Edexcel AS and A Level Modular Mathematics

Review Exercise Exercise A, Question 1

Question:

It is estimated that 4% of people have green eyes. In a random sample of size n, the expected number of people with green eyes is 5.

a Calculate the value of n.

The expected number of people with green eyes in a second random sample is 3.

 ${f b}$ Find the standard deviation of the number of people with green eyes in this second sample. ${m E}$

Solution:

Review Exercise Exercise A, Question 2

Question:

In a manufacturing process, 2% of the articles produced are defective. A batch of 200 articles is selected.

- a Giving a justification for your choice, use a suitable approximation to estimate the probability that there are exactly 5 defective articles.
- **b** Estimate the probability there are less than 5 defective articles. E

Solution:

Review Exercise Exercise A, Question 3

Question:

A continuous random variable X has probability density function

$$f(x) = \begin{cases} k(4x - x^3), & 0 \le x \le 2, \\ 0, & \text{otherwise,} \end{cases}$$

where k is a positive constant.

a Show that $k = \frac{1}{4}$.

Find

b E(X),

 \mathbf{c} the mode of X,

d the median of X.

e Comment on the skewness of the distribution.

 \mathbf{f} Sketch f(x).

E

$$\int_{0}^{\pi} \frac{1}{4} (4x - x^{3}) dx = \frac{1}{2}$$

$$\frac{1}{4} (2m^{2} - \frac{1}{4}m^{4}) = \frac{1}{2}$$

$$m^{4} - 8m^{2} + 8 = 0$$

$$m^{2} = 4 \pm 2\sqrt{2}$$

$$m = 1.08$$
From a quadratic in m^{2} and solve using $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$.

 $mean(1.07) \le median(1.08) \le mode(1.15)$ ⇒ negative skew

Edexcel AS and A Level Modular Mathematics

Review Exercise Exercise A, Question 4

Question:

A fair coin is tossed 4 times.

Find the probability that

- a an equal number of heads and tails occur,
- b all the outcomes are the same,
- c the first tail occurs on the third throw.

E

Solution:

required.

Edexcel AS and A Level Modular Mathematics

Review Exercise Exercise A, Question 5

Question:

Accidents on a particular stretch of motorway occur at an average rate of 1.5 per

a Write down a suitable model to represent the number of accidents per week on this stretch of motorway.

Find the probability that

- b there will be 2 accidents in the same week,
- c there is at least one accident per week for 3 consecutive weeks,
- d there are more than 4 accidents in a two-week period.

E

Solution:

a Let X be the random variable, 'the number of accidents per week'.

$$X \sim P \circ (1.5)$$

'Rate' used in the question indicates this is a Poisson model.

$$P(X=2) = \frac{e^{-15}1.5^2}{2}$$
= 0.2510
= 0.251(3 s.f.)

This is the formula for a Poisson probability. You can also use tables to calculate $P(X \le 2) - P(X \le 1)$.

 $P(X \ge 1) = 1 - P(X = 0)$ = $1 - e^{-1.5}$ = 0.7769

'At least one' so we want 'greater than or equal to 1'.

P (at least one accident per week for 3 weeks)

X = 0 is the only unknown not required.

- $= 0.7769^3$
- = 0.4689
- = 0.469 (3 s.f.)

We want first week and second week and third week.

d $X \sim P \circ (3)$

$$P(X > 4) = 1 - P(X \le 4)$$

= 1 - 0.8153
= 0.1847
= 0.185(3 s.f.)

'More than 4' so 4 not included in the answer.

Use tables to find $P(X \le 4)$ and subtract from 1.

Review Exercise Exercise A, Question 6

Question:

The random variable $X \sim B(150, 0.02)$. Use a suitable approximation to estimate P(X > 7).

Solution:

Review Exercise Exercise A, Question 7

Question:

A continuous random variable X has probability density function f(x) where,

$$f(x) = \begin{cases} kx(x-2), & 2 \le x \le 3, \\ 0, & \text{otherwise,} \end{cases}$$

where k is a positive constant.

a Show that $k = \frac{3}{4}$.

Find

b E(X),

c the cumulative distribution function F(x).

d Show that the median value of X lies between 2.70 and 2.75.

 \boldsymbol{E}

F(x) = $\int_{2}^{x} \frac{3}{4} (t^{2} - 2t) dt$ Use a variable upper limit with $\int f(t) dt$. $= \left[\frac{3}{4} \left(\frac{1}{3} t^{3} - t^{2} \right) \right]_{2}^{x}$ Don't forget lower limit of 2. $= \left(\frac{3}{4} \left(\frac{1}{3} x^{3} - x^{2} \right) - \frac{3}{4} \left(\frac{1}{3} \times 2^{3} - 2^{2} \right) \right)$ $= \frac{1}{4} (x^{3} - 3x^{2} + 4)$

$$F(x) = \begin{cases} 0 & x \le 2 \\ \frac{1}{4}(x^3 - 3x^2 + 4) & 2 < x < 3 \\ 1 & x \ge 3 \end{cases}$$
 Display your answer carefully and don't forget $F(x) = 0$ and $f(x) = 1$.

d Look at F(x).

$$F(2.70) = 0.453$$

 $F(2.75) = 0.527$

F(m) = 0.5 is in between these.

Be careful to write your answer clearly and do not get confused between 2.70 and F(2.75) and F(2.75) and F(2.75) and F(2.75).

Alternative method

Use your answer to c. The median,
$$m$$
, is where $F(m) = \frac{1}{2}$.

$$m^3 - 3m^2 + 2 = 0$$

This is a cubic, so it will be difficult to solve. You use the values given in the question and show that the left hand side changes sign.

$$x = 2.75, x^3 - 3x^2 + 2 = 0.109315 > 0$$

$$x = 2.70, x^3 - 3x^2 + 2 = -0.187 < 0$$

Root between 2.70 and $2.75 \Rightarrow m$ between 2.70 and 2.75 since the cubic changes sign.

Edexcel AS and A Level Modular Mathematics

Review Exercise Exercise A, Question 8

Question:

The probability of a bolt being faulty is 0.3. Find the probability that in a random sample of 20 bolts there are

- a exactly 2 faulty bolts,
- b more than 3 faulty bolts.

These bolts are sold in bags of 20. John buys 10 bags.

c Find the probability that exactly 6 of these bags contain more than 3 faulty bolts.
E

Solution:

a Let X be the random variable 'the number of faulty bolts'.

The number of faulty boils:

$$X \sim B(20, 0.3)$$

$$P(X = 2) = \frac{20!}{18!2!}(0.3)^2(0.7)^{18}$$

$$= 0.0278$$

'Success' is 'faulty'. X is binomial with n = 20 bolts and probability of a faulty bolt, p = 0.3.

Substitute into the formula for binomial probability, don't forget

$$C_2^{20} = \frac{20!}{18!2!}$$

You can use tables instead:

$$P(X \le 2) - P(X \le 1) = 0.0355 - 0.0076$$

b

$$P(X > 3) = 1 - P(X \le 3)$$

= 1 - 0.1071
= 0.8929

Use tables for this as you would need to use the formula 4 times to work out 1-(P(X=3)+P(X=2)+P(X=1)+P(X=0)) and you are more likely to make a mistake.

c P (exactly 6 of these bags contain more than 3 faulty bolts)

More than 3 faulty bolts in a bag of 20 is the answer to **b**.

$$= \frac{10!}{4!6!} (0.8929)^6 (0.1071)^4$$
$$= 0.0140$$

10 bags bought so n = 10. Answer to b is p. So we are finding P(X = 6) where $X \sim B(10, p)$.

$$\frac{10!}{4|6!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2) \times (6 \times 5 \times 4 \times 3 \times 2 \times 1)}$$

Review Exercise Exercise A, Question 9

Question:

a State two conditions under which a Poisson distribution is a suitable model to use in statistical work.

The number of cars passing an observation point in a 10-minute interval is modelled by a Poisson distribution with mean 1.

- b Find the probability that in a randomly chosen 60-minute period there will be
 - i exactly 4 cars passing the observation point,
 - ii at least 5 cars passing the observation point.

The number of other vehicles, (i.e. other than cars), passing the observation point in a 60-minute interval is modelled by a Poisson distribution with mean 12.

Find the probability that exactly 1 vehicle, of any type, passes the observation point in a 10-minute period.
E

a Events occur at a constant rate.

Events occur independently or randomly.

Events occur singly.

There is no context stated in **a**, but Poisson requires an event to occur.

b Let X be the random variable 'the number of cars passing the point'

For 10 minutes, $\lambda = 1$ For 60 minutes, $\lambda = 6$ a suggests this is Poisson with $\lambda = 6$.

$$P(X=4) = \frac{e^{-6} 6^4}{4!}$$
= 0.1339
= 0.134(3 s.f.)

This is solved using the formula, but you can use tables and find $P(X \le 4) - P(X \le 3) = 0.2851 - 0.1512$.

ii

$$P(X \ge 5) = 1 - P(X \le 4)$$

$$= 1 - 0.2851$$

$$= 0.7149$$

$$= 0.715 (3 s.f.)$$

At least 5 means include 5 in your probability.

Use tables here as otherwise the formula needs to be used 5 times.

$$\lambda = 1 + 2 = 3$$
 $P(X = 1) = 3e^{-3}$
 $= 0.149$

For car, $\lambda = 1$ For others, $\lambda = 2$ in 10 minutes

X = 1 is '1 vehicle of any type'.

Alternative method

c

For 'other' 60-minute interval $\lambda=12$ 10-minute interval $\lambda=2$ For car, $\lambda=1$

'and' means 'multiply'

Edexcel AS and A Level Modular Mathematics

Review Exercise Exercise A, Question 10

Question:

The continuous random variable Y has cumulative distribution function F(y) given by

$$F(y) = \begin{cases} 0, & y < 1, \\ k(y^4 + y^2 - 2), & 1 \le y \le 2, \\ 1, & y > 2. \end{cases}$$

a Show that $k = \frac{1}{12}$

b Find P(Y > 1.5).

c Specify fully the probability density function f(y).

E

Solution:

а

C

$$F(2) = 1$$

$$k(2^4 + 2^2 - 2) = 1$$

$$18k = 1$$

$$k = \frac{1}{12}$$

$$F(y) \text{ is the cumulative distribution function, so } F(2) \text{ is found and equated to } 1, \text{ the total probability.}$$

b
$$P(Y > 1.5) = 1 - P(Y \le 1.5)$$

$$= 1 - F(1.5)$$

$$= 1 - \frac{1}{18}(1.5^4 + 1.5^2 - 2)$$

$$= 0.705 \left[\text{or } \frac{203}{288} \right]$$

$$f(y) = \frac{d F(y)}{dy}$$

$$= \frac{d}{dy} \left[\frac{1}{18} (y^4 + y^2 - 2) \right]$$

$$= \frac{1}{18} (4y^3 + 2y)$$

$$= \frac{1}{9} (2y^3 + y), 1 \le y \le 2$$

$$f(y) = \begin{cases} 0, \text{ otherwise} \\ \frac{1}{9} (2y^3 + y), & 1 \le y \le 2 \end{cases}$$
Set out $f(y)$ clearly and don't forget $f(y) = 0$.

Review Exercise Exercise A, Question 11

Question:

The continuous random variable X has probability density function f(x) given by

$$f(x) = \begin{cases} 2(x-2), & 2 \le x \le 3, \\ 0, & \text{otherwise.} \end{cases}$$

- a Sketch f(x) for all values of x.
- **b** Write down the mode of X.

Find

- $\mathbf{c} = \mathbf{E}(X),$
- **d** the median of X.
- e Comment on the skewness of this distribution. Give a reason for your answer. E

b Mode of X is 3.

This is the value of x where f(x)is at its greatest value.

$$\mathbf{c} \quad \mathbf{E}(x) = \int_{2}^{3} 2x(x-2) \, dx$$

$$= \left[\frac{2x^{3}}{3} - 2x^{2} \right]_{2}^{3}$$

$$= 2\frac{2}{3}$$
Integrate after expanding to $2x^{2} - 4x$.

d

$$\int_{2}^{m} 2(x-2)dx = 0.5$$

$$(x^{2}-4x)_{2}^{m} = 0.5$$

$$m^{2}-4m+4 = 0.5$$

$$2m^{2}-8m+7 = 0$$

$$F(m) = 0.5 \text{ for median.}$$

$$m = \frac{8 \pm \sqrt{64 - 56}}{4}$$

$$m = \frac{4 \pm \sqrt{2}}{2}$$

$$m = 2.71$$

Solve using quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ and cancel by 2.

Ignore m = 1.29 as outs the $2 \le x \le 3$.

Negative skew E(x) is the mean, $2\frac{2}{3}$. $mean(2.6) \le median(2.71) \le mode(3) \leftarrow$

Edexcel AS and A Level Modular Mathematics

Review Exercise Exercise A, Question 12

Question:

An engineering company manufactures an electronic component. At the end of the manufacturing process, each component is checked to see if it is faulty.

Faulty components are detected at a rate of 1.5 per hour.

- a Suggest a suitable model for the number of faulty components detected per hour.
- **b** Describe, in the context of this question, two assumptions you have made in part **a** for this model to be suitable.
- c Find the probability of 2 faulty components being detected in a 1-hour period.
- **d** Find the probability of at least one faulty component being detected in a 3-hour period. **E**

Solution:

- a Let x be the random variable 'number of faulty components detected' X ~ Po(1.5)
- Faulty components occur at a constant rate.
 Faulty components occur independently and randomly.
 Faulty components occur singly.

Make sure you write about the context of faulty components.

 $\mathbf{c} \quad P(X=2) = \frac{e^{-1.5}(1.5)^2}{2!} \\ = 0.251$

Use the formula for the probability of a Poisson distribution with $\lambda = 1.5$. You could also use tables and $P(X \le 2) - P(X \le 1)$.

 $P(X \ge 1) = 1 - P(X = 0)$ $= 1 - e^{-4.5}$ = 1 - 0.0111

= 0.9889

= 0.989 (3 s.f.)

'At least 1' so 1 is included in the probability.

Three-hour period, so $\lambda = 3 \times 1.5 = 4.5$

Use formula for Poisson.

© Pearson Education Ltd 2009

d $X \sim P \circ (4.5)$

Edexcel AS and A Level Modular Mathematics

Review Exercise Exercise A, Question 13

Question:

a Write down the conditions under which the Poisson distribution may be used as an approximation to the binomial distribution.

A call centre routes incoming telephone calls to agents who have specialist knowledge to deal with the call. The probability of the caller being connected to the wrong agent is 0.01.

- b Find the probability that 2 consecutive calls will be connected to the wrong agent.
- c Find the probability that more than 1 call in 5 consecutive calls are connected to the wrong agent.

The call centre receives 1000 calls each day.

- d Find the mean and variance of the number of wrongly connected calls.
- e Use a Poisson approximation to find, to 3 decimal places, the probability that more than 6 calls each day are connected to the wrong agent.

Solution:

```
a If X \sim B(n, p) and
   n is large
   p is small
   then X can be approximated by Po(np).
   P(2 \text{ consecutive calls}) = 0.01^2
                          = 0.0001
                                              'Success' is 'connected to wrong
c X \sim B(5, 0.01)
                                              agent' number of trials, n = 5
   P(X > 1) = 1 - P(X = 1) - P(X = 0)
                                              'More than 1' means 1 is not
                                              included in the probability.
              = 1-5(0.01)(0.99)^4 - (0.99)^5
              = 0.00098
                                                n=1000 calls per day p=0.01
d X \sim B(1000, 0.01)
                                                probability of a wrongly connected
   m ean
             = np = 10
                                                Use formulae for mean and variance
   variance = np(1-p) = 9.9
                                                of binomial distribution.
e X \sim Po(10)
                                                np = 10 from d.
   P(X > 6) = 1 - P(X \le 6)
              = 1 - 0.1301
                                                'More than 6' means 6 is not
              = 0.8699
                                                included.
              = 0.870 (3 s.f.)
                                                Look up 6 in Poisson tables with
                                                \lambda = 10 and subtract from 1.
```

Review Exercise Exercise A, Question 14

Question:

The continuous random variable X has probability density function given by

 \boldsymbol{E}

$$f(x) = \begin{cases} \frac{1}{6}x, & 0 < x < 3, \\ 2 - \frac{1}{2}x, & 3 \le x < 4, \\ 0, & \text{otherwise.} \end{cases}$$

- a Sketch the probability density function of X.
- **b** Find the mode of X.
- c Specify fully the cumulative distribution function of X.
- d Using your answer to part c, find the median of X.

 $F(x) = \begin{cases} 0 & x \le 0 \\ \frac{1}{12}x & 0 < x \le 3 \\ 2x - \frac{1}{4}x^2 - 3 & 3 < x < 4 \\ 1 & x \ge 4 \end{cases}$ Don't forget the ends of the c.d.f.

Edexcel AS and A Level Modular Mathematics

Review Exercise Exercise A, Question 15

Question:

The random variable J has a Poisson distribution with mean 4.

a Find $P(J \ge 10)$

The random variable K has a binomial distribution with parameters n = 25, p = 0.27.

b Find $P(K \le 1)$

Solution:

а

$$P(J \ge 10) = 1 - P(J \le 9)$$
 $= 1 - 0.9919$
 $= 0.0081$

Value from tables $n = 10, \lambda = 4$
 $P(K \le 1) = P(K = 0) + P(K = 1)$
 $= (0.73)^{25} + 25(0.73)^{24}(0.27)$
 $= 0.00392$

Use formula for binomial probability.

Review Exercise Exercise A, Question 16

Question:

The continuous random variable X has cumulative distribution function

$$F(x) = \begin{cases} 0, & x < 0, \\ 2x^2 - x^3, & 0 \le x \le 1, \\ 1, & x > 1. \end{cases}$$

- a Find P(X > 0.3).
- **b** Verify that the median value of X lies between x = 0.59 and x = 0.60.
- c Find the probability density function f(x).
- **d** Evaluate E(X).
- e Find the mode of X.
- f Comment on the skewness of X. Justify your answer.

a

$$P(X > 0.3) = 1 - F(0.3)$$

$$= 1 - (2 \times 0.3^2 - 0.3^3)$$
Remember to 'one minus' as we want $X > 0.3$.

$$F(0.59) = 0.4908 < 0.5$$

 $F(0.60) = 0.5040 > 0.5$
0.5 lies between $F(0.59)$ and $F(0.60)$
(Verify' so write your answer clearly.

so median lies between 0.59 and 0.60

c

$$f(x) = \frac{d F(x)}{dx}$$

$$= \frac{d}{dx}(2x^2 - x^3)$$

$$f(x) = 4x - 3x^2, 0 \le x \le 1$$
Differentiate c.d.f. to find p.d.f.

f(x) = 0, otherwise

Remember x < 0 and x > 1.

$$f(x) = \begin{cases} 4x - 3x^2 & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

d

$$E(X) = \int_0^1 xf(x) dx$$

$$= \int_0^1 (4x^2 - 3x^3) dx$$

$$= \left[4\frac{x^3}{3} - 3\frac{x^4}{4} \right]_0^1$$

$$= \frac{7}{12} \text{ or } 0.583$$
Bottom limit substitutes to give 0.

$$\frac{df(x)}{3} = -6x + 4$$

 $e \frac{\mathrm{df}(x)}{\mathrm{d}x} = -6x + 4$

 $\frac{dx}{-6x+4} = 0$ For mode, $x = \frac{2}{3} \text{ or } 0.6$

Mode occurs at maximum value of f(x) where $\frac{df(x)}{dx} = 0$.

 $mean(0.583) \le median(0.59 - 0.6) \le mode(0.6)$ so negative skew