Paper Reference (complete below)	Centre No.	e	Initial(s)
6 6 6 5 / 0 1	Candidate No. Signatu	ıre	
Paper Reference(s) 6665		Examiner's u	se only
Edexcel GCE		Team Leader's	use only
Core Mathematics	C3		
Advanced Subsidia	ry	Question Number	Leave Blank
Set A: Practice Pap	er 4	1	
~ collar rancolog rang	-	2	
Time: 1 hour 30 minutes		3	
Time. Thou 30 minutes		4	
		5	
		6	
	ems included with question papers	7	
Mathematical Formulae Nil	l	8	
Instructions to Candidates			
In the boxes above, write your centre number, cainitials and signature. You must write your answ			
following the question. If you need more space to			
question, use additional answer sheets.			
Information for Candidates A booklet 'Mathematical Formulae and Statistic	oal Tablas' is provided		
Full marks may be obtained for answers to ALL	-		
This paper has eight questions.			
Advice to Candidates Voy must ensure that your answers to parts of a	uastions are algorly labelled	_	
You must ensure that your answers to parts of question You must show sufficient working to make your			
Answers without working may gain no credit.		Total	

Turn over

- 1. The curve C has equation $y = 2e^x + 3x^2 + 2$. The point A with coordinates (0, 4) lies on C. Find the equation of the tangent to C at A. (5)
- 2. Express $\frac{x}{(x+1)(x+3)} + \frac{x+12}{x^2-9}$ as a single fraction in its simplest form. (6)
- **3.** The functions f and g are defined by

$$f: x \mapsto x^2 - 2x + 3, x \in \mathbb{R}, \ 0 \le x \le 4,$$

g: $x \mapsto \lambda x^2 + 1$, where λ is a constant, $x \in \mathbb{R}$.

- (a) Find the range of f. (3)
- (b) Given that gf(2) = 16, find the value of λ .
- **4.** (a) Sketch, on the same set of axes, the graphs of

$$y = 2 - e^{-x}$$
 and $y = \sqrt{x}$. (3)

[It is not necessary to find the coordinates of any points of intersection with the axes.]

Given that $f(x) = e^{-x} + \sqrt{x} - 2$, $x \ge 0$,

- (b) explain how your graphs show that the equation f(x) = 0 has only one solution, (1)
- (c) show that the solution of f(x) = 0 lies between x = 3 and x = 4. (2)

The iterative formula $x_{n+1} = (2 - e^{-x_n})^2$ is used to solve the equation f(x) = 0.

(d) Taking $x_0 = 4$, write down the values of x_1 , x_2 , x_3 and x_4 , and hence find an approximation to the solution of f(x) = 0, giving your answer to 3 decimal places. (4)

5. Figure 1

Figure 1 shows a sketch of the curve with equation $y = e^{-x} - 1$.

(a) Copy Fig. 1 and on the same axes sketch the graph of $y = \frac{1}{2} |x - 1|$. Show the coordinates of the points where the graph meets the axes. (2)

The x-coordinate of the point of intersection of the graph is α .

(b) Show that
$$x = \alpha$$
 is a root of the equation $x + 2e^{-x} - 3 = 0$. (3)

(c) Show that
$$-1 < \alpha < 0$$
. (2)

The iterative formula $x_{n+1} = -\ln\left[\frac{1}{2}(3 - x_n)\right]$ is used to solve the equation $x + 2e^{-x} - 3 = 0$.

(d) Starting with
$$x_0 = -1$$
, find the values of x_1 and x_2 . (2)

(e) Show that, to 2 decimal places,
$$\alpha = -0.58$$
. (2)

6. $f(x) = x^2 - 2x - 3, x \in \mathbb{R}, x \ge 1.$

(b) Write down the domain and range of
$$f^{-1}$$
. (2)

(c) Sketch the graph of f⁻¹, indicating clearly the coordinates of any point at which the graph intersects the coordinate axes. (4)

Given that $g(x) = |x - 4|, x \in \mathbb{R}$,

(d) find an expression for
$$gf(x)$$
. (2)

(e) Solve
$$gf(x) = 8$$
.

$$f(x) = x + \frac{e^x}{5}, \qquad x \in \mathbb{R}.$$

(a) Find
$$f'(x)$$
. (2)

The curve C, with equation y = f(x), crosses the y-axis at the point A.

(b) Find an equation for the tangent to C at A.

(c) Complete the table, giving the values of $\sqrt{\left(x + \frac{e^x}{5}\right)}$ to 2 decimal places.

x	0	0.5	1	1.5	2
$\sqrt{\left(x + \frac{e^x}{5}\right)}$	0.45	0.91			

(2)

(3)

8. (a) Express
$$2 \cos \theta + 5 \sin \theta$$
 in the form $R \cos (\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.
Give the values of R and α to 3 significant figures.

(b) Find the maximum and minimum values of $2 \cos \theta + 5 \sin \theta$ and the smallest possible value of θ for which the maximum occurs. (2)

The temperature T °C, of an unheated building is modelled using the equation

$$T = 15 + 2\cos\left(\frac{\pi t}{12}\right) + 5\sin\left(\frac{\pi t}{12}\right), \quad 0 \le t < 24,$$

where *t* hours is the number of hours after 1200.

(2)

- (c) Calculate the maximum temperature predicted by this model and the value of t when this maximum occurs. (4)
- (d) Calculate, to the nearest half hour, the times when the temperature is predicted to be 12 °C. (6)

END