## MECHANICS ONE

## crashMATHS

| Name | ? |  |  |  |  |
|------|---|--|--|--|--|
|------|---|--|--|--|--|

CM

CM.

CM CM CM

CM CM

CM GM

CM CM CM CM CM

CM GM CM GM GM

GM GM GM GM GM

CM GM

| Duration                 | 1 HOUR & 30 MINUTES |
|--------------------------|---------------------|
| Total Marks<br>Available | 75 MARKS            |

| Question<br>Number | Leave<br>Blank |
|--------------------|----------------|
| 1                  |                |
| 2                  |                |
| 3                  |                |
| 4                  |                |
| 5                  |                |
| 6                  |                |
| 7                  |                |
| 8                  |                |
| 1                  |                |
| Total<br>marks     |                |





CM CMCM CM (M CM CM CM CM CMGM CM CM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM CMCM CM CM CM ΘM CM CM CM CM CM  $\mathbb{C}\mathbf{M}$ CMCM CM CM CM (M CM (M) CM CM. CMCM CMCM CM

| reaching a maximum height and falling back to the ground. Find the time | es after projection at |
|-------------------------------------------------------------------------|------------------------|
| which the particle is 0.1m above the point of projection.               | (5)                    |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |
|                                                                         |                        |



| estion 1 continued |               |
|--------------------|---------------|
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    | TOTAL 5 MARKS |





CM CM CM CM CM CM · CM CM  $\mathbb{C}M$ CM CM. CM CM CΜ CM CM  $-\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM ΘM CM CM CM CM CM  $\mathbb{C}\mathbf{M}$ CM CM CM -CM CM -CM CM GM CM · GM CM CM CM CM CM

| [In this question, $i$ and $j$ are horizontal unit vectors due east and due north respectively                              | and |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|                                                                                                                             |     |  |  |  |
| position vectors are given with respect to a fixed origin O.]                                                               |     |  |  |  |
| A sailer S has position vector $(3\mathbf{i} + 6\mathbf{j})$ m at time $t = 0$ . After 4 s, the boat is at the point with   |     |  |  |  |
| position vector $(\mathbf{i} - \mathbf{j})$ m. The position vector of $S$ at a time $t$ s is $\mathbf{r}$ m.  (a) Show that |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             | (4) |  |  |  |
| b) Find the position vector of S when it is travelling north of O.                                                          | (3) |  |  |  |
| The sailor travels for 20s and then stops to await further signals.                                                         |     |  |  |  |
| c) Calculate the total distance travelled by the sailor in the first 20s of his motion.                                     | (4) |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |
|                                                                                                                             |     |  |  |  |

| Question 2 continued |  |  |
|----------------------|--|--|
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |
|                      |  |  |





|                      | NAME:                |
|----------------------|----------------------|
|                      | CM                   |
| Question 2 continued | NOTE THE             |
|                      | Ŭ Œ <b>M</b>         |
|                      | - CM                 |
|                      |                      |
|                      | CM                   |
|                      |                      |
|                      | @M                   |
|                      | CM                   |
|                      | ±*±*±*               |
|                      | I €M                 |
|                      | GM<br>GM             |
|                      |                      |
|                      | @M                   |
|                      | I NO                 |
|                      |                      |
|                      | GM                   |
|                      | GM                   |
|                      |                      |
|                      | GM<br>GM             |
|                      | l XX                 |
| <u>«</u>             |                      |
|                      | ĊM                   |
|                      |                      |
|                      | GM<br>GM             |
|                      | - CM                 |
|                      |                      |
|                      | PKDKD)               |
|                      | <u></u>              |
|                      | CM                   |
|                      | 1-8-1-8-1-9          |
|                      | ₫M                   |
|                      | ■ <del>KDXDX</del> C |
|                      | .CM                  |
|                      | Ţ, ÇM                |
|                      | l d <b>m</b>         |
|                      | CIN                  |
|                      | Ŭ Ĝ <b>M</b>         |
|                      |                      |
|                      | GM<br>GM             |
|                      | cm                   |
|                      |                      |
|                      | CM                   |
|                      | GM                   |
|                      |                      |
|                      | I CM                 |
|                      | - GM                 |
|                      | *1*1*1               |
| 2                    | CM                   |
|                      | CM                   |
|                      | KIXIXI               |
|                      |                      |
|                      |                      |
|                      |                      |
|                      | *GM                  |
|                      |                      |
|                      |                      |
|                      |                      |
|                      | -EM                  |
|                      |                      |
|                      | - CM                 |
|                      |                      |
|                      | @M                   |
|                      | €M                   |
|                      | GM<br>GM             |
| <u></u>              |                      |
|                      | CM                   |
|                      | CM                   |
|                      |                      |
|                      | CM                   |
|                      | 15819234             |



| uestion 2 continued |                |
|---------------------|----------------|
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     |                |
|                     | TOTAL 11 MARKS |





CM CM CM CM CM CM -CM CM CM CM CM CM CM CM CM CM  $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM GM CM CM CM CM CM  $\mathbb{C}\mathbf{M}$ CM CM CM -CM CM -CM CM GM CM CM. CM CM CM CM CM

| 3 | A uniform rod of length 5 m and                                                       | mass 20 kg is su     | pported by tw | o pivots, $A$ and $B$ .          | A mass of |
|---|---------------------------------------------------------------------------------------|----------------------|---------------|----------------------------------|-----------|
|   | M kg is placed on the edge of the                                                     | rod at the point     | C, such that  | $BC = 1 \mathrm{m}$ and $AC = 3$ | 3.5 m, as |
|   | shown in the diagram below. The magnitude of the normal reaction force at B is 294 N. |                      |               |                                  |           |
|   | <del>,</del>                                                                          |                      | 3.5 m         | <b>_</b>                         |           |
|   | A                                                                                     |                      | 5.5 III       | $B \leftarrow C$                 |           |
|   |                                                                                       |                      |               |                                  |           |
|   | By modelling the mass attached a                                                      | at $C$ as a particle | , find        |                                  |           |
|   | (i) the value of M                                                                    |                      |               |                                  |           |
|   | (ii) the magnitude of the norma                                                       | l reaction at A.     |               |                                  | (7)       |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |
|   |                                                                                       |                      |               |                                  |           |

| nestion 3 continued |               |
|---------------------|---------------|
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     |               |
|                     | TOTAL 7 MARKS |





GM. CM

CM

CM CM CM CM CM

CM CM

CM CM

CM

 $\mathbb{C}M$ 

CM CM

CM CM

CM CM

CM CM

CM

30° 45° The points B and C lie on a horizontal ceiling. A particle P of mass (10+k) kg is attached at A to two light inextensible strings AB and AC. B and C are fixed points attached to a horizontal ceiling. The tension in AB is 5 N. The system is in equilibirum. (a) Find the tension in the string AC. (3) (b) Find the value of k. (3)



crash math spractice papers

| nestion 4 continued |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |
|                     |  |





CM CM CM ĊM CM CM · CM CM CM CMCM CMCM ÇΜ CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM ΘM CM (M CM CM CM  $\mathbb{C}\mathbf{M}$ CM CM CM  $\mathbb{C}M$ CM CM. CM (M CM ·CM CMCM CM CM CM

| 5                                             | A child of mass $20\mathrm{kg}$ is sitting in a light sledge on a hill inclined at $\alpha^\circ$ to the horizontal. His |             |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
|                                               | brother is trying to pull the sledge up the hill with a rope that is parallel to the slope of the hill.                  |             |  |  |
|                                               | When the tension in the string is $100\cos\alpha$ N, the sledge is on the point of moving up the hill.                   |             |  |  |
|                                               |                                                                                                                          |             |  |  |
|                                               | The coefficient of friction between the hill and the sledge is $\frac{1}{5}$ . By modelling the child in the             |             |  |  |
|                                               | sledge as a particle, the hill as a rough inclined plane and the rope as a light inextensible string,                    |             |  |  |
|                                               | find the value of $\alpha$ . (8)                                                                                         |             |  |  |
|                                               | (6) (8)                                                                                                                  |             |  |  |
| <u>20</u>                                     |                                                                                                                          | - 5         |  |  |
| 2                                             |                                                                                                                          | = 5         |  |  |
| <u>sa</u>                                     |                                                                                                                          |             |  |  |
| <u> </u>                                      |                                                                                                                          | <u> </u>    |  |  |
| <u> </u>                                      |                                                                                                                          | _==         |  |  |
| <u>a</u>                                      |                                                                                                                          |             |  |  |
| <u> </u>                                      |                                                                                                                          | <u> </u>    |  |  |
| <u>e</u>                                      |                                                                                                                          | ====        |  |  |
| 8                                             |                                                                                                                          | = 5         |  |  |
| 8                                             |                                                                                                                          |             |  |  |
| <u> 50</u>                                    |                                                                                                                          | <u>====</u> |  |  |
| <u> </u>                                      |                                                                                                                          | <u>====</u> |  |  |
| <u> </u>                                      |                                                                                                                          | 벌           |  |  |
| 5.                                            |                                                                                                                          | - 8         |  |  |
| <u>s</u>                                      |                                                                                                                          |             |  |  |
| <u>15.</u>                                    |                                                                                                                          |             |  |  |
| <u>10</u>                                     |                                                                                                                          | <u> </u>    |  |  |
| 50                                            |                                                                                                                          | s           |  |  |
|                                               |                                                                                                                          | - 55        |  |  |
| <u> 101                                  </u> |                                                                                                                          | - 4         |  |  |
| <u> 201</u>                                   |                                                                                                                          | 5           |  |  |
| 2                                             |                                                                                                                          |             |  |  |
| E                                             |                                                                                                                          |             |  |  |
| fa                                            |                                                                                                                          |             |  |  |
| 2                                             |                                                                                                                          |             |  |  |
| <u> </u>                                      |                                                                                                                          | - 4         |  |  |
|                                               |                                                                                                                          |             |  |  |



| estion 5 continued |               |
|--------------------|---------------|
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    |               |
|                    | TOTAL 8 MARKS |





CM CM CM CM CM CM -CM CM CM CM CM CM CM CM CM CM  $-\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM GM CM CM CM CM CM  $\mathbb{C}M$ CM CM CM (M CM CM CM GM CM CM. CM CM CM CM CM

| 6                                                                                       | Three identical particles, $A$ , $B$ and $C$ , of mass $m$ kg lie at rest on a smooth horizontal particles. | zontal table.                           |  |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| A is given an impulse of $3m$ Ns in the direction $AB$ and collides directly with $B$ . |                                                                                                             |                                         |  |  |  |  |
|                                                                                         | ABC.                                                                                                        |                                         |  |  |  |  |
|                                                                                         | B then collides directly with C and its direction of motion is reversed. After the                          | collision, C                            |  |  |  |  |
|                                                                                         | moves with double the speed of $B$ .                                                                        |                                         |  |  |  |  |
|                                                                                         | (a) Find the speed of A after its collision with B.                                                         | (4)                                     |  |  |  |  |
|                                                                                         | (b) Find the speed of B after it collides with C.                                                           | (3)                                     |  |  |  |  |
|                                                                                         | (c) Explain whether or not $B$ will have a subsequent collision with $A$ .                                  | (1)                                     |  |  |  |  |
|                                                                                         | (c) Explain whether of not B will have a subsequent comsion with A.                                         | (1)                                     |  |  |  |  |
| 3                                                                                       |                                                                                                             |                                         |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
| S                                                                                       |                                                                                                             |                                         |  |  |  |  |
| <u>u</u>                                                                                |                                                                                                             | ======================================= |  |  |  |  |
| 5                                                                                       |                                                                                                             |                                         |  |  |  |  |
| <u> </u>                                                                                |                                                                                                             |                                         |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
| <u> </u>                                                                                |                                                                                                             | ======================================= |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
| 8                                                                                       |                                                                                                             | =                                       |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
| 2                                                                                       |                                                                                                             |                                         |  |  |  |  |
|                                                                                         |                                                                                                             | <u> </u>                                |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
|                                                                                         |                                                                                                             | 2                                       |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |
| 2                                                                                       |                                                                                                             |                                         |  |  |  |  |
| ŝ:                                                                                      |                                                                                                             |                                         |  |  |  |  |
|                                                                                         |                                                                                                             |                                         |  |  |  |  |



| Question 6 continued |               |
|----------------------|---------------|
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      |               |
|                      | TOTAL 8 MARKS |





GM GM

CM

CM CM

CM CM

CM CM CM CM CM

 $\mathbb{C}M$ 

CM

CM CM

CM CM

CM

CM

CM

CM

GM GM

CM

CM CM

CM CM

GM GM GM

7 Two masses, A and B, are connected by a light inextensible string that passes over a smooth pulley with the string taut. A and B have masses 3 kg and 7 kg respectively. The system is held in equilibrium. Initially, A and B are at a height of 0.5 m and 0.1 m above the table respectively, which is shown in the diagram below.



The system is released from rest.

- (a) Find the acceleration of the particles and tension in the string. (4)
- (b) Calculate the magnitude of the resultant force of the string on the pulley. (2)

When B hits the ground, the string is no longer taut and A continues to move until it reaches a height x m above the ground.

| (c) Find the value of $x$ . |  | (6) |
|-----------------------------|--|-----|
|                             |  |     |
| <u> </u>                    |  |     |
| 2                           |  |     |
|                             |  |     |
|                             |  |     |
|                             |  |     |
|                             |  |     |
|                             |  |     |
|                             |  |     |
|                             |  |     |



| Question 7 continued |      |      |
|----------------------|------|------|
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      | <br> | <br> |





|                      | RUNUNU         |
|----------------------|----------------|
|                      | GM             |
| Question 6 continued |                |
|                      | GM<br>GM       |
|                      | ΘM             |
|                      | #1X1X1X1       |
|                      | CM<br>GM       |
|                      |                |
|                      | - DALMAN       |
|                      | CM             |
|                      | W-1-30-1-30-1- |
|                      | -CM            |
|                      | CM             |
|                      |                |
| -                    | GM             |
|                      | CM             |
|                      |                |
|                      | I CM           |
|                      | CM<br>CM       |
|                      |                |
|                      | GM<br>GM       |
|                      | CM             |
|                      | CM             |
|                      | 1 1 1          |
|                      | CM             |
|                      |                |
|                      | -CM            |
|                      | CM             |
|                      | DANAGE         |
|                      | GM             |
|                      | CM             |
|                      | CM             |
|                      |                |
|                      | -CM            |
|                      | CM<br>CM       |
| -                    |                |
|                      | CM             |
|                      |                |
|                      | EM             |
|                      | CM             |
|                      | CNA            |
|                      | CM<br>CM       |
|                      | CM             |
|                      | GM             |
|                      | 1007075        |
|                      | CM             |
|                      | GM             |
|                      | GM             |
|                      | CM             |
|                      | CM             |
| 8                    |                |
|                      | €M             |
| 8                    | 125125125      |
|                      | ©M<br>CM       |
|                      | CM             |
|                      | -CM            |
|                      |                |
|                      | CM             |
|                      | -GM            |
|                      | DATATA         |
|                      | CM             |
|                      | GM             |
|                      | 表 ナスト・スト       |
|                      | CM             |
|                      | ŒМ             |
|                      | 1200 1201 120  |
|                      | CM             |
|                      | CM             |
|                      | #GN/CN/C       |
|                      | CM             |



| Question 7 continued |      |      |
|----------------------|------|------|
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      |      |      |
|                      | <br> | <br> |





GM GM

CM

CM GM

CM CM

CM

CM GM

CM

GM GM

CM

GM

CM CM

CM CM

CM

CM CM

CM CM CM

8



A light horizontal rod connects a caravan, of mass 2400 kg, and trailer, of mass 1000kg. The caravan starts to move at time t = 0 with a constant driving force  $\mathbf{F}$  of 5400 N, as shown in the diagram above. The system moves under the influence of  $\mathbf{F}$  for 30s before  $\mathbf{F}$  is removed and the systems starts to decelerate as it approaches a set of traffic lights. During this motion, the resistances to the motions of the caravan and the trailer are 750 N and 500 N respectively. By modelling the caravan and trailer as particles,

- (a) Find the acceleration of the system under the influence of F. (3)
- (b) Find the speed of the system at time t = 10. (2)
- (c) Calculate the tension in the rod as the system moves under the influence of **F**. (3)

  Given that the resistances to motion are unchanged when the system decelerates,
- (d) Find the total distance moved until the system comes to rest. (4)
- (e) Determine the force in the rod as the system decelerates and if the rod is in tension or thrust. (3)
- (f) Draw a speed-time graph to represent the motion of the system. (3)



| Question 8 continued |  |  |  |
|----------------------|--|--|--|
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |
|                      |  |  |  |





|                      | NUNUM               |
|----------------------|---------------------|
|                      | l M                 |
| Question 8 continued |                     |
|                      | CM<br>CM            |
|                      | CM                  |
|                      | WESKESKE            |
|                      | CM                  |
|                      | EM                  |
|                      |                     |
|                      | CM                  |
|                      | - EM                |
|                      |                     |
|                      | — Lom               |
|                      |                     |
|                      | ■ <del>KEKEKE</del> |
|                      |                     |
|                      | EM                  |
|                      | - CM                |
|                      | 120/120/20          |
|                      | CM                  |
|                      | l cm                |
|                      |                     |
|                      | CM                  |
|                      | CM                  |
|                      |                     |
|                      | - GM                |
|                      |                     |
|                      |                     |
| <u> </u>             | CM                  |
|                      | CM                  |
|                      | CM                  |
|                      | - ROMAN             |
|                      | - CM                |
|                      | GM                  |
|                      |                     |
| 3                    | - CM                |
|                      | EM                  |
| <u>e</u>             |                     |
|                      |                     |
|                      | GM                  |
|                      | GM<br>  GM<br>  GM  |
|                      |                     |
|                      | -CM                 |
|                      | CM                  |
|                      |                     |
|                      | - GM                |
|                      |                     |
|                      | GM                  |
|                      |                     |
|                      | CM                  |
|                      | - I                 |
|                      | — CM                |
|                      | CM.                 |
|                      |                     |
|                      | CM                  |
|                      |                     |
|                      |                     |
| 2                    | CM                  |
|                      | LXLXLX              |
|                      | GM                  |
|                      | CM                  |
|                      |                     |
|                      | CM                  |
|                      | СМ                  |
|                      | TXIXIX              |
|                      | —   CM              |
|                      | CM                  |
|                      | ISVESTS             |



| Question 8 continued |              |                |
|----------------------|--------------|----------------|
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
| -                    |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      |              |                |
|                      | END OF PAPER | TOTAL 18 MARKS |



