- 1. Given that z = a + (1 a)i and that $zz^* = \frac{5}{8}$, find the two possible values of the real number a.

 (4 marks)
- 2. (a) Sketch, on one diagram, the lines with polar equation $\theta = \frac{2\pi}{3}$ and $r = \sec(\pi \theta)$. (3 marks)
 - (b) Find the polar coordinates of the point of intersection of these two lines. (3 marks)
- 3. Using standard results for the summation of series, prove that

$$\sum_{r=1}^{n} (3r+1)(3r-2) = n(3n^2+3n-2).$$
 (7 marks)

4. (a) Sketch on the same diagram the curves with equations

$$y = \frac{1}{x+1}$$
 and $y = \frac{x}{x-1}$. (4 marks)

(b) Using your sketch, or otherwise, find the solution set of the inequality

$$\frac{1}{x+1} \ge \frac{x}{x-1} \,. \tag{3 marks}$$

5. Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 9y = \sin x + \cos x. \tag{8 marks}$$

- 6. (a) Using the same axes, sketch the graphs of $y = \ln(x+1)$ and $y = 2 \cos 3x$ for $0 \le x \le \pi$. Show the coordinates of any points where the graphs cross the axes. (4 marks)
 - (b) Given that the smallest positive value of x at which the graphs intersect is α , show that $0 < \alpha < 1$.
 - (c) Taking $\frac{\pi}{6}$ as a first approximation to α , use the Newton-Raphson process twice to obtain a better approximation, correct to 4 significant figures. (6 marks)

PURE MATHEMATICS 4(A) TEST PAPER 8 Page 2

7. (a) Show that the substitution $y = \frac{1}{z}$ transforms the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = x^3 y^2$$

into the equation $\frac{dz}{dr} - \frac{z}{r} = -x^3$.

(5 marks)

(b) Hence find y in terms of x, given that y = 1 when x = 1.

(8 marks)

- 8. The cubic equation $x^3 + bx^2 + cx + d = 0$ has roots $z_1 = 1$, $z_2 = 2 i$ and $z_3 = m + ni$.
 - (a) State the values of m and n.

(2 marks)

(b) Find the values of the real constants b. c and d.

(5 marks)

(c) Show on an Argand diagram the points representing the three roots.

(3 marks)

- (d) For each of the three roots, find
 - (i) the modulus,
 - (ii) the argument, in radians to 3 significant figures.

(5 marks)

(e) Find, in the form p + qi, the complex number $\frac{z_2}{z_3}$.

(3 marks)