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1. The curve C has equation .23e2 2 ++= xy x  The point A with coordinates (0, 4) lies on C. 

Find the equation of the tangent to C at A. (5) 

                    

  

 

 

 

2. Express 
)3)(1( ++ xx

x
+

9

12
2 −
+
x

x
 as a single fraction in its simplest form.  (6) 

 

  

 

3. The functions f and g are defined by 

 

    f: xα x
2
 – 2x + 3, x ∈ 

�
,  0 ≤ x ≤ 4, 

 

    g: xα λx2 + 1, where λ  is a constant, x ∈ 
� �
 

 

(a) Find the range of f.  (3) 

 

(b) Given that gf(2) = 16, find the value of λ.  (3) 

 

 

 

 

4.  (a) Sketch, on the same set of axes, the graphs of 

 

 y = 2 – e
−x
  and y = √x. (3) 

 

[It is not necessary to find the coordinates of any points of intersection with the axes.] 

 

Given that f(x) = e
−x
 + √x – 2,  x ≥ 0, 

 

(b) explain how your graphs show that the equation f(x) = 0 has only one solution,  

   (1) 

 

(c) show that the solution of f(x) = 0 lies between x = 3 and x = 4.  (2) 

 

The iterative formula xn + 1 = (2 – nx−e )
2
 is used to solve the equation f(x) = 0. 

 

(d) Taking x0 = 4, write down the values of x1, x2, x3 and x4, and hence find an approximation 

to the solution of f(x) = 0, giving your answer to 3 decimal places.  (4) 
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5.      Figure 1 

                                 y 

 

  

 

 

 

O                       x 

 

             

 

Figure 1 shows a sketch of the curve with equation y  = e
−x
 − 1.  

 

(a) Copy Fig. 1 and on the same axes sketch the graph of y = 
2
1 x – 1. Show the 

coordinates of the points where the graph meets the axes.  (2) 

 

The x-coordinate of the point of intersection of the graph is α. 
 

(b) Show that x = α  is a root of the equation x + 2e−x − 3 = 0. (3) 

 

(c) Show that −1 < α < 0.  (2) 

 

The iterative formula xn + 1 = −ln[ 2
1 (3 – xn)] is used to solve the equation x + 2e

−x
 − 3 = 0. 

 

(d) Starting with x0 = −1, find the values of x1 and x2. (2) 

 

(e) Show that, to 2 decimal places, α = −0.58. (2) 

 

 

 

 

6.   f(x) = x
2
 − 2x − 3,  x ∈ 

�
, x ≥ 1. 

 

(a) Find the range of f. (1) 

 

(b) Write down the domain and range of f
−1
. (2) 

 

(c) Sketch the graph of f
−1
, indicating clearly the coordinates of any point at which the graph 

intersects the coordinate axes. (4) 

Given that g(x) = |x − 4|, x ∈ 
�
, 

 

(d) find an expression for gf(x). (2) 

 

(e) Solve gf(x)= 8. (5) 
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7.     f(x) = x + 
5

e x
,  x ∈ 

�
. 

(a) Find f ′(x). 
(2) 

 

The curve C, with equation y = f(x), crosses the y-axis at the point A. 

 

(b) Find an equation for the tangent to C at A. 

(3) 

(c) Complete the table, giving the values of 







+
5

e x
x to 2 decimal places. 

 

x 0 0.5 1 1.5 2 

 







+
5

e x
x  0.45 0.91    

 (2) 

  

 

 

 

8. (a) Express 2 cos θ + 5 sin θ in the form R cos (θ − α), where R > 0 and .
2
  0
πα <<  

Give the values of R and α to 3 significant figures. (3) 

  

 

(b) Find the maximum and minimum values of 2 cos θ + 5 sin θ and the smallest possible 
value of θ for which the maximum occurs. (2) 

  

The temperature T °C, of an unheated building is modelled using the equation 
 

 

T = 15 + ,240   ,
12

sin5
12

cos2 <≤





+








t
tt ππ

 

 

where t hours is the number of hours after 1200. 

 

(c) Calculate the maximum temperature predicted by this model and the value of t when this 

maximum occurs. (4) 

 

(d) Calculate, to the nearest half hour, the times when the temperature is predicted to be  

12 °C. (6) 

  

 
 

END 

 

 


