- 1. Given that $z_1 = 2 + 4i$ and $z_2 = 1 2i$, show on an Argand diagram the points representing z_1, z_2 and z_1z_2 . (4 marks)
- 2. Prove that $\sum_{r=1}^{n} (2r-1)^2 = kn(4n^2-1)$, where k is a constant to be found. (6 marks)
- 3. Solve the inequalities

(i)
$$\frac{2x-1}{x+1} < 1$$
, (ii) $\frac{2x-1}{x+1} \ge 1$. (7 marks)

- 4. (a) Show that the equation $4 \ln x 5 \ln 2x + 5 = 0$ has a root between x = 4 and x = 5. (2 marks)
 - (b) Use the interval bisection process three times on the interval (4, 5) to find an estimate α of this root, to 3 significant figures. (4 marks)
 - (c) Find, to 3 significant figures, the value of $4 \ln \alpha 5 \ln 2\alpha + 5$. (2 marks)
- 5. Solve the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 9y = 6 \frac{\mathrm{d}y}{\mathrm{d}x} ,$$

given that when x = 0, y = 3 and $\frac{dy}{dx} = 2$. (9 marks)

- 6. Given that w = a + i and z = 1 + bi, where a and b are real,
 - (a) find, in terms of a and b, the real and imaginary parts of

(i)
$$wz$$
, (ii) $(wz)^*$, (iii) $\frac{z}{w}$. (6 marks)

Given further that $|w| = \sqrt{10}$ and $\left|\frac{z}{w}\right| = \sqrt{5}$,

(b) find the values of the positive constants a and b. (6 marks)

PURE MATHEMATICS 4 (A) TEST PAPER 4 Page 2

7. (a) If
$$x = vt$$
, where v is a function of t , show that $\frac{dx}{dt} = v + t \frac{dv}{dt}$. (3 marks)

A quantity x is varying with time t in such a way that, for t > 0,

$$t\frac{\mathrm{d}x}{\mathrm{d}t} + 2t = 3x.$$

(b) Using the substitution in (a), show that this equation can be transformed into the equation

$$t\frac{\mathrm{d}v}{\mathrm{d}t} = 2(v-1). \tag{3 marks}$$

- (c) Deduce that $v 1 = kt^2$, where k is a constant. (5 marks)
- (d) Given that x = 3 when t = 1, find the value of x when t = 3. (3 marks)
- 8. (a) Sketch on the same diagram, for $0 \le \theta \le \pi$, the curves with polar equations

$$r = a\theta$$
 and $r = a(1 + \cos \theta)$. (4 marks)

- (b) Show that, at the point P where the curves intersect, $1 < \theta < 1.5$. (4 marks)
- (c) Taking 1.2 as a first approximation, use the Newton-Raphson method once to find a better estimate of the value of θ at P, correct to 4 significant figures. (3 marks)
- (d) Using the value of θ found in (c), estimate the area of the finite region contained between the line OP (where O is the pole), the line $\theta = \frac{\pi}{2}$ and the curve $r = a\theta$. (4 marks)