www.swanash.com

THE NORMAL DISTRIBUTION FUNCTION						/////			
Z	$\Phi(z)$	Z	$\Phi(z)$	Z	$\Phi(z)$	z	$\Phi(z)$	Z	$\Phi(z)$
0.00	0.5000	0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772
0.01	0.5040	0.51	0.6950	1.01	0.8438	1.51	0.9345	2.02	0.9783
0.02	0.5080	0.52	0.6985	1.02	0.8461	1.52	0.9357	2.04	0.9793
0.03	0.5120	0.53	0.7019	1.03	0.8485	1.53	0.9370	2.06	0.9803
0.04	0.5160	0.54	0.7054	1.04	0.8508	1.54	0.9382	2.08	0.9812
0.05	0.5199	0.55	0.7088	1.05	0.8531	1.55	0.9394	2.10	0.9821
0.06	0.5239	0.56	0.7123	1.06	0.8554	1.56	0.9406	2.12	0.9830
0.07	0.5279	0.57	0.7157	1.07	0.8577	1.57	0.9418	2.14	0.9838
0.08	0.5319	0.58	0.7190	1.08	0.8599	1.58	0.9429	2.16	0.9846
0.09	0.5359	0.59	0.7224	1.09	0.8621	1.59	0.9441	2.18	0.9854
0.10	0.5398	0.60	0.7257	1.10	0.8643	1.60	0.9452	2.20	0.9861
0.11	0.5438	0.61	0.7291	1.11	0.8665	1.61	0.9463	2.22	0.9868
0.12	0.5478	0.62	0.7324	1.12	0.8686	1.62	0.9474	2.24	0.9875
0.13	0.5517	0.63	0.7357	1.13	0.8708	1.63	0.9484	2.26	0.9881
0.14	0.5557	0.64	0.7389	1.14	0.8729	1.64	0.9495	2.28	0.9887
0.15	0.5596	0.65	0.7422	1.15	0.8749	1.65	0.9505	2.30	0.9893
0.16	0.5636	0.66	0.7454	1.16	0.8770	1.66	0.9515	2.32	0.9898
0.17	0.5675	0.67	0.7486	1.17	0.8790	1.67	0.9525	2.34	0.9904
0.18	0.5714	0.68	0.7517	1.18	0.8810	1.68	0.9535	2.36	0.9909
0.19	0.5753	0.69	0.7549	1.19	0.8830	1.69	0.9545	2.38	0.9913
0.20	0.5793	0.70	0.7580	1.20	0.8849	1.70	0.9554	2.40	0.9918
0.21	0.5832	0.71	0.7611	1.21	0.8869	1.71	0.9564	2.42	0.9922
0.22	0.5871	0.72	0.7642	1.22	0.8888	1.72	0.9573	2.44	0.9927
0.23	0.5910	0.73	0.7673	1.23	0.8907	1.73	0.9582	2.46	0.9931
0.24	0.5948	0.74	0.7704	1.24	0.8925	1.74	0.9591	2.48	0.9934
0.25	0.5987	0.75	0.7734	1.25	0.8944	1.75	0.9599	2.50	0.9938
0.26	0.6026	0.76	0.7764	1.26	0.8962	1.76	0.9608	2.55	0.9946
0.27	0.6064	0.77	0.7794	1.27	0.8980	1.77	0.9616	2.60	0.9953
0.28	0.6103	0.78	0.7823	1.28	0.8997	1.78	0.9625	2.65	0.9960
0.29 0.30	0.6141 0.6179	0.79 0.80	0.7852 0.7881	1.29 1.30	0.9015 0.9032	1.79 1.80	0.9633 0.9641	2.70 2.75	0.9965 0.9970
0.31	0.6217	0.81	0.7910	1.31	0.9049	1.81	0.9649	2.80	0.9974
0.32 0.33	0.6255	0.82 0.83	0.7939 0.7967	1.32 1.33	0.9066 0.9082	1.82	0.9656 0.9664	2.85 2.90	0.9978 0.9981
0.33	0.6293 0.6331	0.83	0.7967	1.33	0.9082	1.83 1.84	0.9664	2.90	0.9981
0.35	0.6368	0.85	0.8023	1.35	0.9115	1.85	0.9678	3.00	0.9987
0.36	0.6406	0.86	0.8051	1.36	0.9131	1.86	0.9686	3.05	0.9989
0.30	0.6443	0.80	0.8031	1.37	0.9131	1.87	0.9693	3.10	0.9999
0.38	0.6480	0.88	0.8106	1.38	0.9147	1.88	0.9699	3.15	0.9992
0.39	0.6517	0.89	0.8133	1.39	0.9177	1.89	0.9706	3.20	0.9993
0.40	0.6554	0.90	0.8159	1.40	0.9192	1.90	0.9713	3.25	0.9994
0.41	0.6591	0.91	0.8186	1.41	0.9207	1.91	0.9719	3.30	0.9995
0.42	0.6628	0.92	0.8212	1.42	0.9222	1.92	0.9726	3.35	0.9996
0.43	0.6664	0.93	0.8238	1.43	0.9236	1.93	0.9732	3.40	0.9997
0.44	0.6700	0.94	0.8264	1.44	0.9251	1.94	0.9738	3.50	0.9998
0.45	0.6736	0.95	0.8289	1.45	0.9265	1.95	0.9744	3.60	0.9998
0.46	0.6772	0.96	0.8315	1.46	0.9279	1.96	0.9750	3.70	0.9999
0.47	0.6808	0.97	0.8340	1.47	0.9292	1.97	0.9756	3.80	0.9999
0.48	0.6844	0.98	0.8365	1.48	0.9306	1.98	0.9761	3.90	1.0000
0.49	0.6879	0.99	0.8389	1.49	0.9319	1.99	0.9767	4.00	1.0000
0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772		

PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

The values z in the table are those which a random variable $Z \sim N(0, 1)$ exceeds with probability p; that is, $P(Z > z) = 1 - \Phi(z) = p$.

p	Z	p	Z
0.5000	0.0000	0.0500	1.6449
0.4000	0.2533	0.0250	1.9600
0.3000	0.5244	0.0100	2.3263

www.swanash.com

_	p	Z	p	Z
	0.2000	0.8416	0.0050	2.5758
	0.1500	1.0364	0.0010	3.0902
	0.1000	1.2816	0.0005	3.2905