

crash**MATHS** -

FP1 PRACTICE PAPER A

CM CM. CM CM. CM CM CM CM CM

1 (a) Use standard formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that	
$\sum_{r=1}^{n} (3r-1)^2 = \frac{1}{2} n \left(6n^2 + 3n - 1 \right)$	
for all positive integers n .	(5)
(b) Hence, evaluate	
$2^2 + 5^2 + 8^2 + 11^2 + + 149^2$	
	(2)
	75
	3
	
	<u> </u>

CM. CM CM CM CM. CM CM CM (M CM CM CM (M Μ ĊM CM CM. CM ĆΜ CM CM Μ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM. CM CM. CM CM. CM OM CM CM CM

uestion 1 continued	
	TOTAL 7 MARKS

CM CM CM CM CM CM CM CM GM CM CM CM CM CM CM CM €M. CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM

2	The function $y = f(x)$ is defined such that	
	$f(x) = x^3 - 4x + 2$	
	Given that $f(x)$ has a root α in the interval $[-2.5, -2]$,	
	(a) Use interval bisection twice to obtain an interval of width 0.125 containing α .	(3)
	Given that $f(x)$ has another root β in the interval $[0,1]$,	
	(b) Use linear interpolation once to estimate the value of β , giving your answer to	
	three significant figures.	(3)
-		
8-		
		,
§ 7		
		
<u> </u>		
S .		-
		-

CM. CM CM CM CM. CM CM CM (M CM CM CM (M Μ ĊM CM CM. CM ĆΜ CM CM Μ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM CM CM. CM CM. CM OM CM CM CM

uestion 2 continued	

CM CMCM ĊM CM CM CM CMCM CMCM CM CM CM CM CM CM. CM CM CM ĆМ CM CM CM CM CM CM CMCM CM CM CM CM CMCM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM. CMCM CM CM CM

3 Given that $2-i$ is a root of the equation $2x^4 - 14x^3 + 51x^2 - 98x + 85 = 0$,		
(a)	Find all of the roots of the equation.	(5)
(b)	Show these roots on a single Argand diagram.	(3)

CM. CM CM CM CM. CM CM CM (M CM CM CM (M Μ ĊM CM CM. CM ĆΜ CM CM Μ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM. CM CM. CM CM CM OM CM CM CM

uestion 3 continued	
	7
	TOTAL 8 MARKS

CM CMCM ĊM CM CM CM CMCM CMCM CM CM CM CM CM CM. CM CMCM CM CM CM CM CMCM CM $\mathbb{C}\mathbf{M}$ CM $\mathbb{C}\mathbf{M}$ CM CM CMCM СM CM CM

$\mathbf{M} \begin{pmatrix} 5 & -2 \\ 0 & 3 \end{pmatrix} \mathbf{N} \begin{pmatrix} a+6 & b-a \\ a & b-2a-1 \end{pmatrix} \mathbf{O} \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$	
(a) Find det(O).	(2)
Given that $\mathbf{MN} = \det(\mathbf{M}) \cdot \det(\mathbf{O}) \cdot \mathbf{O}$,	
(b) Find the values of a and b .	(5)
	-
	-

CM. CM CM CM CM. CM CM CM (M CM CM CM (M Μ ĊM CM CM. CM ĆΜ CM CM Μ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM. CM CM. CM CM CM CM CM CM CM

uestion 4 continued	

CM CMCM ĊM CM CM CM CM CM CMCM CM CM CM CM CM CM. CM CMCM CM CM CM CM CM CM CM

5	The curve $f(x) = 5x^2 + 11x - 17$ has two roots α and β , where $\alpha > 0$.	
	(a) Find α and β to six decimal places.	(2)
	(b) Taking 1.25 as the first approximation to α , apply the Newton Raphson method	
	once to $f(x)$ to obtain a second approximation to α . Give your answer to six	
	decimal places.	(5)
	(c) State the number of decimal places to which your approximation of α is correct.	(1)
	(d) Calculate the percentage error in your approximation to $lpha$.	(2)
2		
9		2,5
-		
-		
-		*
5		
-		
34		
2		<u></u>
ŝ i		
9		-
i 		
		-
2		<u>2</u> 5
-		51
g		
-		=======================================
-		
13		<u> </u>

CM. CM CM CM CM. CM CM CM 0M CM CM CM (M Μ ĊM CM CM. CM СM CM CM Μ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM CM CM. CM CM. CM OM CM CM CM

Question 5 continued		

Overtion 5 continued	l em
Question 5 continued	CM
	- CM
	ČM
	СM
	GM
	CM
	CM
	GM
	CM
	CM
	- CM
	[GM
	CM
	CM
	■ kDXDX
	CM
	NA.A.
	CM
	ĞM
	CM
	- CM
	CM
	CM
	CM
	EM
	CM
	KM
	CM
	CM
	- GM
	KM
	CM
	CM
	RTXTX
	CM
	@M
	NATE:
	CM
	I CM
	KLXLX
	CM
	@M
	NXXX
	CM
	CM
	DANA
	CM
	CM
	KSIX

CM. CM CM CM CM. CM CM CM 0M CM CM CM CM Μ ĊM CM CM. CM СM CM CM Μ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM CM CM. CM CM. CM OM CM CM CM

uestion 5 continued	

CM

CM CM

CM

CM

CM

CM

CM

CM

CM

CM

CM

CM

CM

CM GM

CM CM CM

$$c_1 = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right), \ z_2 = \lambda\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right), \ z_3 = 4\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$$

- (a) Express z_1 and z_3 in the form a+bi, where $a,b \in \mathbb{R}$.
- (b) Simplify $\frac{z_1}{z_3}$
- (c) Hence, or otherwise, find the value of λ for which

$$\arg\left(\frac{z_1}{z_3} - z_2\right) = \pi \tag{4}$$

CM. CM CM CM CM. CM CM CM 0M CM CM CM (M Μ ĊM CM CM. CM СM CM CM ĊΜ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM CM CM. CM CM. CM OM CM CM CM

uestion 6 continued	
	1
	TOTAL 8 MARKS

7 A parabola has equation $y^2 = 4ax$, where $a > 0$.	
The tangent to the parabola at $M(am^2, 2am)$ and $N(an^4, 2an^2)$ intersect at the point	
R, where m is a positive constant.	
	(9)
Given that R lies on the line with equation $x = 3a$, find m in terms of n.	(8)

CM. CM CM CM CM. CM CM CM (M CM CM CM (M Μ ĊM CM CM. CM СM CM CM Μ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM CM CM. CM CM. CM OM CM CM CM

CM CMCM ĊM CM CM CM CMCM CMCM CM CM CM

CM CM. CM CMCM CM CM CM CM CMCM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CMCM CM CM CM

8 Prove by induction that, for $n \in \mathbb{Z}^+$,	
$4^{n+1} + 5^{2n-1}$	
	(5)
	-
·	-
	<u></u>
	<u>2</u>
-	
<u>-</u>	
	-

CM. CM CM CM CM. CM CM CM 0M CM CM CM (M Μ ĊM CM CM. CM СM CM CM Μ CM CM OM. CM CM CM CM. CM CM CM CM CM CM CM CM CM CM. CM CM. CM OM CM CM CM

CM CM CM ĊM CM CM CM CM GM CM CM CM CM CM CM CM CM. CM CM CM CM CM CM CM CM. CM CM CMCM CM CM. CM CM CM CM CM

9	The rectangular hyperbola H has the equation $xy = c^2$.	
	(a) Show that the equation of the tangent to H at the point $P\left(ct,\frac{c}{t}\right)$ is	
	$t^2y + x = 2ct$	(4)
	(b) Find an equation for the normal to H at the point P .	(3)
	The tangent to H at P crosses the x axis at A and the normal to H at P crosses the y axis at B .	
	Given that O is the origin,	
	(c) In terms of c and t , work out the area of the triangle OAB .	(4)
g		
()		
P P		
<u> </u>		59
S .		
2		
2		
8 .		
2		
2		
2		
5		
÷		
-		
-		

CM CM CM CM CM CM CM. CM (M CM CM. CM CM CM ĊM CM GM. CM CM: CM Μ Μ CM CM CM. CM CM. CM CM. CM CM CM CM CM

Question 9 continued		

Question 9 continued	GM GM
	GM
	EM
	CM
	CM CM
	GM
	- CM
	GM
	CM
	— CM
	—— CM
	CM
	—— Š
	CM
	GM CM
	- GM
	CM
	GM
	CM
	CM
	CM
	CM
	GM
	CM CM
	GM
	GM
	CM CM
	CM

CM CM CM CM CM CM CM. CM (M CM CM. CM CM CM ĊM CM GM. CM (M CM Μ Μ CM M CM. CM CM. CM CM. CM CM CM CM CM

Question 9 continued	
	9
	-
	-
	-
	TOTAL 44 MARKS
	TOTAL 11 MARKS

CM CMCM CM CM CM CM CM CM CMCM CMCM CMCM CM€M. CM CM CM CM CMCM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM CMCM CM CM CM

10 Prove by induction that, for $i \in \mathbb{Z}^+$, $\sum_{n=1}^{i} n \cdot n! = (i+1)! -1$	
	(6)

CM CM CM CM CM CM CM. CM (M CM CM. CM CM CM ĊM CM GM. CM (M CM Μ Μ M M CM. CM CM. CM CM. CM CM CM CM CM

Question 10 continued		
	END OF PAPER	TOTAL 6 MARKS

