

crashMATHS -

FP1 PRACTICE PAPER B

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

8		
1	$f(x) = 5 - x^2 + x^3 - 2x^4$	
	(a) Given that $f(x)$ has a root α in the interval [1,3], use interval bisection twice to	
	find an interval of width 0.5 containing α .	(3)
	(b) Starting with $x_0 = 1$, use the Newton-Raphson method once to find an	
	approximation for α . Give your answer to one decimal place.	(3)
		
9		
-		
i -		-
-		
<u> </u>		
·		<u> </u>
()		
		
-		**
-		
-		
2		
<u> </u>		<u> </u>
ţ .		
-		
(4		
=		÷
-		
-		
-		<u> </u>

CM CM GM CM CM CM CM CM CM CMCM CM CM CM ĊM CMCM CM CM CM CM CMCM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 1 continued	

CM CM

-CM

CM CM

CM CM

CM

CM

CM CM

CM CM

GM GM

CM CM CM

CM CM CM

- 2 (a) On the same axis, sketch the graphs of
 - (i) $C_1: y^2 = 4ax$, a > 0.
 - (ii) $C_2: y = \frac{c^2}{x}$

On your sketch, you should show the focus and directrix of C_1 and the asymptotes of the curve C_2 .

(5)

(b) Using your sketch, state and justify the number of solutions to the equation

$$\left(\frac{c^2}{x}\right)^2 = 4ax$$

(2)

CM CM $\mathbb{C}M$ ĊM CM CM CM CM CM CM 0M CM 0M CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM ĊM CM CM CM CM CMCM CM $\mathbb{C}M$ CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM ĊM CM CM OM CM СM CM

Question 2 continued	
	TOTAL 7 MARKS

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

3 Prove by induction that, for $n \in \mathbb{Z}^+$, $9^n - 2^n$	
is always divisible by 7.	(5)
	<u>.</u>

CM CM GM ĊM CM CM CM CM CM CMCM CM CM CM ĊM CMCM CM CM CM CM CM CM CM CM CMCM CM CM CM $\mathbb{C}M$ CM CM CM GM. CM CM CM GM ĊM CM CM CM CM СM CM

estion 3 continued	
	TOTAL 5 MARKS

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

4 The matrix M is given by	
$\left(\begin{array}{cc} 4 & 6 \\ -2 & 8 \end{array}\right)$	
(a) Find M^{-1} .	(3)
\mathbf{M} also equal to an enlargement of scale factor 3, centre O , followed by the matrix \mathbf{N} .	
(b) Find N.	(3)

CM CM GM CM CM CM CM CM CM CMCM CM CM CM ĊM $\mathbb{C}\mathbf{M}$ $\mathbb{G}M$ CM $\mathbb{C}M$ CM CM CM GM. CMCM CM GM ĊM CM CM CM CM СM CM

nestion 4 continued	

CM CM

CM CM

CM

CM.

CM

CM CM

CM CM

CM CM

CM GM

CM CM CM CM CM CM CM CM

5	A function f	can be expressed as
		f
	80 - 200 - 1	198

$$f(x) = (16x^2 - 25)(x^2 - 6x + 15)$$

(a) Find the roots to the equation f(x) = 0. (5)

The product of the roots of f(x) is given by the complex number z_1 .

(b) Find
$$|z_1|$$
.

(c) Find $\arg z_1$, giving your answer in degrees to two decimal places. (2)

Given that z_2 is a complex number such that

$$\arg\left(\frac{z_1}{z_2}\right) = -\frac{\pi}{4}$$

(d) Find z_2 .

(e) Show z_1 and z_2 on a single Argand diagram. (2)

-
-

CM CM GM ĊM CM CM CM CM CM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

uestion 5 continued			

Question 5 continued	│ €M
Question 5 continued	CM
7	CM
	GM
	CM
	- I CM
	CM
	CM
	CM
	CM
	CM
	NXX
	CM
	CM
	CM
	- K+米+米+
	CM
	DIDKDKD*
	CM
	CM
	CM
	*GP1
	CM
	1 HXIXIX
,	CM
	cm
	CM
	CM
	CM
	EM
	CM
	- GM
	OM
	CM
	CM
	CM
	⟨€M,
7	CM
	HX-1X-12
-	GM
	CM
	CM
	- CM
	CM

CM CM GM ĊM CM CM CM CM CM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 5 continued	

	*
	-0
	TOTAL 16 MARKS

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

2a+5b=3	
2a+3b=3 $3a+10b=8$	
3a+10b=8	(1)
	(4)

CM CM GM ĊM CM CM CM CM CM CM 0M CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

uestion 6 continued	

CM CM

CM

CM CM

CM

CM

GM CM

CM

CM

CM

CM CM CM CM CM CM

CM CM CM

7	(a)	Using standard	formulae	show	that
,	(4)	Osing standard	ioiiiiaiac,	SHOW	mai

$$\sum_{r=1}^{n} \left(6r^2 - 4r + 2^r + 1 \right) = n^2 \left(2n + 1 \right) + 2 \left(1 - 2^n \right)$$
 (6)

(b) Hence, or otherwise, find an expression for

$$\sum_{2n+1}^{n^2} \left(6r^2 - 4r + 2^r + 1 \right) \tag{4}$$

(c) Hence evaluate

$$\sum_{q}^{16} \left(6r^2 - 4r + 2^r + 1 \right) \tag{2}$$

CM CM GM ĊM CM CM CM CM CM CM0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CMCM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

uestion 7 continued		

Question 7 continued	CM
Question / continued	CIM
	Cr
	CM
	Cr
-	
	LAVAN
	CM
	CY
	l @r
	NX2
	CN
	l cr
	K1X12
	I DK⊕K9
	<u>Ĉ</u>
	l cr
	DKDKI
	l ch
	DKDKI
	Cr
	CM
	l cr
	NAV.
	CM
	C1
	CM
<u></u>	- CN
	K1X-12
	GN
	TON
	CP CP
*	
	@M
	CM
	⊕M
	GM GM
	+3K+3K+
	
	CN CN
	NAV.
	- CN
	- IDANAL

CM CM GM ĊM CM CM CM CM GM CM0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 7 continued	
	h.
	-
	TOTAL 12 MARKS

CM CM -CM CM CM. CM CM CM GM CM ŒM. CM CM CM CM CM CM CM

8	Here is a recurrence relationship.	
	$x_{k+1} = 3(x_k + 1)$	
	Given that $x_1 = 1$,	
		(2)
	(a) Find x_2 and x_3 .	(2)
	(b) Use the method of mathematical induction to prove that	
	$x_n = \frac{5(3^{n-1}) - 3}{2}$	
	$x_n = \frac{1}{2}$	
	for $n \in \mathbb{Z}^+$.	(6)
-	$101 \ n \in \mathbb{Z}$.	
		*
<u> </u>		
0 -		
1- 1-		
1		-
_		
		
-		-
		-
5 .		
-		

CM CM GM ĊM CM CM CM CM GM CM 0M CM GM. CM CM CM CM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM GM. CM CM CM GM ĊM CM CM CM CM СM CM

estion 8 continued	

CM CM

CM CM

CM CM

CM GM CM

CM

CM CM

GM GM

CM

CM

CM CM

CM CM CM CM

	9	The	rectangul	ar hyper	bola <i>H</i>	has th	e equation
--	---	-----	-----------	----------	---------------	--------	------------

$$xy = 16$$

The three distinct points P, Q and R lie on H and have the coordinates $\left(4p, \frac{4}{p}\right)$,

$$\left(4q,\frac{4}{q}\right)$$
 and $\left(4r,\frac{4}{r}\right)$ respectively, where $p,q,r\neq 0$.

(a) Find the equation of the line PQ.

(4)

(7)

Another point $S\left(4\sqrt{pq}, \frac{4}{\sqrt{pq}}\right)$ lies on H, where pq > 0.

Given that PR is parallel to PS,

(b) Show that the normal to H at the point R is perpendicular to PQ .	A at the point R is perpendicular to PQ .	
---	---	--

·	
7	
<u> </u>	
<u>- </u>	
	
,	

CM CM GM ĊM CM CM CM CM GM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM GM. CM CM CM CM ĊM CM CM CM CM СM CM

Question 9 continued					

Question 9 continued	G M
	- CM
	CM
	CM
	l cm
	GM GM
	CM
	CM
	CM
	GM GM
	CM
	CM
	GM CM
	CM CM
	CM
	CM
	CM
	CM
	EM
	CM
	GM
	GM
	CM
	CM CM
	GM GM
	CM
	CM
	GM
	GM CM
	- CM
	€M

CM CM GM ĊM CM CM CM CM CM CM0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM CM ĊM CM CM CM CM СM CM

Question 9 continued		
		7.6
	END OF PAPER	TOTAL 11 MARKS

