1. Given that x > 0, prove by induction that, for all integers n > 1.

$$(1+x)^n \ge 1 + nx.$$

(5 marks)

2. Find the first three terms in the Maclaurin series for

$$\sin\left(x+\frac{\pi}{6}\right)$$
.

(5 marks)

- 3. Find the fourth roots of $8(1 + i\sqrt{3})$, giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
- 4. If $\mathbf{M} = \begin{pmatrix} x & 0 & 1 \\ x & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, where $x \neq 0$, find \mathbf{M}^{-1} in terms of x. (7 marks)
- 5. (a) Differentiate $\sec x \tan x$ with respect to x.

(2 marks)

- (b) Find the first two non-zero terms in the series expansion of $\sec x$ in ascending powers of x.

 (4 marks)
- (c) Given that the third term in the expansion of $\sec x$ is $\frac{5}{24}x^4$, deduce the first three non-zero terms in the expansion of $\ln(\sec x + \tan x)$. (4 marks)
- 6. (a) Given that $\frac{dy}{dx} = x^2y$ and that y = 1.2 when x = 0.1, take h = 0.1 in the approximation $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 y_0}{h}$ to estimate the value of y when x = 0.2. (5 marks)
 - (b) Solve the differential equation by an exact method and hence find the true value of y when x = 0.2. (6 marks)

PURE MATHEMATICS 6 (A) TEST PAPER 1 Page 2

- 7. The points A(2,-1,3), B(3,-2,2) and C(4,-2,1) lie in a plane \prod .
 - (a) Find the vectors \overrightarrow{AB} and \overrightarrow{AC} .

(2 marks)

(b) Find a vector which is normal to the plane ∏.

(3 marks)

(c) Write the equation of \prod in the form $\mathbf{r} \cdot \hat{\mathbf{n}} = p$, where $\hat{\mathbf{n}}$ is a unit vector. State the significance of the constant p.

(5 marks)

(d) Find, in radians to 3 significant figures, the acute angle between \prod and the plane with equation $\mathbf{r} \cdot (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = -1$.

(5 marks)

8. A transformation T from the z-plane to the w-plane is defined by the equation

$$w=\frac{z+\mathrm{i}}{z-2}.$$

(a) Find the image under T of the complex number z = 4 - 2i.

(2 marks)

(b) Find the complex number which is mapped by T to w = 1 - i.

(5 marks)

Given that z = x + iy and w = u + iv,

(c) show that the image of the line y = -x under T is a circle and give its equation in terms of u and v. (8 marks)