- 1. Let a be a fixed integer greater than 1. Prove by induction that, for all integers $n \ge 1$, $a^n 1$ is divisible by a 1. (5 marks)
- 2. $z_1 = 2e^{i\pi/4}$ and $z_2 = \frac{1}{2}e^{i\pi/3}$.
 - (a) Write down the modulus and the argument of (i) z_1z_2 , (ii) $\frac{z_1}{z_2}$. (4 marks)
 - (b) Show points representing z_1 and z_2 on an Argand diagram, and draw on your diagram the locus given by the equation $|z-z_1|=|z-z_2|$. (3 marks)
- 3. Obtain the Taylor expansion of $\cos x$ in ascending powers of $(x \pi)$, as far as the term in $(x \pi)^4$. (8 marks)
- 4. (a) With the usual notation, derive the result $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 y_{-1}}{2h}$ (3 marks)
 - (b) Use this step-by-step method, with a step length of 0·1, to find an approximate value of y when x = 1·2, given that $\frac{dy}{dx} y = 2x^2$, y = 1 when x = 1 and y = 0·73 when x = 0·9.

 (7 marks)
- 5. (a) Find the eigenvalues of the matrix $\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. (7 marks)
 - (b) Hence write down a diagonal matrix **D** such that, for some non-singular matrix **P** (which need not be found),

$$\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}. \tag{2 marks}$$

- (c) Find A^{-1} and write down the eigenvalues of A^{-1} . (5 marks)
- 6. The plane \prod with equation $\mathbf{r} \cdot (3\mathbf{i} 2\mathbf{j} \mathbf{k}) = p$ contains the points A(2, 1, c) and B(3, c, 2).
 - (a) Find the values of c and p. (3 marks)
 - (b) Find the perpendicular distance from the origin O to the plane Π . (3 marks)
 - (c) Find the co-ordinates of the point \prod which is the reflection of O in \prod . (4 marks)
 - (d) Find $\overrightarrow{OA} \times \overrightarrow{AB}$ and hence or otherwise find the area of triangle OAB. (5 marks)

PURE MATHEMATICS 6 (A) TEST PAPER 3 Page 2

7. (a) Given that $y = \arccos x$, express x in terms of y and hence obtain $\frac{dx}{dy}$ in terms of y.

(2 marks)

(b) Deduce that $\frac{dy}{dx} = \frac{-1}{\sqrt{1-x^2}}$ and find $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$ in terms of x.

(7 marks)

(c) Hence write down the first three non-zero terms in the Maclaurin series for $\arccos x$.

(5 marks)

(d) Use your series to find an estimate of arccos (0.6) correct to 2 decimal places, showing your working clearly. (2 marks)