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Prove that Zn: (r2 -r— 1)= %(n ~2)n(n+2).

r=1

(6))

f(x)=1nx—1—l.
x

(a) Show that the root « of the equation f(x) = 0 lies in the interval 3<a <4.
2)
(b) Taking 3.6 as your starting value, apply the Newton-Raphson procedure once to f(x) to
obtain a second approximation to «. Give your answer to 4 decimal places.

)
Find the set of values of x for which
X 1
> .
x=3 x-2
)
f(x)=2x" —5x> + px -5, pe R.
The equation f (x) = 0 has (1 — 2i) as a root.
Solve the equation and determine the value of p.
)
(a) Obtain the general solution of the differential equation
as_ 0.1 =1.
dr
(6)

(b) The differential equation in part (@) is used to model the assets, £5 million, of a bank
¢ years after it was set up. Given that the initial assets of the bank were £200 million, use
your answer to part (a) to estimate, to the nearest £ million, the assets of the bank
10 years after it was set up.

(C))




The curve C has polar equation

r* =a” cos26, Tep<”,
4 4

(a) Sketch the curve C.

2)
(b) Find the polar coordinates of the points where tangents to C are parallel to the initial line.

(6
(¢) Find the area of the region bounded by C.

“)
Given that z = -3 + 4i and zw = —14 + 21, find
(a) win the form p + ig where p and ¢ are real,

“)
(b) the modulus of z and the argument of z in radians to 2 decimal places

“)
(c) the values of the real constants m and » such that

mz+nzw=-10-20i.
)

3 Turn over



8. (a) Giventhat x=¢', show that

() oo
dr  de
.. d’y o (d’y dy
=e | ———|
W dx? [dr2 d

(©))
(b) Use you answers to part (a) to show that the substitution x=e’ transforms the
differential equation

~ 4+2y=x"

2
xzd—g}—2x$:

nto

3
(c¢) Hence find the general solution of

2
xzd—f—2xd—y+2y=x3.
dx

(6

END
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The displacement x of a particle from a fixed point O at time ¢ is given by x = sinh¢.

At time T the displacement x = %

(a) Find coshT.

2
(b) Hence find e’ and T.
(&)
Given that y =arcsin x prove that
d 1
(a) e T\
dx w/il - X )
3)
d’y dy
by (1-x° -x—=0.
b (1-x) F-x ]
“4)
Figure 1
y)\
P(x,y)
s
A
U/ AN
(0] X

Figure 1 shows the curve C with equation y =cosh x. The tangent at P makes an angle y
with the x-axis and the arc length from A(0, 1) to P(x, y) is s.

(a) Show that s =sinh x.

(&)
(a) By considering the gradient of the tangent at P show that the intrinsic equation of C is
s =tan .
2
(¢) Find the radius of curvature p at the point where y = % .
3




T

I =Fx” sinx dx.
0

n

(a) Show that for n > 2

n-1
I, = n(%j - n(n - 1)1”_2 .

C))
(b) Hence obtain 7, giving your answers in terms of 7.

“4)
(a) Find [N(* + 4) dx.

(7)

The curve C has equation y*> —x> =4.

(b) Use your answer to part (a) to find the area of the finite region bounded by C, the
positive x-axis, the positive y-axis and the line x = 2, giving your answer in the
form p + In ¢ where p and ¢q are constants to be found.

C))
Figure 2
y)\
e, dm X
The parametric equations of the curve C shown in Fig. 2 are
x=a(t-sint), y=a(l-cost), 0<t<2x.
(a) Find, by using integration, the length of C.
(6
The curve C is rotated through 27 about Ox.
(b) Find the surface area of the solid generated.
(C))




(a) Using the definitions of sinh x and cosh x in terms of exponential functions, express
tanh x in terms of e* and e™".

1)
(b) Sketch the graph of y = tanh x.
(2)
1 I+x
(c) Prove that artanh x =—In .
2 \I-x
C))
. d . .
(d) Hence obtain ™ (artanh x) and use integration by parts to show that
J artanh x dx = x artanh x + %ln(l —x’ ) + constant.
(6))
x2 y 2
The hyperbola C has equation —- - <l =1.
a
(a) Show that an equation of the normal to C at P(a sec, b tan 9) is
by + axsin @ = (a* + b* )tan 6.
()
The normal at P cuts the coordinate axes at 4 and B. The mid-point of AB is M.
(b) Find, in cartesian form, an equation of the locus of M as @ varies.
(7
-

END
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dy 2
—=x"—-y, y=lat x=0.
dx Y

Use the approximation (%) ~ % with a step length of 0.1 to estimate the values of y
0

at x=0.1 and x=0.2, giving your answers to 2 significant figures.

(6)
(a) Show that the transformation
z—1
w=
z+1
maps the circle | z|=1 in the z-plane to the line | w—1 | = | w+Hi | in the w-plane.
C))
The region | z | <1 in the z-plane is mapped to the region R in the w-plane.
(b) Shade the region R on an Argand diagram.
(2)
Prove by induction that, all integers n, n>1,
dr> Ly
r=1 2
(7)
d’y v dy
—+y—=x, y=0,—=2atx=1.
& T 7T

Find a series solution of the differential equation in ascending powers of (x — 1) up to and
including the term in (x — 1)3.

(7)
7 6
A= .
6 2
(a) Find the eigenvalues of A.
“4)
(a) Obtain the corresponding normalised eigenvectors.
(6)

10



The points 4, B, C, and D have position vectors

a=2i+k, b=i+3j, c=i+3j+2k, d=4j+k
respectively.

(a) Find AB x AC and hence find the area of triangle ABC.

(7
(b) Find the volume of the tetrahedron ABCD.
2
(c) Find the perpendicular distance of D from the plane containing 4, B and C.
(&)
I x -1
AXx)=[3 0 2|, x;t%.
1 1 0
(a) Calculate the inverse of A(x).
®
1 3 -1
B=|3 0 2
1 1 0
p 2
The image of the vector | ¢ | when transformed by Bis | 3 |.
r 4
(b) Find the values of p, g and r.
(C))

11



(a) Given that z=¢", show that

1
z? +Z—p:2005p9,

where p is a positive integer.
(2)
(b) Given that
cos*@= Acos46 + Bcos20 + C,

find the values of the constants 4, B and C.
(7

The region R bounded by the curve with equation y =cos” x, — % <x< %, and the x-axis is

rotated through 2 7 about the x-axis.

(c¢) Find the volume of the solid generated.

(6

END
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EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667)

SPECIMEN PAPER MARK SCHEME

Question Scheme Marks
number
1. n(rz—r— )=nr2—nr—n1 MI
r=1 r=1 r=1 r=1
( n 1=nj Bl
r=1
=£(n+1)(2n+1)—[l)n(n+l)—n
6 2
=%[2n2 —g] M1 Al
=%n(n—2)(n+2) Al 5
(5 marks)
1
2. (a) | f(x)=lnx-1-—
x
f(3)=1n3-1-1=-02347
f(4)=In4-1-1=0.1363
f (3)and f (4) are of opposite sign and so f (x) has root in (3, 4) M1 Al (2)
®) | x,=3.6
f'(x)= l+i2 Ml
X x
f'(3.6)=0.354 381 Al
£(3.6)=0.003 156 04
£(3.6)
Root ~ 3.6 -
00 £ (3.6) M1 Al ft
~ 3.5911 Al (5)
(7 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667)

SPECIMEN PAPER MARK SCHEME

Question Scheme Marks
number
3. SN 1 —--> 1 >0:>M>0 M1 Al
x-3 x-2 x-3 x-2 (x=3)x-2)
Numerator always positive B1
Critical points of denominator x =2,x=3 B1
x <2:den=(-ve)(- ve)=+ve
2 <x <3:den=(-ve)+ ve)=—ve
3<x:den =(+ ve)(+ ve)=+ve M1 Al
Set of values x <2and x >3 {x:x <2}uU {x:x >3} Al (7
(7 marks)
4. If 1 —2iis aroot, thensois 1 +2i Bl
(x —1+2i)x —1-2i) are factors of f(x) M1
so x* —2x+5 is a factor of f (x) Al
£(x) = (x> —2x+5)2x 1) M1 Al ft
Third root is 3 and p = 12 Al Al (7)
(7 marks)
5. (a) i—f—(O.I)S=t M1
Integrating factor e_j (O _ o
%[Se‘(o'l)t | Al Al
s Se O = Ite’(o‘l)’dt
=10 —100e " +C Ml Al
S =cCe" —101-100 Al (6)
(b) | S=200atr=0
=200=C-100 ie. C=300
S =300 —107 ~100 M1 Al
At t=10,S =300e —100 —-100
=615.484 55 Ml
Assets £615 million Al ft 4)
(10 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667)

SPECIMEN PAPER MARK SCHEME

‘number Scheme e
6. (a)
N BI
© DL (Shape)
Bl (2)
(Labels)
(b) | Tangent parallel to initial line when y =7sin@ is stationary
: d . 2
Consider therefore P (a cos 2dsin 9)
=—25in 20sin* 6 + cos 20(2sin & cos A)
=0 M1 Al
2sin Bcos 26 cos @ — sin 20sin 8] =0
sint9¢0:>cos3t9=0:>0=%or% M1 Al
Coordinates of the points (La ZJ(LCZ i) Al Al (6)
ﬁ b 6 ﬁ b 6
(¢) | Area = —J r* dé Zlazj cos26 dé M1 Al
_1p|sin20 ‘ —“—2[1—(—1)]—‘1—2 MI AL (4
2 2 | 4 2
(12 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667)

SPECIMEN PAPER MARK SCHEME

Question Scheme Marks
number
7. (a)| z=-3+4,zw=-14+2i
-14+21 (- if—-3-4
Y _(-14+2i)(-3-4i) M
3440 (-3 +4i)(-3-4i)
_(42+8)+i(-6+56) ALAD
9+16
J0H0_ 5 Al 4)
)| | 2] =B +4%)=5 M1 Al
argz = mw— arctan% =2.21 MI1 Al 4)
(c¢) | Equating real and imaginary parts MI
3m+14n =10, Al
4m+2n =-20 Al
Solving to obtain M1
m=-6n=2 Al (5)
(13 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667)

SPECIMEN PAPER MARK SCHEME

‘umber Scheme -
8. (a)(i) =e', d—yzd—yize_tﬂ MI Al
dx drf dx dt
()
—=c
de
d? dr d d
(i) | =2 =" = MI
dx dx dt dt
Y ady
=e'|—e” e Al
[ dt dtz}
o dly dy
= e _E Al (5)
d*y dy
(b) | x* o —2x—4+2y=x"
t =2t d d t_—t t
d’y . dy ,
W —3E+2y=e3 (3)
(¢) | Auxiliary equation m” —3m +2=0
(m—1)m-2)=0
Complementary function y = de' + Be™ M1 Al
. . e’ 1
Particular integral = ——————=—¢ M1 Al
32 -(3x3)+2 2
General solution y = Ae' + Be* +1e*
= Ax+ Bx* +1x° M1 AL ft  (6)
(14 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP2 (6668)

SPECIMEN PAPER MARK SCHEME

Question

Number Scheme Marks
1. coshzT:1+sinh2T:1+%=§ M1 Al
5 5.
coshT=i§:§smce cosh7 >1 (2)
r ) 4 5
e :coshT+sth=§+§=3 M1 Al
Hence T =1n3 Al ft 3)
(5 marks)
2 (a) | y=arcsinx
=siny=x M1
dy
cosy—=1
Yt
d_y_ 1
dzy 1 2 =
b)| — = ——\l-x")2 (-2x
O] 5 =512
-3
_ x(l—x2)7 M1 Al
e T B Y B ViAo
S xdx_ X X x\l—x =
(7 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP2 (6668) SPECIMEN PAPER MARK SCHEME

Question
Number Scheme Marks
1
X 2 E
@< [u[d_y) } dx
0 dx
y=coshx,d—y=sinhx B1

1
s= [ [i+sinn? x] ax

= |, coshx dx = sinh x M1 Al (3)
(b) | Gradient of tangent
d—y:tanl//=sinhx=s
Sos=tany M1 A1 (2)
() p=w=seczw MI Al
Aty =Z, p=sec’Z=2 Al (3)
(8 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP2 (6668)

SPECIMEN PAPER MARK SCHEME

Question

Number Scheme Marks
4 @], :J'Ozx” sin x dx
ER
= [x” (- cos x)] - J.OE nx"" (= cos x)dx ML Al
0
7 =
=0+n [x”_l sin x] 0 - joz (n —1)x"2 sin x dx Al
= nl(%)n_l - (n - l)ln—ZJ
So7, =n(Z)'™ —n(n-1)1,_, Al 4
T 2
(b) | I, =3(Ej -3.21,
x ER:
- ; = [+(= Ml
I, = J:)Z xsin x dx =[x(- cos x)] 0 + IOZ cosx dx
= [sin x] 2=1 Al
0
I =(3)(£j2 6= g Ml Al (4)
; 2 4
(8 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP2 (6668)

SPECIMEN PAPER MARK SCHEME

Number Seheme e
5. (a) | x=2sinht B1
!
\/_(xz +4)=(4sinh2 t+4)2 =2cosht
dx =2coshzdr
I =[{ (x* +4)dv=4cosh®rdr MI Al
=2 J.(cosh 2t +1)de
=sinh 2 + 2t + ¢ Ml Al
=%x\/_(x2 +4)+ 2arsinh(§j+c MI Al fi
(7)
(b) | Area= [ydv= [ (x* +4)dv Ml
o0 2] o fomin]
= —x\/_(x +4) + | 2arsinh —
2 0 2 0
=%2\/_ 8 + 2arsinh(1) Al
2 2+ 2144 2] =2/ 2+n(3+2{ 2) MIAL  (4)
(11 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP2 (6668)

SPECIMEN PAPER MARK SCHEME

Question
Number Scheme Marks
1
6. ()= J‘M x.2+ y.2 "
0
%=x=a(l—cost);d—y=y=asint MI1 Al; Al
dr dr
1
2 2 1
s='[0 a[(l—cost)2+sin2tht:aIO [2-2cost]2dt
T : p 2
=2a [ 2sin| — |dt, = —4d| cos| —|| =8a M1 Al, Al ft
) 2)|,
(6)
2 .2 .2 5
(b) s=27zjo Vi x“+y | dt
2z i 2 E
:2ﬂjo 22a*(1-cost)2 dt
2
=8’ | sin3(5jdt M1 Al
0 2
=87za2J‘2” 1—cos?| L ||sinLdr Ml
0 2 2
t 2 Lt 64m’
=87m{—2cos—+—cos3 —} = Al Al ft (5)
2 3 21, 3
(11 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP2 (6668)

SPECIMEN PAPER MARK SCHEME

Question
Number Scheme Marks
7. ()| tanhy=SM0X _€ —¢ Bl (1)
coshx e"+e™”
(b)
1 VK//
0
-1 B1
B1 (2)
(c) | artanhx =z = tanhz=x
e - _, MI Al
e“+e
e’ —e’” :x(ez +e_z)
(1-x)e” =(1+x)e~
02 1+x
1—x
1 1+x
z=—In =artanh x M1 Al (4)
2 \l-x
(d) e _1f_1 + L1 MI1 Al
dx 2\1+x 1-x) 1-x?
1
Iartanhxdx = (x artanh x) - Il - xdx MI Al
- X
1 2
=(xartanhx)+51n(1—x )+constant Al ®))
(10 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP2 (6668) SPECIMEN PAPER MARK SCHEME

Question

Number Scheme Marks
x2 y2
8. @) | ——-=—=1
a® b’
2x 2yd
_’;__{_yzo M1 Al
a b dx
dy 2xb> b asechd b
—= = = M1 Al

dv 4?2y a®btand asind

Gradient of normal is then — %sin 0

Equation of normal: (y —btan @)= —%sin O(x — asecd)

axsin 0 +by =(a® +b* Jtan 6 M1 AL (6)
2 2
(b) | M: A normal cuts x:Oatyzgc%b)tanH M1 Al
2 2
B normal cuts y =0at x =4 + tan 6
asin @
2 12
=£‘i) Al
acos@
2 2 2 2
Hence M is (a +b )secﬁ,(a b )tan9 Ml
2a 2b
Eliminating 6 Ml

sec’@=1+tan’ @

2 2

[ 220)22} =1+{ Sbiz} Al

a’ + a’ +

4a°X* —4b’Y? = o +b* ]’ Al %
(15 marks)
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EDEXCEL FURTHER MATHEMATICS FP3 (6669)

SPECIMEN PAPER MARK SCHEME

%‘:ﬁ;ﬁg? Scheme Marks
1. xozoayozla(_j =0-1=-1 B1
0
dy
V== (—J =y, =1+(0.1(-1)=09 MI Al ft
dx 0
xl—Ol,y1=0.9,( j =(0.1 0.9 Al
1
=-0.89
dy
= hl ==
Y=y + (dx
=0.9+(0.1(-0.89)=0.811~0.81 M1 Al (6)
(6 marks)
2. (@] w=E o w(z+1)=(z—)
z+
Z(w=1)=—-w
—i—w Ml
zZ =
w—1 Al
|z|=1:»‘ “iow
w—1
e [w=1|=] wei] W
1.e. | w—1l|=|w+1
Al
b) | |z| <1=|w+i|<|w-1|
"
0 ‘1 > X
4 B1 (line)
B1 (shading)
(2)
(6 marks)
25 Turn Over



EDEXCEL FURTHER PURE MATHEMATICS FP3 (6669)

SPECIMEN PAPER MARK SCHEME

Question
Number Scheme Marks
3. Forn =1, LHS =1, RHS =%
So result is true forn =1 M1 Al
Assume true for n = k. Then
k+1 1
Zr>5k2+k+1 MI Al
r=1
= l(k2 + 2k + 1)+l
2 2
= l(/’c +1) + 1 MI
2 2
If true for £, true for k+1 Al
So true for all positive integral » Al (7)
(7 marks)
d’y  dy dy
4. ——+4+y—=x,y=0,—=2atx=1
& T T
2
jxf =0+1=1 BI
Differentiating with respect to x
3 2 2
d_y+(d_yj ;4 M1 Al
dx’ dx dx®
d3;v =—(2)2+0+1=-3 Al
dx x=1
By Taylor’s Theorem
y=0+z(x_1)+%1(x_1)2+%(_3)(x_1)3 MI Al
:Z(x—1)+%(x—1)2—%(x—1)3 Al (7)
(7 marks)
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EDEXCEL FURTHER MATHEMATICS FP3 (6669)

SPECIMEN PAPER MARK SCHEME

Number Scheme Mok
5. (@] |A-A]=0
(7-4) 6
=0
6 (2-21)
(7-2)2-4)-36=0 M1 Al
A —91+14-36=0
A -91-22=0
(A-11)A+2)=0= 2, =-2,4, =11 ML AL (4)
(b) | 4 =-2Eigenvector obtained from
7-(-2) 6 x ) (0
6 2-(=2))y,) |0
3x,+2y,=0 M1 Al
2 lised——| 2 M1 Al ft
c.g. normalised ——
13 J13 -3
-4 6 \(x, 0
A=11 =
6 -9)ly,) (0
-2x, +3y,=0 Al
3 . 1 (3
e.g. 5 normahsedﬁ 5 Al ft (6)
(10 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP3 (6669)

SPECIMEN PAPER MARK SCHEME

Question Scheme Marks
Number
6. ()| AB=(-1,3,-1); AC=(~1,3.1). M1 Al
i j k
ABx AC =[-1 3 -1
-1 3 1
=i(3+3)+jl+1)+Kk(-3+3)
=6i+2j M1 Al Al
Area of A ABC =%‘Z§ x ac |
1 ‘ M1 Al ft
=—+36+4=4/10 square units
2 (7
(b) U5 (15 « ¢
Volume of tetrahedron :g‘ AD . ({AB x AC ‘
=1|—12+8|
6
2 .
= — cubic units M1 Al (2)
@ e . .
Unit vector in direction AB x AC 1i.e. perpendicular to plane containing A4,
B,and Cis
1 1
n=——6i+2j)=—=(3i+j M1
T O 2= 5 b+
— 1
p=‘n-AD‘=— 3+ §)- (= 2i + 4j
6+ )-(-20-4i)
—L|—6+4| =2 units M1 Al (3)
J10 Jio
(12 marks)
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EDEXCEL FURTHER MATHEMATICS FP3 (6669)

SPECIMEN PAPER MARK SCHEME

Question
Number Scheme Marks
1 x -1
7. @] Alx)=3 0 2
1 1 0
-2 2 3 M1 Al
Cofactors | -1 1 x-1 Al
2x -5 —-3x Al
Determinant =2x—-3-2=2x-15 M1 Al
. A | 2x M1 Al
- (x) = — 1 -5
T3 (k-1) -3« (8)
p 2 . -2 -1 6\(2
(b)||q|=B"|3 =1 2 1 =53 MI1 Al ft
r 4 3 2 -9/)\4
(17,-13,-24) M (4)
- ) ) Al
(12 marks)
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EDEXCEL FURTHER PURE MATHEMATICS FP3 (6669)

SPECIMEN PAPER MARK SCHEME

Question Scheme Marks
Number
1 1
8. (o ZP+Z—p=eP‘9 T
= (ei”‘g +e'i”‘9)
=2cos pb M1 Al  (2)
(b) | By De Moivre if z=¢"
z? +L=2cosp0
ZP
1 4
p=1: (20056’)4=(z+—j Ml Al
z
=z +4z3.l+6zzi2+4z.i3+i4 MI Al
z z z z
:(24 +i4j+4(z2 +i2j+6
z z
=2cos46 +8cos260 + 6 M1 Al
~cos’ @=1cos46 +1cos26+2 Al ft (7)
©|Vv =ﬂjiy2dx=ﬁjicos4 x dx
2 2
2 (1 1
=7zj ”(—cos40+—cos20+§)d6 MI Al ft
- \8 2 8
| 1 . 3 2
=7| —sin40 + —sin 260 + -6 MI1 Al ft
32 4 8 |.=
2
==z’ M1 Al (6)
(15 marks)
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