- 1. A sequence $\{u_n\}$ is defined by $u_0 = 0$, $u_{n+1} = 1 + 2u_n$ for n = 1, 2, ...Prove by induction that, for $n \ge 1$, $u_n = 2^n - 1$. (4 marks)
- 2. Find the eigenvalues of the matrix $\mathbf{A} = \begin{pmatrix} 2 & 5 \\ 2 & -1 \end{pmatrix}$. (5 marks)
- 3. Obtain the Maclaurin expansion of $e^x \cos \pi x$ as far as the term in x^2 . (5 marks)

 Use your expansion to find an approximate value of $e^{1/10} \cos \frac{\pi}{10}$, to 3 significant figures.

 (2 marks)
- 4. Given that $z^4 32i = 0$,
 - (a) find the two possible values of z^2 in the form a + ib. (3 marks)
 - (b) Hence find all possible values of z in the form $r(\cos \theta + i \sin \theta)$ where $r > 0, -\pi < \theta \le \pi$.

 (6 marks)
- 5. The linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 maps the points (1, 0, 0), (1, 1, 0) and (1, 1, 1) to the points (-2, 1, 3), (-1, 1, -1) and (0, 0, 1) respectively.
 - (a) Find the 3×3 matrix which represents T.

(3 marks)

(b) Find the matrix representing the inverse transformation to T.

(5 marks)

(c) Find the point which is mapped to (2, -1, 0) by T.

(2 marks)

- 6. A transformation of the complex plane is defined by $w = z^2 + 1$, where z = x + iy, w = u + iv.
 - (a) Find, in the form $re^{i\theta}$, the points which remain unchanged under this transformation.

(6 marks)

(b) Find an equation in v and u for the image of the line Re(z) = 1 under the transformation and state what type of curve this image is. (6 marks)

PURE MATHEMATICS 6 (A) TEST PAPER 6 Page 2

- 7. The differential equation $\frac{dy}{dx} 4xy = 2x$, with y = -1 when x = 1, is to be solved numerically using step-by-step methods.
 - (a) Show that the approximation $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 y_0}{h}$ with step length 0·1 and $x_0 = 1$,

leads to the equation $y_1 = y_{-1} - 0.4$.

(4 marks)

- (b) Use the approximation $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_0 y_{-1}}{h}$ to estimate the value of y when x = 0.9.

 (3 marks)
- (c) Hence find approximates value for y when x = 1.1 and when x = 1.2.

(6 marks)

- 8. The equation of a plane is $\mathbf{r} = (1 + 3\lambda \mu)\mathbf{i} + (2 \lambda + \mu)\mathbf{j} + (\lambda 1)\mathbf{k}$, where λ and μ are real parameters.
 - (a) By converting this equation to scalar product form, or otherwise, find a unit vector normal to the plane. (7 marks)
 - (b) Find the perpendicular distance from the origin to the plane.

(1 mark)

A second plane has cartesian equation 4x + 3y - 5z = 25.

(c) Show that the points (8, 1, 2) and (5, 10, 5) lie in both planes.

(2 marks)

(d) Hence or otherwise find a vector equation for the line of intersection of the planes.

(2 marks)

(e) Find, to the nearest degree, the angle between the two planes.

(3 marks)