Practice Paper A

CORE FOUR

crashMATHS

Name						
------	--	--	--	--	--	--

CM

CM.

CM CM CM

CM CM

CM GM

GM GM GM GM GM GM GM GM GM GM GM

GM GM GM GM GM GM GM

Duration	1 HOUR & 30 MINUTES
Total Marks Available	75 MARKS

	For examiner's use only
Targets	

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	
7	
8	
1	
Total marks	

CM CM CM ĊM -CM CM -CM CM CM CM CM CM CM CM CM CM $-\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM 0M CM CM CM CM CM $\mathbb{C}M$ CM CM CM (M CM -CM CM GM CM CM. CM CM CM CM CM

express			
chandra Brazilia (1805)	2×14		
	$\frac{2x+4}{x^3 - 2x^2 - 5x + 6}$	5	
	x - 2x - 3x + 0		
as partial fractions.		•	(7)

CM CMCM CM CM CMCM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CMCM CM. CM CM CM CM CM CM. CM. CM CM CMCM CMCM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

uestion 1 continued	
	TOTAL 7 MARKS

CM CM

CM CM

-CM

CM

CM

CM CM

CM

CM

GM GM

CM

CM

CM.

CM

CM CM

©M CM

GM GM GM GM

2	It is	given	that
		-	

$$f(x) = \frac{1}{\sqrt{4+x}}, x > -4$$

- (a) Find, in ascending powers of x, the first three terms in the binomial expansion of f(x). (5)
- (b) Using your expansion, estimate the value of $\sqrt{7}$.

Given also that $\sqrt{7} \cong 2.645751$,

(c) State the number of significant figures to which your estimate is correct. (1)

2	

CM CMCM CM CM CMCM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CMCM CM. CM CM CM CM CM CM. CM. CM CM CMCM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

uestion 2 continued	
	TOTAL 9 MARKS

CM CM CM CM CM CM · CM CM CM CM GM. CM CM CM CM CM $-\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM ΘM CM CM CM CM CM $\mathbb{C}M$ CM CM CM (M CM -CM CM GM CM CM. CM CM CM CM CM

3	(a) Show that $\int_{0}^{\frac{\pi}{4}} \tan x \ dx = \ln(\sqrt{2})$ (b) Hence, or otherwise, using the substitution $x = \sin u$, evaluate	(4)
<u>-</u>	$\int_{0}^{\frac{\sqrt{2}}{2}} \frac{5x}{2\sqrt{1-x^2}} dx$	(4)
20		
201		
2		
201		=======================================
<u> </u>		8
<u>2</u>		
<u>e:</u>		<u> </u>
35		
10		
15		
53		
<u>15</u>		
12		<u> </u>
5		
<u> </u>		
20		8
2		
To .		
2		
2		2

CM CMCM CM CM CMCM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CMCM CM. CM CM CM CM CM CM. CM. CM CM CMCM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

uestion 3 continued	
	TOTAL 8 MARKS

CM CM CM CM CM CM · CM CM CM CM GM. CM CM CM CM CM $-\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM ΘM CM CM CM CM CM $\mathbb{C}M$ CM CM CM (M CM -CM CM GM CM CM. CM CM CM CM CM

4 (a) Using logarithims, prove that	d (\sim	
(b) Differentiate, with respect to x ,	$\frac{d}{dx}(a^x) = a^x \ln a$	(3)
	$2^x - 2y^2 = xy$	(4)
		3 3
		<u> </u>

CM CMCM CM CM CMCM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CMCM CM. CM CM CM CM CM CM. CM. CM CM CMCM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 4 continued	
	TOTAL 7 MARKS

GM. CM

CM CM CM CM CM CM CM CM CM CM

CM

CM CM

CM CM

CM

CM

СM

CM

CM

CM

CM

CM: CM:

CM

CM

©M CM

CM CM

CM CM CM

5 The diagram below shows a sketch of the curve C.

The curve C is defined such that

$$x = \sin 3t$$
, $y \cos 3t + 2 = 2y$, $0 \le t \le 2\pi$

where t is a parameter.

(a) Find the coordinates of A and B.

(3)

(4)

(b) Show that

$$\frac{dy}{dx} = -\frac{2\tan 3t}{\left(2 - \cos 3t\right)^2} \tag{5}$$

(c) Find the equation of the tangent to C when $x = \frac{\sqrt{3}}{2}$.

(d) Hence, state the equation of the tangent to
$$C$$
 when $x = -\frac{\sqrt{3}}{2}$. (1)

The tangent to C at $x = \frac{\sqrt{3}}{2}$ crosses the x axis at the point P.

The tangent to C at $x = -\frac{\sqrt{3}}{2}$ crosses the x axis at the point Q.

(e) Verify that AP = AQ.

CM CMCM CM CM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 5 continued		

	NIATA
Question 5 continued	CM
	GM
	- CM
	l cm
	GM GM
	SCM
	CM
	CM
	CM
	CM
	EM
	CM
	CM
	CM
	CM
	CM
	│ Ğ M
	CM
	CM
	CM CM
	[c m
	CM
	I CM
	cM
	GM GM GM
	CM
	CM
	10/10/10
	[:CM
<u> </u>	- GM

	CM
	CM
	€cm
	GM CM
	- CM
	CM
	(M
	CM
	GM
	K-1-X-1-X-1
	CM
	130130130
	CM
	W-174-174-1
	CM

CM CM CM CM CM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM CM CM. CM CM CM CMCM CM. CM CM CM CM CM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 5 continued	
	TOTAL 17 MARKS

CM CM CM

OM OM OM

CM CM CM

CM CM

6	Two	lines l	and l	are	perpendicular	and	are	defined	such	that
---	-----	---------	-------	-----	---------------	-----	-----	---------	------	------

$$l_1: \mathbf{r} = \begin{pmatrix} 3 \\ a \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} b \\ 9 \\ 0 \end{pmatrix}$$

$$l_2: \mathbf{r} = \begin{pmatrix} -2\\1\\6 \end{pmatrix} + \mu \begin{pmatrix} 3\\a\\4 \end{pmatrix}$$

where λ and μ are scalar parameters.

		. 1	(-11)	1
The two lines intersect at the point M	with position vector	$\frac{1}{4}$	3	
		7	(20)	

Find the values of a and b .	(6)

CM CM CM CMCM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CM CM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM СM CM CM

uestion 6 continued	
	TOTAL 6 MARKS

CM

CM CM CM CM CM CM CM CM

CM CM

CM CM CM CM

CM

CM

CM

CM CM

CM

CM

GM GM GM GM GM GM GM GM GM GM

7 [In this question, you may use the formula $V = \frac{1}{3}\pi r^2 h$ for the volume of a cone, if necessary.]

The curve C has equation $y = \cos^2 x \sqrt{\sin x}$ and intersects the line I at the point P.

The line *l* has equation $y = \frac{9\sqrt{2}}{4\pi}x$

(a) Verify that
$$P$$
 has coordinates $\left(\frac{\pi}{6}, \frac{3\sqrt{2}}{8}\right)$

The finite region R, as shown in the figure above, is bounded by the curve C, the x axis, the y axis and the line l. The shaded region is then rotated 2π radians about the x axis to form a solid of revolution.

(b)	Find the volume of this solid of revolution.	(8)
(0)	That the volume of this some of revolution.	(6

CM CMCM CMCM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 7 continued	

	ATATA
	(CM
Question 7 continued	
	CM
	- CM

	CM
	l em
8	
	CM
	em
	GM
	CM
	CM
	[GM
	I GM
	GM
	CM
	CM
2	
	CM
	- I-GM
	■ DXDX 3*
	CM
	CM
	CM
	I K∑K∑K
	- CM
	GM
	KDKDKI
	[CM
	l em
	GM
	GM GM GM GM GM
	I *⊕M.
	I.CM
	- GM
	CM
	ĞM
	GM GM GM
(8)	I CM
2	cm
	LXLXLX
	CM
	GM
	CM
	GM GM
	EM
	CM
	CM
	GM GM
	CM
	#\$M\$M\$

CM CM CM CMCM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CM CM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

TOTAL 10 MARKS	Question 7 continued	
TOTAL 10 MARKS		
		TOTAL 10 MARKS

CM CM CM. ĊM -CM CM -CM CM CM CM CM CM CM CM CM CM $-\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM 0M CM CM CM CM CM $\mathbb{C}M$ CM CM CM (M CM -CM CM GM CM CM. CM CM CM CM CM

8	A microbiologist is going to conduct an experiment that involves growing a culture of bacteria	ì.			
	She assumes that the number of strands of bacteria, x , present in the culture t days after grown	th			
	is increasing at a rate that is proportional to the number of strands present in the culture. She is				
	going to use an initial culture containing 450 strands of bacteria. Previous research data shows				
	that after 4 days, there will be 2103 strands of bacteria present.				
	(a) By forming and solving a differential equation, estimate the number of strands that will be				
	present in her culture after a week.	(8)			
	(b) Sketch a curve that shows the rate of increase of the number of bacterial strands in the culture.	ıre.			
	On your sketch, you should clearly the coordinates at which the curve crosses or meets the				
	coordinate axis.	(3)			
		<u> </u>			
		<u> </u>			
		=======================================			
		=======================================			
		<u> </u>			
		<u> </u>			
		25			
		<u>10</u>			
<u> </u>					

CM CMCM CM CM CM CM CM GM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CMCM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM CM CM CM

Question 8 continued		
-		
4		
<u>-</u>		
<u> </u>		
-		
-		
-		
F		

) banas
Question 8 continued	СM
Question a continued	I M
	CM
	EM
	CM
	I SOM
	CM
	-CM
	CM
	I XXX
	I LIM
	CM
	CM
	CM
	CNA
	GM GM GM GM GM GM
	I KUM
	- GM
	GM
	CM CM CM
	l dm
	l EM
	CM
	CM CM
	GM GM GM
	. CM
	CM
	GM
	I CM
	GM
	CM
	19819819
	GM
	CM
	CM CM
	CM
	EM
	CM
	- GM
	NAMA.
	- CM
	СМ
	CM
	CM
	— I CM
	CM

CM CM CM CMCM CM CM CM GM CM CM CM CM CM CM CM CM CM. CM CM CM CM CM CM. CM CM CM CM CM CMCM CM CM CM CM. CM CM CMCM CM CM CM CM СM CM CM

Question 8 continued	
	<u> </u>
	<u> </u>
TOTAL 11 MARKS	
TOTAL II MAKKS	

