Practice Paper B _____

MECHANICS ONE

crashMATHS

Name						
------	--	--	--	--	--	--

CM

CM.

CM CM CM

CM CM

CM GM

GM CM

CM CM CM

CM GM CM GM GM

GM GM GM GM GM

CM: CM:

Duration	1 HOUR & 30 MINUTES
Total Marks Available	75 MARKS

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	
7	
1	
1	
Total marks	

CM CM CM ĊM -CM CM -CM CM CM CM CM CM CM CM CM CM $-\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM 0M CM CM CM CM CM $\mathbb{C}M$ CM CM CM (M CM -CM CM GM CM CM. CM CM CM CM CM

1	A delivery van is driving on the motorway at a constant speed of 60 mph for 20	
	minutes. As it passes the point P_1 , the van then decelerates uniformly for 5 minutes	
	reaching a speed x mph at the point P_2 .	
	(a) Sketch a speed-time graph to illustrate the motion of the van.	(3)
	The total distance travelled by the van in the 25 minutes is 35 miles.	
	(b) Work out the value of x.	(4)
	(c) Calculate the deceleration of the van between the points P_1 and P_2 .	(2)
<u> </u>	#####################################	
		<u> </u>
<u></u>		<u> </u>
		<u> </u>
<u>''</u>		
		8
		8
3		
_		<u></u>
<u> </u>		
		<u></u>
		3
15		<u></u>
		<u>8</u>
		<u> </u>
<u> </u>		
-		
		2

CM CMCM CM CM CMCM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CMCM CM. CM CM CM CM CM CM. CM. CM CM CMCM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

estion 1 continued	

CM CM CM CM CM CM · CM $-\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM GM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM (M CM -CM CM GM CM CM. CM CM CM CM CM

2	Two particles A and B have masses 1kg and 3kg respectively. The particles are moving towards each other on a smooth horizontal plane and collide directly. The speeds of A and B before the collision are $2u$ and $6u$ respectively. After the collision, the direction of motion of A is reversed and A moves with a speed x .	
	Given that A receives an impulse of $\frac{13}{2}u$ from B,	
	(a) Show that $x = \frac{9}{2}u$.	(3)
	(b) Find the speed and direction of motion of B after the collision.	(4)
<u> </u>		<u></u>
20		
<u>s</u>		
		3
<u>2</u>		
<u>e</u>		3
<u>s</u>		
2		=======================================
2		
<u> </u>		

CM CMCM CM CM CMCM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CMCM CM. CM CM CM CM CM CM. CM. CM CM CMCM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

nestion 2 continued	
	TOTAL 7 MARKS

CM CM

CM

CM

CM

 $\mathbb{C}M$

 $\mathbb{C}M$

CM CM

CM

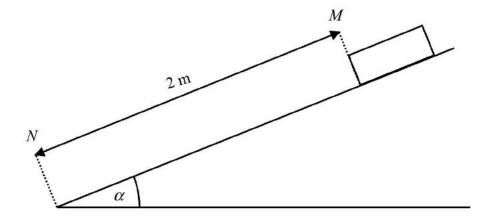
CM CM

CM

CM CM

CM

CM CM


GM

CM

CM CM

3

rough inclined plane,

Items on a delivery chute are released from the point M and are collected at the point N. A box is held in place at M on the conveyer belt which is inclined at an angle α to the horizontal, where $\sin \alpha = \frac{3}{5}$. The mass of the box is 45 kg and the distance between M and N is 2 m. The box is released from rest and is moving with a speed 3.2 m s⁻¹ when it reaches N. By modelling the box as a particle and the conveyer belt as a

- (a) Find the coefficient of friction between the box and conveyer belt. (9) Another item of mass 90 kg is to be released from rest at M t seconds after the box is released. Given that the item will reach N with a speed of 4.6 m s⁻¹,
- (b) Find the minimum value of t so that the item doesn't collide with the box. (5)

<u> </u>	-
2	

CM CMCM CM CM CMCM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM. CM CM CMCM CMCM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 3 continued		
,		
-		
-		

	RUNDAU
	GM
Question 3 continued	
	©M CM
	-CM
	100000000000000000000000000000000000000
	CM CM
	CM
	- MC124C124C1
	-EM
	CM
	CM
	CM
	GM GM
	CM
	GM GM
	CM
	СM
	CM
	-GM
	- PK17/K17/K1
	CM
	CM
	CM
	CM
	CM
	CM
	CM
	ŒМ
	I CM
	CM
	CM CM
	LM
	GM
	CM
	13513513
	GM
	CM
	DXDXD
	CM
	CM
	13513513
	QM QM
	CM
	N/N/X
3	-CM
	CM
	Œ M
	⊎M
	CM
	LX1X1X
	CM
	CM
	ŒM
	CM
8	CM
	BASSIA DAY
	CM

CM CMCM CM CM CMCM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM. CM CM CMCM CMCM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

uestion 3 continued	
	TOTAL 14 MARKS

CM CM CM CM CM CM -CM CM CM CMGM CMCM ÇΜ CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM ΘM CM (M CM CM CM $\mathbb{C}\mathbf{M}$ CMCM CM $\mathbb{C}M$ CM CM. CM (M CM CM. CMCM CM CM CM

4	A particle P is thrown vertically upwards with a speed of 18 m s ⁻¹ at a height h_1 m	
	above the ground. The particle hits the ground 5s after projection.	
	(a) Find h_1 .	(2)
	P is then dropped vertically downwards from rest at another point that is h_2 m above	
	the ground. At the same time, another particle ${\it Q}$ is thrown vertically upwards from	
	the ground at a speed of 9 m s ⁻¹ . The two particles collide at a time t and height h_3	
	above the ground.	
	(b) Show that $h_2 = 9t$.	(4)
	Given that immediately before the collision, Q had a speed of 4 m s ⁻¹ ,	
	(c) (i) Find h_2 .	
	(ii) Find h_3 .	(4)
:		9
7		
		2
		9
		-
		를 2
3		
=		
,		

CM CMCM CMCM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 4 continued		

	BURUKU
Question 4 continued	I KUM
	GM CM
	- CM
	CNA
	CM
	I CM
	CM
	EM
	CM
	GM
	K:X:X:
	I CM
	ĆM CM
	
	I KOM
	ĆM
	CM
	- I EM
	GM
	CM
	Ŭ ĆM
	CM GM
	I cm
	CM
	- @M
	- I CM
	- CM
	(M)
	€M.
	CM
	- I GM
	CM
	EM
	CM
	I CM
	CM
	CM
	GM
	CM
	(CM)
	CM
	- EKEKEN
	CM
	CM
	HST STATES

CM CMCM CM CM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 4 continued	
	TOTAL 10 MARKS

CM CMCM CM CM CM -CM CM CM CMGM CM CM ÇΜ CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM ΘM CM (M CM CM CM $\mathbb{C}\mathbf{M}$ CMCM CM $\mathbb{C}M$ CM CM. CM (M) CM (CM) CMCM CM CM CM

5	A uniform rod AB of mass 16kg has length 8m. The rod is held in equilibrium by two	
	strings at positions C and D on the rod, such that $AC = 2 \text{ m}$ and $AD = x \text{ m}$. The	
	tension in the string attached to D is greater than the tension in the string attached to	
	C by a factor of $\frac{3}{2}$.	
	2	
	Find	
	(i) the tension in the strings.	
	(ii) x.	(8)
		(0)
<u> </u>		=======================================
<u> </u>		<u> </u>
8		=======================================
<u> </u>		=======================================
63		<u> </u>
		8
<u>-</u>		
9		
<u> </u>		절
<u> </u>		
		<u> </u>
<u> </u>		2
		<u>8</u>
<u> </u>		3
3		=======================================
=		
G .		=======================================
8		
<u></u>		
3		
2		
3		8

CM CMCM CMCM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CM CM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM СM CM CM

uestion 5 continued	
	TOTAL 8 MARKS

CM CM CM CM -CM CM -CM CM CM CM CM CM CM CM CM CM -CM CM CM CM CM CM CM CM ΘM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM (M CM CM CM GM CM CM. CM CM CM CM CM

6	[In this question, \mathbf{i} and \mathbf{j} are unit vectors due east and due north respectively and position ve	ctors
	are given with respect to a fixed origin.]	
	A boat B is moving with constant velocity. The position vector of B at time t seconds ($t \ge 0$	0)
	is given by \mathbf{r} metres, relative to a fixed origin O .	17
	At time $t = 0$, the position vector of B is $3\mathbf{i} - 4\mathbf{j}$. After 5 seconds, B passes through the	
	point with position vector $8\mathbf{i} + 6\mathbf{j}$.	
	(a) Show that	
	$\mathbf{r} = (3+t)\mathbf{i} + (2t-4)\mathbf{j}$	(4)
	A lighthouse L has position vector $\frac{5}{2}\mathbf{i} + 10\mathbf{j}$.	
	(b) Find the distance of B from L at time $t = 3$.	(4)
	(c) Find the distance of B from L when the B is due south of L .	(4)
	(d) Find the time at which B is $\frac{5}{4}$ m from L.	(5)
		=
		-

CM CMCM CMCM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

	Question 6 continued

	GM
Question 6 continued	
	l CM
	- CM

	CM
	GM
- S	
	I EM
	-CM
	CM
	CM
	- CM
	CM
	GM
	CM
	CM
	DKDKD*
	□ CM
	CM
	CM
	■ K2K2K
	CM
	GM
	CM
	DXDXDX
	-CM
	I CM
	*t/*1/*t
	CM
	l KM
	GM GM GM
	€M
	CM
	DXLXLX
	@M
	€¢ M
	- CM CM
2	
	□ OM
5	CM,
	G M
	GM
	CM
	GM GM
	CM
	150000

CM CMCM CMCM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 6 continued	
TOTAL 17 MA	RKS
TOTAL 17 MA	

CM

CM CM

CM CM

CM

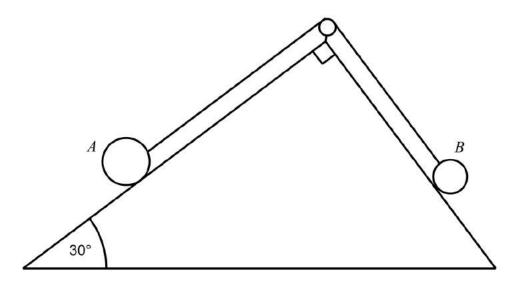
 $\mathbb{C}M$

 $\mathbb{C}M$

CM CM

CM CM

CM CM


CM

GM GM

CM

GM GM GM GM GM GM GM GM GM

7

20

The diagram shows two particles, A and B, that are connected by a light inextensible string passing over a smooth pulley. The two particles rest on two different rough surfaces of a triangular wedge. A has mass 6kg and B has mass 4kg. The coefficient of friction between A and the surface of the wedge is $\frac{1}{3}$. The frictional force that acts on B from the surface is 10N. The coefficient friction between B and the surface of the wedge is μ .

(a) Show that
$$\mu = 0.29$$
.

The system is released from rest.

(b) Find the acceleration of the particles and the tension in the string.	(7)
---	-----

crashmathspracticepapers

CM CMCM CM CM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

uestion 7 continued			

	NUNUAL
	l A
Question 7 continued	
	CM CM
	- CM
	#17K17K1
	CM
	EM
	CM
	CM
	\$C124C124C1
	EM
	CM
	@M
	CM
	CM
	-CM
	CM
	120020020
	CM CM
	CM.
	CM
	CM
	- GM
	CM
	- IX-IX-IX
	CM
	CM CM
	- CM
	CM
	(CM
	—— ₹ĆM
	GM GM
	GM
	CM
	- CM
	DKDKD*
	GM
	EM
	CM
<u> </u>	
	CM
	EM.
2	
	CM.
	CM
	CM
	(M
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	CM
	- CM
	CM
	N. S.

CM CMCM CM CM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM CM CM CM CM CM

Question 7 continued
·
·
s
TOTAL 10 MARKS

