1. Find the set of values of x for which $\frac{2x}{x+2} > 1$.

(5 marks)

2. Find all the solutions of the equation $x^3 - 4x^2 + 8x = 0$.

(5 marks)

- 3. It is required to solve the equation $e^{\sin x} 3x = 0$.
 - (a) Show that this equation has a root between 0 and 1.

(2 marks)

- (b) Taking x = 0.5 as a first approximation, use the Newton-Raphson method once to obtain a second approximation to a root of this equation, to 3 decimal places. (4 marks)
- 4. (a) Show that $\sum_{r=4}^{n} (r^2 6r + 5) = \sum_{t=1}^{n-3} (t^2 4).$ (3 marks)
 - (b) Hence or otherwise find an expression for this sum in terms of n, giving your answer in factorised form. (5 marks)
- 5. A curve passes through the point (0, 1). Its gradient $\frac{dy}{dx}$ at the point (x, y) satisfies the relationship $3\frac{dy}{dx} = y + e^x$
 - (a) Use an integrating factor to solve this differential equation, expressing y in terms of x.

(8 marks)

(b) Sketch the curve for $0 \le x \le 2$.

(3 marks)

6. The complex numbers z_1 and z_2 are given by

$$z_1 = 2 - 3i$$
, $z_2 = a + bi$.

It is also given that $z_1z_2 = 8 + 14i$.

- (a) Show on an Argand diagram the points P and Q which represent the complex numbers z_1 and z_1z_2 respectively. (2 marks)
- (b) Find the values of a and b.

(4 marks)

(c) Verify that $|z_1z_2| = |z_1| \times |z_2|$.

(3 marks)

(d) State the value of $z_2z_2^*$.

(2 marks)

PURE MATHEMATICS 4 (A) TEST PAPER 2 Page 2

7. (a) If $x = e^t$ and y is a function of x,

(i) show that
$$\frac{dy}{dx} = e^{-t} \frac{dy}{dt}$$
, (2 marks)

(ii) obtain an expression for
$$\frac{d^2y}{dx^2}$$
 in terms of t, $\frac{dy}{dt}$ and $\frac{d^2y}{dt^2}$. (5 marks)

(b) Use the substitution x = e' to find the general solution of the differential equation

$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0.$$
 (6 marks)

8. (a) Sketch on a single diagram the curves with polar equations $r = a \cos 2\theta$ and $r = 2a \sin^2 \theta$, for $0 \le \theta < \frac{\pi}{4}$, where a > 0. (4 marks)

Calculate, in terms of a and π ,

- (b) the polar co-ordinates of the point, other than the pole, at which the two curves intersect, (5 marks)
- (c) the finite area enclosed between the curve $r = a \cos 2\theta$, $0 \le \theta \le \frac{\pi}{4}$, and the initial line. (7 marks)