Partial fractions Exercise A, Question 1 ## **Question:** Express the following as a single fraction: $$\frac{1}{3} + \frac{1}{4}$$ ## **Solution:** $$\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$$ Partial fractions Exercise A, Question 2 ## **Question:** Express the following as a single fraction: $$\frac{3}{4} - \frac{2}{5}$$ ## **Solution:** $$\frac{3}{4} - \frac{2}{5} = \frac{15}{20} - \frac{8}{20} = \frac{7}{20}$$ Partial fractions Exercise A, Question 3 ## **Question:** Express the following as a single fraction: $$\frac{3}{x} - \frac{2}{x+1}$$ ## **Solution:** $$\frac{3}{x} - \frac{2}{x+1}$$ $$= \frac{3(x+1)}{x(x+1)} - \frac{2x}{x(x+1)}$$ $$= \frac{3(x+1) - 2x}{x(x+1)}$$ $$= \frac{3x+3-2x}{x(x+1)}$$ $$= \frac{x+3}{x(x+1)}$$ Partial fractions Exercise A, Question 4 ### **Question:** Express the following as a single fraction: $$\frac{2}{(x-1)} + \frac{3}{(x+2)}$$ #### **Solution:** $$\frac{2}{(x-1)} + \frac{3}{(x+2)}$$ $$= \frac{2(x+2)}{(x-1)(x+2)} + \frac{3(x-1)}{(x-1)(x+2)}$$ $$= \frac{2(x+2) + 3(x-1)}{(x-1)(x+2)}$$ $$= \frac{2x + 4 + 3x - 3}{(x-1)(x+2)}$$ $$= \frac{5x + 1}{(x-1)(x+2)}$$ Partial fractions Exercise A, Question 5 ### **Question:** Express the following as a single fraction: $$\frac{4}{(2x+1)} + \frac{2}{(x-1)}$$ #### **Solution:** $$\frac{4}{(2x+1)} + \frac{2}{(x-1)}$$ $$= \frac{4(x-1)}{(2x+1)(x-1)} + \frac{2(2x+1)}{(2x+1)(x-1)}$$ $$= \frac{4(x-1) + 2(2x+1)}{(2x+1)(x-1)}$$ $$= \frac{4x - 4 + 4x + 2}{(2x+1)(x-1)}$$ $$= \frac{8x - 2}{(2x+1)(x-1)}$$ Partial fractions Exercise A, Question 6 ### **Question:** Express the following as a single fraction: $$\frac{7}{(x-3)} - \frac{2}{(x+4)}$$ #### **Solution:** $$\frac{7}{(x-3)} - \frac{2}{(x+4)}$$ $$= \frac{7(x+4)}{(x-3)(x+4)} - \frac{2(x-3)}{(x-3)(x+4)}$$ $$= \frac{7(x+4) - 2(x-3)}{(x-3)(x+4)}$$ $$= \frac{7x + 28 - 2x + 6}{(x-3)(x+4)}$$ $$= \frac{5x + 34}{(x-3)(x+4)}$$ Partial fractions Exercise A, Question 7 ### **Question:** Express the following as a single fraction: $$\frac{3}{2x} - \frac{6}{(x-1)}$$ #### **Solution:** $$\frac{3}{2x} - \frac{6}{(x-1)}$$ $$= \frac{3(x-1)}{2x(x-1)} - \frac{6 \times 2x}{2x(x-1)}$$ $$= \frac{3(x-1) - 12x}{2x(x-1)}$$ $$= \frac{3x - 3 - 12x}{2x(x-1)}$$ $$= \frac{-9x - 3}{2x(x-1)}$$ or $$-\frac{9x + 3}{2x(x-1)}$$ or $$-\frac{3(3x+1)}{2x(x-1)}$$ Partial fractions Exercise A, Question 8 ### **Question:** Express the following as a single fraction: $$\frac{3}{x} + \frac{2}{(x+1)} + \frac{1}{(x+2)}$$ #### **Solution:** $$\frac{3}{x} + \frac{2}{(x+1)} + \frac{1}{(x+2)}$$ $$= \frac{3(x+1)(x+2)}{x(x+1)(x+2)} + \frac{2x(x+2)}{x(x+1)(x+2)} + \frac{1x(x+1)}{x(x+1)(x+2)}$$ $$= \frac{3(x+1)(x+2) + 2x(x+2) + 1x(x+1)}{x(x+1)(x+2)}$$ Add numerators $$= \frac{3(x^2 + 3x + 2) + 2x^2 + 4x + x^2 + x}{x(x+1)(x+2)}$$ Expand brackets $$= \frac{3x^2 + 9x + 6 + 2x^2 + 4x + x^2 + x}{x(x+1)(x+2)}$$ Simplify terms $$= \frac{6x^2 + 14x + 6}{x(x+1)(x+2)}$$ Add like terms Partial fractions Exercise A, Question 9 ### **Question:** Express the following as a single fraction: $$\frac{4}{3x} - \frac{2}{(x-2)} + \frac{1}{(2x+1)}$$ #### **Solution:** $$\frac{4}{3x} - \frac{2}{(x-2)} + \frac{1}{(2x+1)}$$ $$= \frac{4(x-2)(2x+1)}{3x(x-2)(2x+1)} - \frac{2 \times 3x(2x+1)}{3x(x-2)(2x+1)} + \frac{3x(x-2)}{3x(x-2)(2x+1)}$$ $$= \frac{4(x-2)(2x+1) - 2 \times 3x(2x+1) + 3x(x-2)}{3x(x-2)(2x+1)}$$ Add numerators $$= \frac{4(2x^2 - 3x - 2) - 6x(2x+1) + 3x^2 - 6x}{3x(x-2)(2x+1)}$$ Expand brackets $$= \frac{8x^2 - 12x - 8 - 12x^2 - 6x + 3x^2 - 6x}{3x(x-2)(2x+1)}$$ Simplify terms $$= \frac{-1x^2 - 24x - 8}{3x(x-2)(2x+1)}$$ Add like terms $$= \frac{-1x^2 - 24x - 8}{3x(x-2)(2x+1)}$$ Add like terms ### **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise A, Question 10 ### **Question:** Express the following as a single fraction: $$\frac{3}{(x-1)} + \frac{2}{(x+1)} + \frac{4}{(x-3)}$$ #### **Solution:** $$\frac{3}{(x-1)} + \frac{2}{(x+1)} + \frac{4}{(x-3)}$$ $$= \frac{3(x+1)(x-3)}{(x-1)(x+1)(x-3)} + \frac{2(x-1)(x-3)}{(x-1)(x+1)(x-3)} + \frac{4(x-1)(x+1)}{(x-1)(x+1)(x-3)}$$ $$= \frac{3(x+1)(x-3) + 2(x-1)(x-3) + 4(x-1)(x+1)}{(x-1)(x+1)(x-3)}$$ Add numerators $$= \frac{3(x^2 - 2x - 3) + 2(x^2 - 4x + 3) + 4(x^2 - 1)}{(x-1)(x+1)(x-3)}$$ Expand brackets $$= \frac{3x^2 - 6x - 9 + 2x^2 - 8x + 6 + 4x^2 - 4}{(x-1)(x+1)(x-3)}$$ Simplify terms $$= \frac{9x^2 - 14x - 7}{(x-1)(x+1)(x+1)(x-3)}$$ Add like terms # **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise B, Question 1 ## **Question:** Express the following as partial fractions: (a) $$\frac{6x-2}{(x-2)(x+3)}$$ (b) $$\frac{2x+11}{(x+1)(x+4)}$$ (c) $$\frac{-7x-12}{2x(x-4)}$$ (d) $$\frac{2x-13}{(2x+1)(x-3)}$$ (e) $$\frac{6x+6}{x^2-9}$$ (f) $$\frac{7-3x}{x^2-3x-4}$$ (g) $$\frac{8-x}{x^2+4x}$$ (h) $$\frac{2x - 14}{x^2 + 2x - 15}$$ #### **Solution:** (a) Let $$\frac{6x-2}{(x-2)(x+3)} \equiv \frac{A}{(x-2)} + \frac{B}{(x+3)}$$ Add the fractions $$\Rightarrow \frac{6x-2}{(x-2)(x+3)} \equiv \frac{A(x+3) + B(x-2)}{(x-2)(x+3)}$$ So $6x - 2 \equiv A(x+3) + B(x-2)$ Set numerators equal Substitute $x = 2 \Rightarrow 6 \times 2 - 2 = A(2+3) + B(2-2)$ $$\Rightarrow 10 = 5A$$ $$\Rightarrow A = 2$$ Substitute $x = -3 \Rightarrow 6 \times (-3) - 2 = A(-3+3) + B$ $$(-3-2)$$ $$\Rightarrow -20 = B \times -5$$ $$\Rightarrow B = 4$$ Hence $\frac{6x-2}{(x-2)(x+3)} \equiv \frac{2}{(x-2)} + \frac{4}{(x+3)}$ (b) Let $$\frac{2x+11}{(x+1)(x+4)} \equiv \frac{A}{(x+1)} + \frac{B}{(x+4)}$$ Add the fractions $$\Rightarrow \frac{2x+11}{(x+1)(x+4)} \equiv \frac{A(x+4)+B(x+1)}{(x+1)(x+4)}$$ So $2x+11 \equiv A(x+4) + B(x+1)$ Set numerators equal Substitute $x = -4 \Rightarrow 2 \times (-4) + 11 = A(-4+4) + B$ $(-4+1)$ $\Rightarrow 3 = -3B$ $\Rightarrow B = -1$ Substitute $x = -1 \Rightarrow 2 \times -1 + 11 = A(-1+4) + B(-1+1)$ $\Rightarrow 9 = 3A$ $\Rightarrow A = 3$ Hence $\frac{2x+11}{(x+1)(x+4)} \equiv \frac{3}{(x+1)} + \frac{(-1)}{(x+4)} \equiv \frac{3}{(x+1)} - \frac{1}{(x+4)}$ (c) Let $$\frac{-7x - 12}{2x(x - 4)} \equiv \frac{A}{2x} + \frac{B}{(x - 4)}$$ Add the fractions $$\Rightarrow \frac{-7x - 12}{2x(x - 4)} \equiv \frac{A(x - 4) + B \times 2x}{2x(x - 4)}$$ So $-7x - 12 \equiv A(x - 4) + 2Bx$ Set numerators equal Substitute $x = 4$ $\Rightarrow -7 \times 4 - 12 = A(4 - 4) + 2B \times 4$ $\Rightarrow -40 = 8B$ $\Rightarrow B = -5$ Substitute $x = 0$ $\Rightarrow -7 \times 0 - 12 = A(0 - 4) + 2B \times 0$ $$\Rightarrow -12 = -4A$$ $$\Rightarrow A = 3$$ Hence $\frac{-7x - 12}{2x(x-4)} \equiv \frac{3}{2x} + \frac{-5}{(x-4)} \equiv \frac{3}{2x} - \frac{5}{(x-4)}$ (d) Let $$\frac{2x-13}{(2x+1)(x-3)} \equiv \frac{A}{(2x+1)} + \frac{B}{(x-3)}$$ Add the fractions $$\Rightarrow \frac{2x-13}{(2x+1)(x-3)} \equiv \frac{A(x-3) + B(2x+1)}{(2x+1)(x-3)}$$ So $2x - 13 \equiv A(x-3) + B(2x+1)$ Set numerators equal Substitute $$x = 3 \implies 2 \times 3 - 13 = A(3 - 3) + B(2 \times 3 + 1)$$ $$\Rightarrow$$ $-7 = B \times 7$ $$\Rightarrow B = -1$$ Substitute $$x = -\frac{1}{2} \implies 2 \times \left(-\frac{1}{2}\right) - 13 = A\left(-\frac{1}{2} - 3\right) + B$$ $$\left(\begin{array}{c|c}2\times&\left(\begin{array}{c}-\frac{1}{2}\end{array}\right)+1\end{array}\right)$$ $$\Rightarrow -14 = A \times -3 \frac{1}{2}$$ $$\Rightarrow$$ $A = 4$ Hence $$\frac{2x-13}{(2x+1)(x-3)} \equiv \frac{4}{(2x+1)} + \frac{-1}{(x-3)} \equiv \frac{4}{(2x+1)} - \frac{1}{(x-3)}$$ (e) $$\frac{6x+6}{x^2+9} \equiv \frac{6x+6}{(x+3)(x-3)}$$ Factorise denominator Let $$\frac{6x+6}{(x+3)(x-3)} \equiv \frac{A}{(x+3)} + \frac{B}{(x-3)}$$ Add fractions $$\Rightarrow \frac{6x+6}{(x+3)(x-3)} \equiv \frac{A(x-3)+B(x+3)}{(x+3)(x-3)}$$ So $$6x + 6 \equiv A(x - 3) + B(x + 3)$$ Set numerators equal Substitute $$x = 3 \implies 6 \times 3 + 6 = A (3 - 3) + B (3 + 3)$$ $$\Rightarrow$$ 24 = $B \times 6$ $$\Rightarrow B=4$$ Substitute $$x = -3 \implies 6 \times (-3) + 6 = A(-3-3) + B$$ $$(-3+3)$$ $$\Rightarrow$$ $-12 = A \times -6$ $$\Rightarrow A = 2$$ Hence $$\frac{6x+6}{x^2-9} \equiv \frac{2}{(x+3)} + \frac{4}{(x-3)}$$ (f) $$\frac{7-3x}{x^2-3x-4} \equiv \frac{7-3x}{(x-4)(x+1)}$$ Factorise denominator Let $$\frac{7-3x}{(x-4)(x+1)} \equiv \frac{A}{(x-4)} + \frac{B}{(x+1)}$$ Add fractions $$\Rightarrow \frac{7-3x}{(x-4)(x+1)} \equiv \frac{A(x+1) + B(x-4)}{(x-4)(x+1)}$$ So $$7 - 3x \equiv A(x + 1) + B(x - 4)$$ Set numerators equal Substitute $$x = -1 \Rightarrow 7 - 3 \times (-1) = A(-1 + 1) + B$$ $$(-1-4)$$ $$\Rightarrow$$ 10 = $B \times -5$ $$\Rightarrow B = -2$$ Substitute $$x = 4 \implies 7 - 3 \times 4 = A(4 + 1) + B(4 - 4)$$ $$\Rightarrow$$ $-5 = A \times 5$ $$\Rightarrow A = -1$$ Hence $$\frac{7-3x}{x^2-3x-4} \equiv \frac{-1}{(x-4)} + \frac{-2}{(x+1)} \equiv -\frac{1}{(x-4)} - \frac{2}{(x+1)}$$ (g) $$\frac{8-x}{x^2+4x} \equiv \frac{8-x}{x(x+4)}$$ Factorise denominator Let $$\frac{8-x}{x(x+4)} \equiv \frac{A}{x} + \frac{B}{(x+4)}$$ Add fractions $$\Rightarrow \frac{8-x}{x(x+4)} \equiv \frac{A(x+4) + Bx}{x(x+4)}$$ So $$8 - x \equiv A (x + 4) + Bx$$ Set numerators equal Substitute $$x = 0 \implies 8 - 0 = A(0 + 4) + B \times 0$$ $$\Rightarrow$$ 8 = 4A $$\Rightarrow$$ $A = 2$ Substitute $x = -4$ \Rightarrow $8 - \left(-4 \right) = A \left(-4 + 4 \right)$ $$+B \times \left(-4 \right)$$ $$\Rightarrow$$ 12 = $-4B$ $$\Rightarrow B = -3$$ Hence $$\frac{8-x}{x^2+4x} \equiv \frac{2}{x} + \frac{-3}{(x+4)} \equiv \frac{2}{x} - \frac{3}{(x+4)}$$ (h) $$\frac{2x-14}{x^2+2x-15} \equiv \frac{2x-14}{(x+5)(x-3)}$$ Factorise denominator Let $$\frac{2x-14}{(x+5)(x-3)} \equiv \frac{A}{(x+5)} + \frac{B}{(x-3)}$$ Add fractions $$\Rightarrow \frac{2x-14}{(x+5)(x-3)} \equiv \frac{A(x-3)+B(x+5)}{(x+5)(x-3)}$$ So $2x-14 \equiv A(x-3)+B(x+5)$ Set numerators equal Substitute $x=3 \Rightarrow 2 \times 3-14 = A(3-3)+B(3+5)$ $$\Rightarrow -8 = B \times 8$$ $$\Rightarrow B = -1$$ Substitute $x = -5 \Rightarrow 2 \times (-5) - 14 = A(-5-3) + B$ $(-5+5)$ $$\Rightarrow -24 = A \times (-8)$$ $$\Rightarrow A = 3$$ Hence $\frac{2x-14}{x^2+2x-15} \equiv \frac{3}{(x+5)} + \frac{-1}{(x-3)} \equiv \frac{3}{(x+5)} - \frac{1}{(x-3)}$ ### **Edexcel AS and A Level Modular
Mathematics** Partial fractions Exercise B, Question 2 ### **Question:** Show that $\frac{-2x-5}{(4+x)(2-x)}$ can be written in the form $\frac{A}{(4+x)} + \frac{B}{(2-x)}$ where A and B are constants to be found. #### **Solution:** Let $$\frac{-2x-5}{(4+x)(2-x)} \equiv \frac{A}{(4+x)} + \frac{B}{(2-x)} \equiv \frac{A(2-x)+B(4+x)}{(4+x)(2-x)}$$ So $-2x-5 \equiv A(2-x)+B(4+x)$ Substitute $$x = 2 \implies -2 \times 2 - 5 = A(2-2) + B(4+2)$$ $$\Rightarrow$$ $-9 = B \times 6$ $$\Rightarrow B = \frac{-3}{2}$$ Substitute $$x = -4 \implies -2 \times \left(-4 \right) - 5 = A \left(2 - \left(-4 \right) + B \right)$$ $$\left(\begin{array}{cc}4+&\left(\begin{array}{cc}-4\end{array}\right)\end{array}\right)$$ $$\Rightarrow$$ 3 = $A \times 6$ $$\Rightarrow \frac{1}{2} = A$$ Hence $$\frac{-2x-5}{(4+x)(2-x)} \equiv \frac{A}{(4+x)} + \frac{B}{(2-x)}$$ when $A = \frac{1}{2}$ and $B = \frac{-3}{2}$. or $$\frac{-2x-5}{(4+x)(2-x)} = \frac{1}{2(4+x)} - \frac{3}{2(2-x)}$$ ### **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise C, Question 1 ### **Question:** Express the following as partial fractions: (a) $$\frac{2x^2 - 12x - 26}{(x+1)(x-2)(x+5)}$$ (b) $$\frac{-10x^2 - 8x + 2}{x(2x+1)(3x-2)}$$ (c) $$\frac{-5x^2 - 19x - 32}{(x+1)(x+2)(x-5)}$$ ## **Solution:** (a) Let $$\frac{2x^2 - 12x - 26}{(x+1)(x-2)(x+5)} \equiv \frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x+5)}$$ Add fractions $$\Rightarrow \frac{2x^2 - 12x - 26}{(x+1)(x-2)(x+5)} \equiv$$ $$\frac{A(x-2)(x+5) + B(x+1)(x+5) + C(x+1)(x-2)}{(x+1)(x-2)(x+5)}$$ So $$2x^2 - 12x - 26 \equiv A(x-2)(x+5) + B(x+1)(x+5) + C(x+1)(x-2)$$ Substitute $$x = 2$$ \Rightarrow $8 - 24 - 26 = A \times 0 + B \times 3 \times 7 + C \times 0$ $$\Rightarrow$$ $-42 = 21B$ $$\Rightarrow$$ $B = -2$ Substitute $$x = -1$$ \Rightarrow $2 + 12 - 26 = A \times (-3) \times 4 + B \times 0 + C \times 0$ $$\Rightarrow$$ $-12 = -12A$ $$\Rightarrow A = 1$$ Substitute $$x = -5 \Rightarrow 50 + 60 - 26 = A \times 0 + B \times 0 + C \times 28$$ $$\Rightarrow$$ 84 = 28*C* $$\Rightarrow$$ $C=3$ Hence $$\frac{2x^2 - 12x - 26}{(x+1)(x-2)(x+5)} \equiv \frac{1}{(x+1)} - \frac{2}{(x-2)} + \frac{3}{(x+5)}$$ (b) Let $$\frac{-10x^2 - 8x + 2}{x(2x+1)(3x-2)} \equiv \frac{A}{x} + \frac{B}{(2x+1)} + \frac{C}{(3x-2)}$$ Add fractions $$\Rightarrow \frac{-10x^2 - 8x + 2}{x(2x+1)(3x-2)} \equiv \frac{A(2x+1)(3x-2) + Bx(3x-2) + Cx(2x+1)}{x(2x+1)(3x-2)}$$ So $$-10x^2 - 8x + 2 \equiv A(2x + 1)(3x - 2) + Bx(3x - 2) + Cx$$ (2x + 1) Substitute $$x = 0 \implies -0 - 0 + 2 = A \times 1 \times (-2) + B \times 0 + C \times 0$$ $$\Rightarrow$$ 2 = $-2A$ $$\Rightarrow A = -1$$ $$\frac{-7}{2} + C \times 0$$ $$\Rightarrow \frac{7}{2} = B \times \frac{7}{4}$$ $$\Rightarrow B=2$$ Equate coefficients in x^2 : -10 = 6A + 3B + 2C $$\Rightarrow -10 = -6 + 6 + 2C$$ $$\Rightarrow$$ $-10 = 2C$ $$\Rightarrow$$ $-5 = C$ Hence $$\frac{-10x^2 - 8x + 2}{x(2x+1)(3x-2)} \equiv \frac{-1}{x} + \frac{2}{(2x+1)} - \frac{5}{(3x-2)}$$ (c) Let $$\frac{-5x^2 - 19x - 32}{(x+1)(x+2)(x-5)} \equiv \frac{A}{(x+1)} + \frac{B}{(x+2)} + \frac{C}{(x-5)}$$ $$\Rightarrow \frac{-5x^2 - 19x - 32}{(x+1)(x+2)(x-5)} \equiv$$ $$\frac{A(x+2)(x-5) + B(x+1)(x-5) + C(x+1)(x+2)}{(x+1)(x+2)(x-5)}$$ So $$-5x^2 - 19x - 32 \equiv A(x+2)(x-5) + B(x+1)(x-5) + C(x+1)(x+2)$$ Substitute $$x = -1 \implies -5 + 19 - 32 = A \times 1 \times (-6)$$ + $B \times 0 + C \times 0$ $$\Rightarrow -18 = -6A$$ $$\Rightarrow A = 3$$ Substitute $x = 5 \Rightarrow -125 - 95 - 32 = A \times 0 + B \times 0 + C \times 6 \times 7$ $$\Rightarrow -252 = 42C$$ $$\Rightarrow C = -6$$ Substitute $x = -2 \Rightarrow -20 + 38 - 32 = A \times 0 + B \times \left(-1\right) \times \left(-7\right) + C \times 0$ $$\Rightarrow -14 = 7B$$ $$\Rightarrow B = -2$$ Hence $$\frac{-5x^2 - 19x - 32}{(x+1)(x+2)(x-5)} = \frac{3}{(x+1)} - \frac{2}{(x+2)} - \frac{6}{(x-5)}$$ ## **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise C, Question 2 #### **Question:** By firstly factorising the denominator, express the following as partial fractions: (a) $$\frac{6x^2 + 7x - 3}{x^3 - x}$$ (b) $$\frac{5x^2 + 15x + 8}{x^3 + 3x^2 + 2x}$$ (c) $$\frac{5x^2 - 15x - 8}{x^3 - 4x^2 + x + 6}$$ #### **Solution:** (a) $$x^3 - x \equiv x (x^2 - 1) \equiv x (x + 1) (x - 1)$$ So $\frac{6x^2 + 7x - 3}{x^3 - x} \equiv \frac{6x^2 + 7x - 3}{x (x + 1) (x - 1)} \equiv \frac{A}{x} + \frac{B}{(x + 1)} + \frac{C}{(x - 1)}$ $$\equiv \frac{A(x + 1) (x - 1) + Bx(x - 1) + Cx(x + 1)}{x (x + 1) (x - 1)}$$ Setting numerators equal gives $6x^2 + 7x - 3 \equiv A \left(x + 1\right) \left(x - 1\right) + Bx \left(x - 1\right)$ Substitute $x = 0 \implies 0 + 0 - 3 = A \times 1 \times (-1) + B \times 0 + C \times 0$ $$\Rightarrow$$ $-3 = -1A$ $$\Rightarrow A = 3$$ Substitute $x = 1 \implies 6 + 7 - 3 = A \times 0 + B \times 0 + C \times 1 \times 2$ $$\Rightarrow$$ 10 = 2C $$\Rightarrow$$ $C = 5$ Substitute x = -1 \Rightarrow $6 - 7 - 3 = A \times 0 + B \times (-1) \times (-2) + C \times 0$ $$\Rightarrow$$ $-4 = 2B$ $$\Rightarrow B = -2$$ Hence $$\frac{6x^2 + 7x - 3}{x^3 - x} \equiv \frac{3}{x} - \frac{2}{(x+1)} + \frac{5}{(x-1)}$$ (b) $$x^3 + 3x^2 + 2x \equiv x (x^2 + 3x + 2) \equiv x (x + 1) (x + 2)$$ So $\frac{5x^2 + 15x + 8}{x^3 + 3x^2 + 2x} \equiv \frac{5x^2 + 15x + 8}{x (x + 1) (x + 2)} \equiv \frac{A}{x} + \frac{B}{(x + 1)} + \frac{C}{(x + 2)}$ $$\equiv \frac{A(x+1)(x+2) + Bx(x+2) + Cx(x+1)}{x(x+1)(x+2)}$$ Setting numerators equal gives $5x^2 + 15x + 8 \equiv A \left(x + 1\right) \left(x + 2\right) + Bx \left(x + 2\right)$ $$+ Cx \left(x+1\right)$$ Substitute $$x = 0 \implies 0 + 0 + 8 = A \times 1 \times 2 + B \times 0 + C \times 0$$ $$\Rightarrow$$ 8 = 2A $$\Rightarrow$$ $A = 4$ Substitute $$x = -1$$ \Rightarrow $5 - 15 + 8 = A \times 0 + B \times (-1) \times 1 + C \times 0$ $$\Rightarrow$$ $-2 = -1B$ $$\Rightarrow B=2$$ Substitute $$x = -2 \implies 20 - 30 + 8 = A \times 0 + B \times 0 + C \times \left(-2 \right) \times \left(-1 \right)$$ $$\Rightarrow$$ $-2 = 2C$ $$\Rightarrow$$ $C = -1$ Hence $$\frac{5x^2 + 15x + 8}{x^3 + 3x^2 + 2x} \equiv \frac{4}{x} + \frac{2}{(x+1)} - \frac{1}{(x+2)}$$ (c) Consider f (x) = $$x^3 - 4x^2 + x + 6$$ f (-1) = -1-4-1+6=0 Hence (x + 1) is a factor By inspection $$f(x) = x^3 - 4x^2 + x + 6 = (x+1)(x^2 - 5x + 6) = (x+1)(x-2)$$ **Note.** This last part could have been found by division. $$\begin{array}{r} x^2 - 5x + 6 \\ x + 1 \overline{\smash)} x^3 - 4x^2 + x + 6 \\ \underline{x^3 + x^2} \\ -5x^2 + x \\ \underline{-5x^2 - 5x} \\ 6x + 6 \\ \underline{6x + 6} \\ 0 \end{array}$$ Hence $$\frac{5x^2 - 15x - 8}{x^3 - 4x^2 + x + 6} \equiv \frac{5x^2 - 15x - 8}{(x+1)(x-2)(x-3)} \equiv \frac{A}{(x+1)} + \frac{B}{(x-2)} + \frac{C}{(x-3)}$$ $$\equiv \frac{A(x-2)(x-3) + B(x+1)(x-3) + C(x+1)(x-2)}{(x+1)(x-2)(x-3)}$$ Setting numerators equal gives $$5x^{2} - 15x - 8 \equiv A \quad \left(x - 2 \right) \quad \left(x - 3 \right) + B \quad \left(x + 1 \right) \quad \left(x - 3 \right) + C \quad \left(x + 1 \right) \right)$$ Substitute $x = 2 \implies 20 - 30 - 8 = A \times 0 + B \times 3 \times (-1) + C \times 0$ $$\Rightarrow -18 = -3B$$ $$\Rightarrow B = 6$$ Substitute $x = -1 \implies 5 + 15 - 8 = A \times (-3) \times (-4) + B \times 0 + C \times 0$ $$\Rightarrow 12 = 12A$$ $$\Rightarrow A = 1$$ Substitute $x = 3 \implies 45 - 45 - 8 = A \times 0 + B \times 0 + C \times 4 \times 1$ $$\Rightarrow -8 = 4C$$ $$\Rightarrow C = -2$$ Hence $\frac{5x^{2} - 15x - 8}{x^{3} - 4x^{2} + x + 6} \equiv \frac{1}{(x + 1)} + \frac{6}{(x - 2)} - \frac{2}{(x - 3)}$ ## **Edexcel AS and A Level Modular Mathematics** **Partial fractions** Exercise D, Question 1 ### **Question:** Put the following into partial fraction form: $$\frac{3x^2 + x + 2}{x^2(x+1)}$$ #### **Solution:** Let $$\frac{3x^2 + x + 2}{x^2 (x + 1)} \equiv \frac{A}{x} + \frac{B}{x^2} + \frac{C}{(x + 1)}$$ $$\equiv \frac{Ax (x + 1) + B (x + 1) + Cx^2}{x^2 (x + 1)}$$ Set the numerators equal: $$3x^2 + x + 2 \equiv Ax(x + 1) + B(x + 1) + Cx^2$$ Substitute $x = 0 \implies 0 + 0 + 2 = A \times 0 + B \times 1 + C \times 0$ $$\Rightarrow$$ 2 = 1B $$\Rightarrow B=2$$ Substitute $$x = -1$$ \Rightarrow $3 - 1 + 2 = A \times 0 + B \times 0 + C \times 1$ $$\Rightarrow$$ 4 = 1*C* $$\Rightarrow$$ $C=4$ Equate coefficients in x^2 : 3 = A + C Substitute C = 4 $$\Rightarrow$$ 3 = $A + 4$ $$\Rightarrow$$ $A = -1$ Hence $$\frac{3x^2 + x + 2}{x^2(x+1)} \equiv \frac{-1}{x} + \frac{2}{x^2} + \frac{4}{(x+1)}$$ ### **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise D, Question 2 ### **Question:** Put the following into partial fraction form: $$\frac{-x^2 - 10x - 5}{(x+1)^2(x-1)}$$ #### **Solution:** Let $$\frac{-x^2 - 10x - 5}{(x+1)^2(x-1)} \equiv \frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x-1)}$$ $$\equiv \frac{A(x+1)(x-1) + B(x-1) + C(x+1)^2}{(x+1)^2(x-1)}$$ Set the numerators equal: $$-x^{2} - 10x - 5 \equiv A(x+1)(x-1) + B(x-1) + C(x+1)^{2}$$ Substitute $x = 1 \implies -1 - 10 - 5 = A \times 0 + B \times 0 + C \times 4$ $$\Rightarrow$$ $-16 = 4C$ $$\Rightarrow$$ $C = -4$ Substitute $$x = -1 \implies -1 + 10 - 5 = A \times 0 + B \times (-2) + C \times 0$$ $$\Rightarrow$$ 4 = $-2B$ $$\Rightarrow B = -2$$ Equate coefficients in x^2 : -1 = A + C Substitute C = -4 $$\Rightarrow$$ $-1 = A - 4$ $$\Rightarrow A = 3$$ Hence $$\frac{-x^2 - 10x - 5}{(x+1)^2 (x-1)} \equiv \frac{3}{(x+1)} - \frac{2}{(x+1)^2} - \frac{4}{(x-1)}$$ ### **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise D, Question 3 ### **Question:** Put the following into partial fraction form: $$\frac{2x^2 + 2x - 18}{x(x-3)^2}$$ #### **Solution:** Let $$\frac{2x^2 + 2x - 18}{x(x-3)^2} \equiv \frac{A}{x} + \frac{B}{(x-3)} + \frac{C}{(x-3)^2}$$ $$\equiv \frac{A(x-3)^2 + Bx(x-3) + Cx}{x(x-3)^2}$$ Set the numerators equal: $$2x^{2} + 2x - 18 \equiv A (x - 3)^{2} + Bx (x - 3) + Cx$$ Substitute $x = 0 \Rightarrow 0 + 0 - 18 = A \times 9 + B \times 0 + C \times 0$ $$\Rightarrow -18 = 9A$$ $$\Rightarrow A = -2$$ Substitute $$x = 3 \implies 18 + 6 - 18 = A \times 0 + B \times 0 + C
\times 3$$ $$\Rightarrow$$ 6 = 3C $$\Rightarrow$$ $C = 2$ Equate coefficients in $$x^2$$: $2 = A + B$ Substitute $A = -2$ $$\Rightarrow$$ 2 = -2 + B $$\Rightarrow B=4$$ Hence $$\frac{2x^2 + 2x - 18}{x(x-3)^2} \equiv -\frac{2}{x} + \frac{4}{(x-3)} + \frac{2}{(x-3)^2}$$ ### **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise D, Question 4 ### **Question:** Put the following into partial fraction form: $$\frac{7x^2 - 42x + 64}{x(x-4)^2}$$ #### **Solution:** Let $$\frac{7x^2 - 42x + 64}{x(x-4)^2} \equiv \frac{A}{x} + \frac{B}{(x-4)} + \frac{C}{(x-4)^2}$$ $$\equiv \frac{A(x-4)^2 + Bx(x-4) + Cx}{x(x-4)^2}$$ Set the numerators equal: $$7x^2 - 42x + 64 \equiv A(x - 4)^2 + Bx(x - 4) + Cx$$ Substitute $x = 0 \implies 0 - 0 + 64 = A \times 16 + B \times 0 + C \times 0$ $$\Rightarrow$$ 64 = 16A $$\Rightarrow A = 4$$ Substitute $$x = 4$$ \Rightarrow $112 - 168 + 64 = A \times 0 + B \times 0 + C \times 4$ $$\Rightarrow$$ 8 = 4*C* $$\Rightarrow$$ $C=2$ Equate coefficients in x^2 : 7 = A + B Substitute A = 4 $$\Rightarrow$$ 7 = 4 + B $$\Rightarrow B = 3$$ Hence $$\frac{7x^2 - 42x + 64}{x(x-4)^2} \equiv \frac{4}{x} + \frac{3}{(x-4)} + \frac{2}{(x-4)^2}$$ ## **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise D, Question 5 ### **Question:** Put the following into partial fraction form: $$\frac{5x^2 - 2x - 1}{x^3 - x^2}$$ #### **Solution:** $$x^{3} - x^{2} \equiv x^{2} (x - 1)$$ So $$\frac{5x^{2} - 2x - 1}{x^{3} - x^{2}} \equiv \frac{5x^{2} - 2x - 1}{x^{2} (x - 1)} \equiv \frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{(x - 1)}$$ $$\equiv \frac{Ax (x - 1) + B (x - 1) + Cx^{2}}{x^{2} (x - 1)}$$ Set the numerators equal: $$5x^2 - 2x - 1 \equiv Ax(x - 1) + B(x - 1) + Cx^2$$ Substitute $$x = 1 \implies 5 - 2 - 1 = A \times 0 + B \times 0 + C \times 1$$ $$\Rightarrow$$ 2 = 1*C* $$\Rightarrow$$ $C=2$ Substitute $$x = 0 \implies 0 - 0 - 1 = A \times 0 + B \times (-1) + C \times 0$$ $$\Rightarrow$$ $-1 = -1B$ $$\Rightarrow B = 1$$ Equate coefficients in x^2 : 5 = A + C Substitute C = 2 $$\Rightarrow$$ 5 = A + 2 $$\Rightarrow A = 3$$ Hence $$\frac{5x^2 - 2x - 1}{x^3 - x^2} \equiv \frac{3}{x} + \frac{1}{x^2} + \frac{2}{(x - 1)}$$ ### **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise D, Question 6 ### **Question:** Put the following into partial fraction form: $$\frac{2x^2 + 2x - 18}{x^3 - 6x^2 + 9x}$$ #### **Solution:** $$x^{3} - 6x^{2} + 9x \equiv x (x^{2} - 6x + 9) \equiv x (x - 3)^{2}$$ So $$\frac{2x^{2} + 2x - 18}{x^{3} - 6x^{2} + 9x} \equiv \frac{2x^{2} + 2x - 18}{x (x - 3)^{2}} \equiv \frac{A}{x} + \frac{B}{(x - 3)} + \frac{C}{(x - 3)^{2}}$$ $$\equiv \frac{A(x - 3)^{2} + Bx(x - 3) + Cx}{x (x - 3)^{2}}$$ Set the numerators equal: $$2x^{2} + 2x - 18 \equiv A (x - 3)^{2} + Bx (x - 3) + Cx$$ Substitute $x = 0 \Rightarrow 0 + 0 - 18 = A \times 9 + B \times 0 + C \times 0$ $$\Rightarrow -18 = 9A$$ $$\Rightarrow A = -2$$ Substitute $$x = 3$$ \Rightarrow $18 + 6 - 18 = A \times 0 + B \times 0 + C \times 3$ \Rightarrow $6 = 3C$ $$\Rightarrow C = 2$$ Equate coefficients in $$x^2$$: $2 = A + B$ Substitute $A = -2$ $$\Rightarrow$$ $2 = -2 + B$ $$\Rightarrow B=4$$ Hence $$\frac{2x^2 + 2x - 18}{x^3 - 6x^2 + 9x} \equiv -\frac{2}{x} + \frac{4}{(x-3)} + \frac{2}{(x-3)^2}$$ Partial fractions Exercise D, Question 7 ### **Question:** Put the following into partial fraction form: $$\frac{2x}{(x+2)^{-2}}$$ #### **Solution:** Let $$\frac{2x}{(x+2)^2} \equiv \frac{A}{(x+2)} + \frac{B}{(x+2)^2} \equiv \frac{A(x+2) + B}{(x+2)^2}$$ Set the numerators equal: $2x = A(x+2) + B$ Substitute $x = -2 \Rightarrow -4 = A \times 0 + B \Rightarrow B = -4$ Equate coefficients in x : $2 = A$ Hence $\frac{2x}{(x+2)^2} \equiv \frac{2}{(x+2)} - \frac{4}{(x+2)^2}$ ## **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise D, Question 8 ### **Question:** Put the following into partial fraction form: $$\frac{x^2 + 5x + 7}{(x+2)^3}$$ #### **Solution:** Let $$\frac{x^2 + 5x + 7}{(x+2)^3} \equiv \frac{A}{(x+2)} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3}$$ $$\equiv \frac{A(x+2)^2 + B(x+2) + C}{(x+2)^3}$$ Set the numerators equal: $$x^{2} + 5x + 7 \equiv A(x + 2)^{2} + B(x + 2) + C$$ Substitute $x = -2 \implies 4 - 10 + 7 = A \times 0 + B \times 0 + C \implies C = 1$ Equate coefficients in x^2 : 1 = A $$\Rightarrow A = 1$$ Equate coefficients in x: 5 = 4A + B Substitute A = 1 $$\Rightarrow$$ 5 = 4 + B $$\Rightarrow B = 1$$ Hence $$\frac{x^2 + 5x + 7}{(x+2)^3} \equiv \frac{1}{(x+2)} + \frac{1}{(x+2)^2} + \frac{1}{(x+2)^3}$$ ## **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise E, Question 1 #### **Question:** Express the following improper fractions as a partial fraction: (a) $$\frac{x^2 + 3x - 2}{(x+1)(x-3)}$$ (b) $$\frac{x^2-10}{(x-2)(x+1)}$$ (c) $$\frac{x^3 - x^2 - x - 3}{x(x-1)}$$ (d) $$\frac{2x^2-1}{(x+1)^2}$$ #### **Solution:** (a) $$\frac{x^2 + 3x - 2}{(x+1)(x-3)} \equiv \frac{x^2 + 3x - 2}{x^2 - 2x - 3}$$ Divide the numerator by the denominator: $$x^{2}-2x-3\overline{\smash)x^{2}+3x-2}$$ $$\underline{x^{2}-2x-3}$$ $$5x+1 \leftarrow \text{Remainder}$$ Therefore $$\frac{x^2 + 3x - 2}{(x+1)(x-3)} \equiv 1 + \frac{5x+1}{(x+1)(x-3)}$$ Let $$\frac{5x+1}{(x+1)(x-3)} \equiv \frac{A}{(x+1)} + \frac{B}{(x-3)}$$ Add fractions $$\equiv \frac{A(x-3) + B(x+1)}{(x+1)(x-3)}$$ Set the numerators equal: $5x + 1 \equiv A(x - 3) + B(x + 1)$ Substitute $x = 3 \implies 5 \times 3 + 1 = A \times 0 + B \times 4$ $$\Rightarrow$$ 16 = 4B $$\Rightarrow B=4$$ Substitute $$x = -1 \implies 5 \times (-1) + 1 = A \times (-4) + B \times 0$$ $$\Rightarrow$$ $-4 = -4A$ $$\Rightarrow A = 1$$ Hence $$\frac{x^2 + 3x - 2}{(x+1)(x-3)} \equiv 1 + \frac{5x+1}{(x+1)(x-3)} \equiv 1 + \frac{1}{(x+1)} + \frac{4}{(x-3)}$$ (b) $$\frac{x^2 - 10}{(x - 2)(x + 1)} \equiv \frac{x^2 - 10}{x^2 - x - 2} \equiv \frac{x^2 + 0x - 10}{x^2 - x - 2}$$ Divide the numerator by the denominator: $$x^{2} - x - 2 \overline{\smash)x^{2} + 0x - 10}$$ $$\underline{x^{2} - x - 2}$$ $$\underline{x - 8} \leftarrow \text{Remainder}$$ Therefore $$\frac{x^2 - 10}{(x-2)(x+1)} \equiv 1 + \frac{x-8}{(x-2)(x+1)}$$ Let $$\frac{x-8}{(x-2)(x+1)} \equiv \frac{A}{(x-2)} + \frac{B}{(x+1)}$$ Add fractions $$\equiv \frac{A(x+1) + B(x-2)}{(x-2)(x+1)}$$ Set the numerators equal: $x - 8 \equiv A(x + 1) + B(x - 2)$ Substitute $x = 2 \implies 2 - 8 = A \times 3 + B \times 0$ $$\Rightarrow$$ $-6 = 3A$ $$\Rightarrow$$ $A = -2$ Substitute $$x = -1 \implies -1 - 8 = A \times 0 + B \times (-3)$$ $$\Rightarrow$$ $-9 = -3B$ $$\Rightarrow B=3$$ Hence $$\frac{x^2 - 10}{(x - 2)(x + 1)} \equiv 1 + \frac{x - 8}{(x - 2)(x + 1)} \equiv 1 + \frac{-2}{(x - 2)} + \frac{3}{(x + 1)}$$ $$\equiv 1 - \frac{2}{(x - 2)} + \frac{3}{(x + 1)}$$ (c) $$\frac{x^3 - x^2 - x - 3}{x(x-1)} \equiv \frac{x^3 - x^2 - x - 3}{x^2 - x}$$ Divide the numerator by the denominator: $$\begin{array}{r} -3x + 2 \\ x^2 + 2x - 3 \overline{\smash{\big)} - 3x^3 + 4x^2 - 19x + 8} \\ \underline{-3x^3 - 6x^2 - 9x} \\ 2x^2 + 10x + 8 \\ \underline{2x^2 + 4x - 6} \\ \underline{6x + 14} \quad \leftarrow \text{Remainder} \end{array}$$ Therefore $$\frac{x^3 - x^2 - x - 3}{x(x-1)} \equiv x + \frac{-x-3}{x(x-1)}$$ Let $$\frac{-x-3}{x(x-1)} \equiv \frac{A}{x} + \frac{B}{(x-1)}$$ Add fractions $$\equiv \frac{A(x-1) + Bx}{x(x-1)}$$ Set the numerators equal: $-x - 3 \equiv A (x - 1) + Bx$ Substitute $$x = 1 \implies -1 - 3 = A \times 0 + B \times 1$$ $$\Rightarrow$$ $-4 = 1B$ $$\Rightarrow B = -4$$ Substitute $$x = 0 \implies -3 = A \times (-1) + B \times 0$$ $$\Rightarrow A = 3$$ Hence $$\frac{x^3 - x^2 - x - 3}{x(x-1)} \equiv x + \frac{-x-3}{x(x-1)} \equiv x + \frac{3}{x} - \frac{4}{(x-1)}$$ (d) $$\frac{2x^2 - 1}{(x+1)^2} \equiv \frac{2x^2 - 1}{(x+1)(x+1)} \equiv \frac{2x^2 - 1}{x^2 + 2x + 1} \equiv \frac{2x^2 + 0x - 1}{x^2 + 2x + 1}$$ Divide the numerator by the denominator: $$x^{2} + 2x + 1 \overline{\smash{\big)}\ 2x^{2} + 0x - 1}$$ $$\underline{2x^{2} + 4x + 2}$$ $$\underline{-4x - 3} \leftarrow \text{Remainder}$$ Therefore $$\frac{2x^2 - 1}{(x+1)^2} \equiv 2 + \frac{-4x - 3}{(x+1)^2}$$ Let $$\frac{-4x-3}{(x+1)^2} \equiv \frac{A}{(x+1)} + \frac{B}{(x+1)^2}$$ Add fractions $$\equiv \frac{A(x+1)+B}{(x+1)^2}$$ Set the numerators equal: $-4x - 3 \equiv A(x + 1) + B$ Substitute $$x = -1 \implies -4 \times (-1) - 3 = A \times 0 + B$$ $$\Rightarrow$$ 1 = B $$\Rightarrow B = 1$$ Equate coefficients in x: -4 = A $$\Rightarrow$$ $A = -4$ Hence $$\frac{2x^2 - 1}{(x+1)^2} \equiv 2 + \frac{-4x - 3}{(x+1)^2} \equiv 2 - \frac{4}{(x+1)} + \frac{1}{(x+1)^2}$$ #### **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise E, Question 2 #### **Question:** By factorising the denominator, express the following as partial fraction: (a) $$\frac{4x^2 + 17x - 11}{x^2 + 3x - 4}$$ (b) $$\frac{x^4 - 4x^3 + 9x^2 - 17x + 12}{x^3 - 4x^2 + 4x}$$ #### **Solution:** (a) Divide the numerator by the denominator: Therefore $$\frac{4x^2 + 17x - 11}{x^2 + 3x - 4} \equiv 4 + \frac{5x + 5}{x^2 + 3x - 4}$$ Factorise denominator $\equiv 4 + \frac{5x + 5}{(x + 4)(x - 1)}$ Let $$\frac{5x+5}{(x+4)(x-1)} \equiv \frac{A}{(x+4)} + \frac{B}{(x-1)}$$ Add fractions $$\equiv \frac{A(x-1) + B(x+4)}{(x+4)(x-1)}$$ Set the numerators equal: $5x + 5 \equiv A(x - 1) + B(x + 4)$ Substitute $x = 1 \implies 5 \times 1 + 5 = A \times 0 + B \times 5$ $$\Rightarrow$$ 10 = 5B $$\Rightarrow B=2$$ Substitute $$x = -4 \implies 5 \times (-4) + 5 = A \times (-5) + B \times 0$$ $$\Rightarrow$$ $-15 = -5A$ $$\Rightarrow A = 3$$ Hence $$\frac{4x^2 + 17x - 11}{x^2 + 3x - 4} \equiv 4 + \frac{5x + 5}{(x + 4)(x - 1)} \equiv 4 + \frac{3}{(x + 4)} + \frac{2}{(x - 1)}$$ (b) Divide the numerator by the denominator: $$4x^{2} + 4x + 0 \overline{\smash)x^{4} - 4x^{3} + 9x^{2} - 17x + 12}$$ $$\underline{x^{4} - 4x^{3} + 4x^{2} + 0x}$$ $$5x^{2} - 17x + 12 \qquad \leftarrow \text{Remainder}$$ Therefore $$\frac{x^4 - 4x^3 + 9x^2 - 17x + 12}{x^3 - 4x^2 + 4x}$$ $$\equiv x + \frac{5x^2 - 17x + 12}{x^3 - 4x^2 + 4x}$$ Take out a factor of x in the denominator $$\equiv x + \frac{5x^2 - 17x
+ 12}{x(x^2 - 4x + 4)}$$ Factorise the denominator fully $$\equiv x + \frac{5x^2 - 17x + 12}{x(x-2)^2}$$ Let $$\frac{5x^2 - 17x + 12}{x(x-2)^2} \equiv \frac{A}{x} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$$ Add fractions $$\equiv \frac{A(x-2)^2 + Bx(x-2) + Cx}{x(x-2)^2}$$ Set the numerators equal: $$5x^2 - 17x + 12 \equiv A(x-2)^2 + Bx(x-2) + Cx$$ Substitute $$x = 0 \implies 0 - 0 + 12 = A \times 4 + B \times 0 + C \times 0$$ $$\Rightarrow$$ 12 = 4A $$\Rightarrow A = 3$$ Substitute $$x = 2$$ \Rightarrow $20 - 34 + 12 = A \times 0 + B \times 0 + C \times 2$ $$\Rightarrow$$ $-2 = 2C$ $$\Rightarrow$$ $C = -1$ Equate coefficients in x^2 : 5 = A + B $$\Rightarrow$$ 5 = 3 + B $$\Rightarrow B=2$$ Hence $$\frac{x^4 - 4x^3 + 9x^2 - 17x + 12}{x^3 - 4x^2 + 4x} \equiv x + \frac{5x^2 - 17x + 12}{x(x - 2)^2}$$ $$\equiv x + \frac{3}{x} + \frac{2}{(x - 2)} - \frac{1}{(x - 2)^2}$$ #### **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise E, Question 3 #### **Question:** Show that $\frac{-3x^3 - 4x^2 + 19x + 8}{x^2 + 2x - 3}$ can be expressed in the form $A + Bx + \frac{C}{(x-1)} + \frac{D}{(x+3)}$, where A, B, C and D are constants to be found. #### **Solution:** Divide the numerator by the denominator: $$\begin{array}{r} -3x + 2 \\ x^2 + 2x - 3 \overline{\smash{\big)} - 3x^3 - 4x^2 + 19x + 8} \\ \underline{-3x^3 - 6x^2 + 9x} \\ 2x^2 + 10x + 8 \\ \underline{2x^2 + 4x - 6} \\ \underline{6x + 14} \quad \leftarrow \text{Remainder} \end{array}$$ Therefore $$\frac{-3x^3 - 4x^2 + 19x + 8}{x^2 + 2x - 3} \equiv -3x + 2 + \frac{6x + 14}{x^2 + 2x - 3}$$ Factorise denominator $$\equiv -3x + 2 + \frac{6x + 14}{(x-1)(x+3)}$$ Let $$\frac{6x+14}{(x-1)(x+3)} \equiv \frac{C}{(x-1)} + \frac{D}{(x+3)} \equiv \frac{C(x+3)+D(x-1)}{(x-1)(x+3)}$$ Set the numerators equal: $$6x + 14 \equiv C(x + 3) + D(x - 1)$$ Substitute $$x = 1 \implies 6 + 14 = C \times 4 + D \times 0$$ $$\Rightarrow$$ 20 = 4C $$\Rightarrow$$ 5 = C Substitute $$x = -3 \implies 6 \times (-3) + 14 = C \times 0 + D \times (-4)$$ $$\Rightarrow$$ $-4 = -4D$ $$\Rightarrow D = 1$$ Hence $$\frac{-3x^3 - 4x^2 + 19x + 8}{x^2 + 2x - 3} \equiv -3x + 2 + \frac{6x + 14}{(x - 1)(x + 3)}$$ $$\equiv -3x + 2 + \frac{5}{(x - 1)} + \frac{1}{(x + 3)}$$ So $$A = 2$$, $B = -3$, $C = 5$ and $D = 1$ #### **Edexcel AS and A Level Modular Mathematics** **Partial fractions** Exercise F, Question 1 #### **Question:** Express the following as a partial fraction: (a) $$\frac{x-3}{x(x-1)}$$ (b) $$\frac{7x^2 + 2x - 2}{x^2(x+1)}$$ (c) $$\frac{-15x+21}{(x-2)(x+1)(x-5)}$$ (d) $$\frac{x^2+1}{x(x-2)}$$ #### **Solution:** (a) Let $$\frac{x-3}{x(x-1)} \equiv \frac{A}{x} + \frac{B}{(x-1)}$$ Add the fractions $$\equiv \frac{A(x-1) + Bx}{x(x-1)}$$ Set the numerators equal: $x - 3 \equiv A(x - 1) + Bx$ Substitute $x = 1 \implies 1 - 3 = A \times 0 + B \times 1$ $$\Rightarrow$$ $B = -2$ Substitute $x = 0 \implies 0 - 3 = A \times (-1) + B \times 0$ $$\Rightarrow$$ $-3 = -1A$ $$\Rightarrow A = 3$$ Hence $$\frac{x-3}{x(x-1)} \equiv \frac{3}{x} - \frac{2}{(x-1)}$$ (b) Let $$\frac{7x^2 + 2x - 2}{x^2(x+1)} \equiv \frac{A}{x} + \frac{B}{x^2} + \frac{C}{(x+1)}$$ Add the fractions $$\equiv \frac{Ax(x+1) + B(x+1) + Cx^2}{x^2(x+1)}$$ Set the numerators equal: Set the numerators equal: $$7x^2 + 2x - 2 \equiv Ax(x + 1) + B(x + 1) + Cx^2$$ Substitute $$x = 0 \implies 0 + 0 - 2 = A \times 0 + B \times 1 + C \times 0$$ $$\Rightarrow$$ $-2 = 1B$ $$\Rightarrow B = -2$$ Substitute $$x = -1$$ \Rightarrow $7 - 2 - 2 = A \times 0 + B \times 0 + C \times 1$ $$\Rightarrow$$ 3 = 1 C $$\Rightarrow$$ $C = 3$ Equate coefficients in x^2 : 7 = A + C Substitute C = 3 $$\Rightarrow$$ 7 = $A + 3$ $$\Rightarrow A = 4$$ Hence $$\frac{7x^2 + 2x - 2}{x^2(x+1)} \equiv \frac{4}{x} - \frac{2}{x^2} + \frac{3}{(x+1)}$$ (c) Let $$\frac{-15x + 21}{(x-2)(x+1)(x-5)} \equiv \frac{A}{(x-2)} + \frac{B}{(x+1)} + \frac{C}{(x-5)}$$ Add the fractions $$\equiv \frac{A(x+1)(x-5) + B(x-2)(x-5) + C(x-2)(x+1)}{(x-2)(x+1)(x-5)}$$ Set the numerators equal: $$-15x + 21 \equiv A(x+1)(x-5) + B(x-2)(x-5) + C(x-2)(x+1)$$ Substitute $$x = -1$$ \Rightarrow $15 + 21 = A \times 0 + B \times (-3) \times (-6) + C \times 0$ $$\Rightarrow$$ 36 = 18B $$\Rightarrow B=2$$ Substitute $$x = 5 \implies -75 + 21 = A \times 0 + B \times 0 + C \times 3 \times 6$$ $$\Rightarrow$$ $-54 = 18C$ $$\Rightarrow$$ $C = -3$ Substitute $$x = 2 \implies -30 + 21 = A \times 3 \times (-3) + B \times 0 + C \times 0$$ $$\Rightarrow$$ $-9 = -9A$ $$\Rightarrow A = 1$$ Hence $$\frac{-15x+21}{(x-2)(x+1)(x-5)} \equiv \frac{1}{(x-2)} + \frac{2}{(x+1)} - \frac{3}{(x-5)}$$ (d) $$\frac{x^2+1}{x(x-2)} \equiv \frac{x^2+1}{x^2-2x} \equiv \frac{x^2+0x+1}{x^2-2x+0}$$ Divide the numerator by the denominator: $$x^{2} - 2x + 0 \overline{\smash{\big)}\ x^{2} + 0x + 1}$$ $$\underline{x^{2} - 2x + 0}$$ $$\underline{2x + 1} \leftarrow \text{Remainder}$$ Therefore $$\frac{x^2 + 1}{x(x-2)} \equiv 1 + \frac{2x+1}{x(x-2)}$$ Let $$\frac{2x+1}{x(x-2)} \equiv \frac{A}{x} + \frac{B}{(x-2)} \equiv \frac{A(x-2) + Bx}{x(x-2)}$$ Set the numerators equal: $2x + 1 \equiv A(x - 2) + Bx$ Substitute $$x = 0 \implies 1 = A \times (-2) + B \times 0$$ $$\Rightarrow$$ 1 = $-2A$ $$\Rightarrow A = -\frac{1}{2}$$ Substitute $x = 2 \Rightarrow 2 \times 2 + 1 = A \times 0 + B \times 2$ $$\Rightarrow 5 = 2B$$ $$\Rightarrow B = \frac{5}{2}$$ Hence $$\frac{x^2 + 1}{x(x-2)} \equiv 1 + \frac{2x+1}{x(x-2)} \equiv 1 + \frac{-\frac{1}{2}}{x} + \frac{\frac{5}{2}}{(x-2)}$$ $$\equiv 1 - \frac{1}{2x} + \frac{5}{2(x-2)}$$ ## **Edexcel AS and A Level Modular Mathematics** **Partial fractions** Exercise F, Question 2 #### **Question:** Write the following algebraic fractions as a partial fraction: (a) $$\frac{3x+1}{x^2+2x+1}$$ (b) $$\frac{2x^2 + 2x - 8}{x^2 + 2x - 3}$$ (c) $$\frac{3x^2 + 12x + 8}{(x+2)^3}$$ (d) $$\frac{x^4}{x^2 - 2x + 1}$$ #### **Solution:** (a) $$\frac{3x+1}{x^2+2x+1} \equiv \frac{3x+1}{(x+1)^2}$$ Repeated factor in denominator Let $$\frac{3x+1}{(x+1)^2} \equiv \frac{A}{(x+1)} + \frac{B}{(x+1)^2} \equiv \frac{A(x+1)+B}{(x+1)^2}$$ Set the numerators equal: $3x + 1 \equiv A(x + 1) + B$ Substitute $x = -1 \implies -3 + 1 = A \times 0 + B$ Substitute $$x = -1 \implies -3 + 1 = A \times 0 + B$$ $$\Rightarrow B = -2$$ Equate coefficients of x: 3 = A $$\Rightarrow A = 3$$ Hence $$\frac{3x+1}{x^2+2x+1} \equiv \frac{3x+1}{(x+1)^2} \equiv \frac{3}{(x+1)} - \frac{2}{(x+1)^2}$$ (b) $$\frac{2x^2 + 2x - 8}{x^2 + 2x - 3}$$ is an **improper fraction** Dividing gives $$x^{2} + 2x - 3 \overline{\smash{\big)}\ 2x^{2} + 2x - 8}$$ $$\underline{2x^{2} + 4x - 6}$$ $$\underline{-2x - 2} \quad \leftarrow \text{Remainder}$$ Therefore $$\frac{2x^2 + 2x - 8}{x^2 + 2x - 3} \equiv 2 + \frac{-2x - 2}{x^2 + 2x - 3}$$ Factorise the denominator $$\equiv 2 + \frac{-2x - 2}{(x+3)(x-1)}$$ Let $\frac{-2x - 2}{(x+3)(x-1)} \equiv \frac{A}{(x+3)} + \frac{B}{(x-1)} \equiv \frac{A(x-1) + B(x+3)}{(x+3)(x-1)}$ Set the numerators equal: $-2x - 2 \equiv A(x - 1) + B(x + 3)$ Substitute $x = 1 \implies -2 - 2 = A \times 0 + B \times 4$ $$\Rightarrow$$ $-4 = 4B$ $$\Rightarrow B = -1$$ Substitute $$x = -3 \implies 6 - 2 = A \times (-4) + B \times 0$$ $$\Rightarrow$$ 4 = -4A $$\Rightarrow A = -1$$ Hence $$\frac{2x^2 + 2x - 8}{x^2 + 2x - 3} \equiv 2 + \frac{-2x - 2}{(x+3)(x-1)}$$ $$\equiv 2 - \frac{1}{(x+3)} - \frac{1}{(x-1)}$$ (c) Let $$\frac{3x^2 + 12x + 8}{(x+2)^3} \equiv \frac{A}{(x+2)} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3}$$ $$\equiv \frac{A(x+2)^2 + B(x+2) + C}{(x+2)^3}$$ Set the numerators equal: $$3x^2 + 12x + 8 \equiv A(x+2)^2 + B(x+2) + C$$ Substitute $$x = -2 \implies 12 - 24 + 8 = A \times 0 + B \times 0 + C$$ $$\Rightarrow$$ $C = -4$ Equate coefficients in x^2 : 3 = A $$\Rightarrow$$ $A = 3$ Equate coefficients in x: 12 = 4A + B Substitute A = 3 $$\Rightarrow$$ 12 = 12 + B $$\Rightarrow B = 0$$ Hence $$\frac{3x^2 + 12x + 8}{(x+2)^3} \equiv \frac{3}{(x+2)} - \frac{4}{(x+2)^3}$$ (d) $$\frac{x^4}{x^2 - 2x + 1} \equiv \frac{x^4 + 0x^3 + 0x^2 + 0x + 0}{x^2 - 2x + 1}$$ Divide the numerator by the denominator: $$x^{2} - 2x + 1) x^{4} + 0x^{3} + 0x^{2} + 0x + 0$$ $$x^{4} - 2x^{3} + x^{2}$$ $$2x^{3} - x^{2} + 0x$$ $$2x^{3} - 4x^{2} + 2x$$ $$3x^{2} - 2x + 0$$ $$3x^{2} - 6x + 3$$ $$4x - 3 \leftarrow \text{Remainder}$$ Therefore $$\frac{x^4}{x^2 - 2x + 1} \equiv x^2 + 2x + 3 + \frac{4x - 3}{x^2 - 2x + 1}$$ Factorise the denominator $$\equiv x^2 + 2x + 3 + \frac{4x - 3}{(x - 1)^2}$$ Let $$\frac{4x - 3}{x^2 - 2x + 1} \equiv \frac{A}{(x - 1) + B} \equiv \frac{A(x - 1) + B}{(x - 1)^2}$$ Let $$\frac{4x-3}{(x-1)^2} \equiv \frac{A}{(x-1)} + \frac{B}{(x-1)^2} \equiv \frac{A(x-1)+B}{(x-1)^2}$$ Set the numerators equal: $4x - 3 \equiv A (x - 1) + B$ Substitute $$x = 1 \implies 4 - 3 = B \implies B = 1$$ Equate coefficients in x: 4 = A Hence $$\frac{x^4}{x^2 - 2x + 1} \equiv x^2 + 2x + 3 + \frac{4x - 3}{(x - 1)^2} \equiv x^2 + 2x + 3 + \frac{4}{(x - 1)} + \frac{1}{(x - 1)^2}$$ ## **Edexcel AS and A Level Modular Mathematics** Partial fractions Exercise F, Question 3 ### **Question:** Given that f (x) = $2x^3 + 9x^2 + 10x + 3$: - (a) Show that -3 is a root of f(x). - (b) Express $\frac{10}{f(x)}$ as partial fractions. #### **Solution:** (a) f ($$-3$$) = 2 × (-27) + 9 × 9 + 10 × (-3) + 3 = $-54 + 81 - 30 + 3 = 0$ Therefore -3 is a root \Rightarrow (x+3) is a factor (b) f (x) = $$2x^3 + 9x^2 + 10x + 3$$ (x + 3) is a factor = (x + 3) ($2x^2 + 3x + 1$) By inspection = (x + 3) ($2x + 1$) (x + 1) $$\frac{10}{f(x)} \equiv \frac{10}{(x+3)(2x+1)(x+1)} \equiv \frac{A}{(x+3)} + \frac{B}{(2x+1)} + \frac{C}{(x+1)}$$ $$\equiv \frac{A(2x+1)(x+1) + B(x+3)(x+1) + C(x+3)(2x+1)}{(x+3)(2x+1)(x+1)}$$ Set the numerators equal: $$10 \equiv A (2x + 1) (x + 1) + B (x + 3) (x + 1) + C (x + 3)$$ $$(2x + 1)$$ Substitute $$x = -1 \implies 10 = A \times 0 + B \times 0 + C \times 2 \times (-1)$$ $$\Rightarrow$$ 10 = -2C $$\Rightarrow$$ $C = -5$ Substitute $$x = -3 \implies 10 = A \times (-5) \times (-2) + B \times 0 + C \times 0$$ $$\Rightarrow$$ 10 = 10A $$\Rightarrow A = 1$$ Substitute $$x =
-\frac{1}{2} \implies 10 = A \times 0 + B \times \left(2\frac{1}{2}\right) \times \left(\frac{1}{2}\right) + C \times 0$$ $$\Rightarrow 10 = 1.25B$$ $$\Rightarrow B = 8$$ Hence $\frac{10}{f(x)} \equiv \frac{1}{(x+3)} + \frac{8}{(2x+1)} - \frac{5}{(x+1)}$ ## **Edexcel AS and A Level Modular Mathematics** $\begin{array}{l} Coordinate\ geometry\ in\ the\ (x,y)\ plane\\ Exercise\ A,\ Question\ 1 \end{array}$ #### **Question:** A curve is given by the parametric equations x = 2t, $y = \frac{5}{t}$ where $t \neq 0$. Complete the table and draw a graph of the curve for $-5 \leq t \leq 5$. | t | -5 | -4 | -3 | -2 | -1 | -0.5 | 0.5 | 1 | 2 | 3 | 4 | 5 | |-------------------|-----|-------|----|----|----|------|-----|---|---|---|---|---| | x = 2t | -10 | -8 | | | | -1 | | | | | | | | $y = \frac{5}{t}$ | -1 | -1.25 | | | | | 10 | | | | | | #### **Solution:** | t | -5 | -4 | -3 | -2 | -1 | -0.5 | 0.5 | 1 | 2 | 3 | 4 | 5 | |-------------------|-----|-------|-------|------|----|------|-----|---|-----|------|------|----| | x=2t | -10 | -8 | -6 | -4 | -2 | -1 | 1 | 2 | 4 | 6 | 8 | 10 | | $y = \frac{5}{t}$ | -1 | -1.25 | -1.67 | -2.5 | -5 | -10 | 10 | 5 | 2.5 | 1.67 | 1.25 | 1 | ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise A, Question 2 ## **Question:** A curve is given by the parametric equations $x = t^2$, $y = \frac{t^3}{5}$. Complete the table and draw a graph of the curve for $-4 \le t \le 4$. | t | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | |---------------------|-------|----|-----|----|---|---|---|---|---| | $x = t^2$ | 16 | | 100 | | | | | | | | $y = \frac{t^3}{5}$ | -12.8 | | | | | | | | | #### **Solution:** | t | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | |---------------------|-------|------|------|------|---|-----|-----|-----|------| | $x = t^2$ | 16 | 9 | 4 | 1 | 0 | 1 | 4 | 9 | 16 | | $y = \frac{t^3}{5}$ | -12.8 | -5.4 | -1.6 | -0.2 | 0 | 0.2 | 1.6 | 5.4 | 12.8 | #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise A, Question 3 #### **Question:** Sketch the curves given by these parametric equations: (a) $$x = t - 2$$, $y = t^2 + 1$ for $-4 \le t \le 4$ (b) $$x = t^2 - 2$$, $y = 3 - t$ for $-3 \le t \le 3$ (c) $$x = t^2$$, $y = t (5 - t)$ for $0 \le t \le 5$ (d) $$x = 3\sqrt{t}$$, $y = t^3 - 2t$ for $0 \le t \le 2$ (e) $$x = t^2$$, $y = (2 - t) (t + 3)$ for $-5 \le t \le 5$ #### **Solution:** (a) | t | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | |---------------|----|----|----|----|----|----|---|----|----| | x = t - 2 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | | $y = t^2 + 1$ | 17 | 10 | 5 | 2 | 1 | 2 | 5 | 10 | 17 | (b) | t | -3 | -2 | -1 | 0 | 1 | 2 | 3 | |---------------|----|----|----|----|----|---|---| | $x = t^2 - 2$ | 7 | 2 | -1 | -2 | -1 | 2 | 7 | | y = 3 - t | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | (c) | | | | | | | | |-----|------------|---|---|---|---|----|-----| | | t | 0 | 1 | 2 | 3 | 4 | - 5 | | | $x = t^2$ | 0 | 1 | 4 | 9 | 16 | 25 | | | v = t(5-t) | 0 | 4 | 6 | 6 | 4 | 0 | (d) | t | 0 | 0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | 1.75 | 2 | |-----------------|---|-------|-------|-------|----|-------|------|------|------| | $x = 3\sqrt{t}$ | 0 | 1.5 | 2.12 | 2.60 | 3 | 3.35 | 3.67 | 3.97 | 4.24 | | $y = t^3 - 2t$ | 0 | -0.48 | -0.88 | -1.08 | -1 | -0.55 | 0.38 | 1.86 | 4 | Answers have been rounded to 2 d.p. (e) | t | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | |----------------|-----|----|----|----|----|---|---|---|----|-----|-----| | $x = t^2$ | 25 | 16 | 9 | 4 | 1 | 0 | 1 | 4 | 9 | 16 | 25 | | y = (2-t)(t+3) | -14 | -6 | 0 | 4 | 6 | 6 | 4 | 0 | -6 | -14 | -24 | © Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise A, Question 4 ### **Question:** Find the cartesian equation of the curves given by these parametric equations: (a) $$x = t - 2$$, $y = t^2$ (b) $$x = 5 - t$$, $y = t^2 - 1$ (c) $$x = \frac{1}{t}$$, $y = 3 - t$, $t \neq 0$ (d) $$x = 2t + 1, y = \frac{1}{t}, t \neq 0$$ (e) $$x = 2t^2 - 3$$, $y = 9 - t^2$ (f) $$x = \sqrt{t}$$, $y = t (9 - t)$ (g) $$x = 3t - 1$$, $y = (t - 1)(t + 2)$ (h) $$x = \frac{1}{t-2}$$, $y = t^2$, $t \neq 2$ (i) $$x = \frac{1}{t+1}$$, $y = \frac{1}{t-2}$, $t \neq -1$, $t \neq 2$ (j) $$x = \frac{t}{2t-1}$$, $y = \frac{t}{t+1}$, $t \neq -1$, $t \neq \frac{1}{2}$ #### **Solution:** (a) $$x = t - 2$$, $y = t^2$ $x = t - 2$ $t = x + 2$ Substitute $$t = x + 2$$ into $y = t^2$ $y = (x + 2)^2$ So the cartesian equation of the curve is $y = (x + 2)^2$. (b) $$x = 5 - t$$, $y = t^2 - 1$ $$x = 5 - t$$ $t = 5 - x$ Substitute $t = 5 - x$ into $y = t^2 - 1$ $y = (5 - x)^2 - 1$ $y = 25 - 10x + x^2 - 1$ $$y = x^2 - 10x + 24$$ So the cartesian equation of the curve is $y = x^2 - 10x + 24$. (c) $$x = \frac{1}{t}$$, $y = 3 - t$ $$x = \frac{1}{t}$$ $$t = \frac{1}{x}$$ Substitute $t = \frac{1}{x}$ into y = 3 - t $$y = 3 - \frac{1}{x}$$ So the cartesian equation of the curve is $y = 3 - \frac{1}{x}$. (d) $$x = 2t + 1$$, $y = \frac{1}{t}$ $x = 2t + 1$ $2t = x - 1$ $t = \frac{x - 1}{2}$ Substitute $t = \frac{x-1}{2}$ into $y = \frac{1}{t}$ $$y = \frac{1}{\left(\frac{x-1}{2}\right)}$$ $$y = \frac{2}{x-1}$$ Note: This uses $\frac{1}{(\frac{a}{b})} = \frac{b}{a}$ So the cartesian equation of the curve is $y = \frac{2}{x-1}$. (e) $$x = 2t^2 - 3$$, $y = 9 - t^2$ $x = 2t^2 - 3$ $2t^2 = x + 3$ $t^2 = \frac{x+3}{2}$ Substitute $t^2 = \frac{x+3}{2}$ into $y = 9 - t^2$ $$y = 9 - \frac{x+3}{2}$$ $$y = \frac{18 - (x+3)}{2}$$ $$y = \frac{15 - x}{2}$$ So the cartesian equation is $y = \frac{15 - x}{2}$. (f) $$x = \sqrt{t}$$, $y = t$ (9 - t) $x = \sqrt{t}$ $t = x^2$ Substitute $t = x^2$ into y = t (9 - t) $y = x^2 (9 - x^2)$ So the cartesian equation is $y = x^2 (9 - x^2)$. (g) $$x = 3t - 1$$, $y = (t - 1) (t + 2)$ $x = 3t - 1$ $3t = x + 1$ $t = \frac{x+1}{3}$ Substitute $t = \frac{x+1}{3}$ into y = (t-1)(t+2) $$y = \left(\frac{x+1}{3} - 1\right) \left(\frac{x+1}{3} + 2\right)$$ $$y = \left(\frac{x+1}{3} - \frac{3}{3}\right) \left(\frac{x+1}{3} + \frac{6}{3}\right)$$ $$y = \left(\frac{x+1-3}{3}\right) \left(\frac{x+1+6}{3}\right)$$ $$y = \left(\frac{x-2}{3}\right) \left(\frac{x+7}{3}\right)$$ $$y = \frac{1}{9} \left(x - 2 \right) \left(x + 7 \right)$$ So the cartesian equation of the curve is $y = \frac{1}{9} \left(x - 2 \right) \left(x + 7 \right)$. (h) $$x = \frac{1}{t-2}$$, $y = t^2$ $$x = \frac{1}{t-2}$$ $$x(t-2) = 1$$ $$t-2 = \frac{1}{x}$$ $$t = \frac{1}{x} + 2$$ $$t = \frac{1}{x} + \frac{2x}{x}$$ $$t = \frac{1+2x}{x}$$ Substitute $t = \frac{1+2x}{x}$ into $y = t^2$ $$y = \left(\frac{1+2x}{x}\right)^2$$ So the cartesian equation of the curve is $y = \left(\frac{1+2x}{x}\right)^2$. (i) $$x = \frac{1}{t+1}, y = \frac{1}{t-2}$$ $$x = \frac{1}{t+1}$$ $$(t+1) x = 1$$ $$t+1 = \frac{1}{x}$$ $$t = \frac{1}{x} - 1$$ Substitute $t = \frac{1}{x} - 1$ into $y = \frac{1}{t-2}$ $$y = \frac{1}{\left(\frac{1}{x} - 1\right) - 2}$$ $$y = \frac{1}{\frac{1}{x} - 3}$$ $$y = \frac{1}{\frac{1}{x} - \frac{3x}{x}}$$ $$y = \frac{1}{\left(\frac{1-3x}{x}\right)}$$ $$y = \frac{x}{1 - 3x}$$ Note: This uses $\frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a}$ So the cartesian equation of the curve is $y = \frac{x}{1-3x}$. (j) $$x = \frac{t}{2t-1}$$, $y = \frac{t}{t+1}$ $x = \frac{t}{2t-1}$ $x \times \left(2t-1\right) = \frac{t}{2t-1} \times \left(2t-1\right)$ Multiply each side by $(2t-1)$ $x(2t-1) = t$ Simplify $2tx - x = t$ Expand the brackets $2tx = t + x$ Add x to each side $2tx - t = x$ Subtract $2t$ from each side $t(2x-1) = x$ Factorise t $\frac{t(2x-1)}{(2x-1)} = \frac{x}{2x-1}$ Divide each side by $(2x-1)$ $t = \frac{x}{2x-1}$ Simplify Substitute $t = \frac{x}{2x-1}$ into $y = \frac{t}{t+1}$ $$y = \frac{(\frac{x}{2x-1})}{(\frac{x}{2x-1}+1)}$$ $$y = \frac{\left(\frac{x}{2x-1}\right)}{\left(\frac{x}{2x-1} + \frac{2x-1}{2x-1}\right)}$$ $$y = \frac{(\frac{x}{2x-1})}{(\frac{x+2x-1}{2x-1})}$$ $$y = \frac{(\frac{x}{2x-1})}{(\frac{3x-1}{2x-1})}$$ $$y = \frac{x}{3x - 1}$$ Note: This uses $\frac{(\frac{a}{b})}{(\frac{c}{b})} = \frac{a}{c}$ So the cartesian equation of the curve is $y = \frac{x}{3x-1}$. # **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise A, Question 5 # **Question:** Show that the parametric equations: (i) $$x = 1 + 2t$$, $y = 2 + 3t$ (ii) $$x = \frac{1}{2t-3}$$, $y = \frac{t}{2t-3}$, $t \neq \frac{3}{2}$ represent the same straight line. #### **Solution:** (i) $$x = 1 + 2t$$, $y = 2 + 3t$ $x = 1 + 2t$ $2t = x - 1$ $t = \frac{x - 1}{2}$ Substitute $$t = \frac{x-1}{2}$$ into $y = 2 + 3t$ $$y = 2 + 3 \left(\frac{x - 1}{2} \right)$$ $$y = 2 + 3 \left(\frac{x}{2} - \frac{1}{2} \right)$$ $$y = 2 + \frac{3x}{2} - \frac{3}{2}$$ $$y = \frac{3x}{2} + \frac{1}{2}$$ (ii) $$x = \frac{1}{2t-3}$$, $y = \frac{t}{2t-3}$ $$\frac{y}{x} = \frac{\left(\frac{t}{2t-3}\right)}{\left(\frac{1}{2t-3}\right)} \quad \text{Note:} \quad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{b}\right)} = \frac{a}{c}$$ $$\frac{y}{x} = t$$ Substitute $$t = \frac{y}{x}$$ into $x = \frac{1}{2t-3}$ $$x = \frac{1}{2(\frac{y}{x}) - 3}$$ $$x \left[2(\frac{y}{x}) - 3 \right] = 1$$ $$2y - 3x = 1$$ $$2y = 3x + 1$$ $$y = \frac{3}{2}x + \frac{1}{2}$$ The cartesian equations of (i) and (ii) are the same, so they represent the same straight line. ### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 1 ### **Question:** Find the coordinates of the point(s) where the following curves meet the *x*-axis: (a) $$x = 5 + t$$, $y = 6 - t$ (b) $$x = 2t + 1$$, $y = 2t - 6$ (c) $$x = t^2$$, $y = (1 - t) (t + 3)$ (d) $$x = \frac{1}{t}$$, $y = \sqrt{(t-1)(2t-1)}$, $t \neq 0$ (e) $$x = \frac{2t}{1+t}$$, $y = t-9$, $t \neq -1$ #### **Solution:** (a) $$x = 5 + t$$, $y = 6 - t$ When $$y = 0$$ $$6 - t = 0$$ so $$t = 6$$ Substitute t = 6 into x = 5 + t $$x = 5 + 6$$ $$x = 11$$ So the curve meets the x-axis at (11, 0). (b) $$x = 2t + 1$$, $y = 2t - 6$ When $$y = 0$$
$$2t - 6 = 0$$ $$2t = 6$$ so $$t = 3$$ Substitute t = 3 into x = 2t + 1 $$x = 2 (3) + 1$$ $$x = 6 + 1$$ $$x = 7$$ So the curve meets the x-axis at (7, 0). (c) $$x = t^2$$, $y = (1 - t) (t + 3)$ When $$y = 0$$ $$(1-t)(t+3) = 0$$ so $t = 1$ and $t = -3$ (1) Substitute t = 1 into $x = t^2$ $$x = 1^2$$ $$x = 1$$ (2) Substitute t = -3 into $x = t^2$ $$\begin{array}{c} x = (-3)^2 \\ x = 9 \end{array}$$ So the curve meets the x-axis at (1, 0) and (9, 0). (d) $$x = \frac{1}{t}$$, $y = \sqrt{(t-1)(2t-1)}$ When $$y = 0$$ $(t-1)(2t-1) = 0$ $(t-1)(2t-1) = 0$ so $$t = 1$$ and $t = \frac{1}{2}$ (1) Substitute t = 1 into $x = \frac{1}{t}$ $$x = \frac{1}{(1)}$$ $$x = 1$$ (2) Substitute $t = \frac{1}{2}$ into $x = \frac{1}{t}$ $$x = \frac{1}{\left(\frac{1}{2}\right)}$$ $$x = 2$$ So the curve meets the x-axis at (1, 0) and (2, 0). (e) $$x = \frac{2t}{1+t}$$, $y = t - 9$ When $$y = 0$$ $$t - 9 = 0$$ so $$t = 9$$ Substitute t = 9 into $x = \frac{2t}{1+t}$ $$x = \frac{2(9)}{1 + (9)}$$ $$x = \frac{18}{10}$$ $$x = \frac{9}{5}$$ So the curve meets the *x*-axis at $\left(\frac{9}{5}, 0\right)$. ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 2 ### **Question:** Find the coordinates of the point(s) where the following curves meet the y-axis: (a) $$x = 2t$$, $y = t^2 - 5$ (b) $$x = \sqrt{(3t-4)}, y = \frac{1}{t^2}, t \neq 0$$ (c) $$x = t^2 + 2t - 3$$, $y = t (t - 1)$ (d) $$x = 27 - t^3$$, $y = \frac{1}{t-1}$, $t \neq 1$ (e) $$x = \frac{t-1}{t+1}$$, $y = \frac{2t}{t^2+1}$, $t \neq -1$ ### **Solution:** (a) When $$x = 0$$ $$2t = 0$$ so $$t = 0$$ Substitute t = 0 into $y = t^2 - 5$ $$y = (0)^2 - 5$$ $$y = -5$$ So the curve meets the y-axis at (0, -5). (b) When $$x = 0$$ $$\sqrt{3t-4}=0$$ $$3t - 4 = 0$$ $$3t = 4$$ so $$t = \frac{4}{3}$$ Substitute $t = \frac{4}{3}$ into $y = \frac{1}{t^2}$ $$y = \frac{1}{\left(\frac{4}{3}\right)^2}$$ $$y = \frac{1}{\left(\frac{16}{9}\right)}$$ $$y = \frac{9}{16}$$ Note: This uses $\frac{1}{(\frac{a}{b})} = \frac{b}{a}$ So the curve meets the y-axis at $\left(0, \frac{9}{16}\right)$. (c) When $$x = 0$$ $$t^2 + 2t - 3 = 0$$ (t+3)(t-1) = 0 so $$t = -3$$ and $t = 1$ (1) Substitute $$t = -3$$ into $y = t (t - 1)$ $$y = (-3)[(-3)-1]$$ $$y = (-3) \times (-4)$$ $$y = 12$$ (2) Substitute $$t = 1$$ into $y = t (t - 1)$ $$y = 1 (1 - 1)$$ $$y = 1 \times 0$$ $$y = 0$$ So the curve meets the y-axis at (0, 0) and (0, 12). (d) When $$x = 0$$ $$27 - t^3 = 0$$ $$t^3 = 27$$ $$t = \sqrt[3]{27}$$ so $$t = 3$$ Substitute t = 3 into $y = \frac{1}{t-1}$ $$y = \frac{1}{(3) - 1}$$ $$y = \frac{1}{2}$$ So the curve meets the y-axis at $\left(0, \frac{1}{2}\right)$. (e) When $$x = 0$$ $$\frac{t-1}{t+1} = 0$$ $$t-1 = 0 \qquad \left[\text{ Note: } \frac{a}{b} = 0 \Rightarrow a = 0 \right]$$ So $t = 1$ Substitute $$t = 1$$ into $y = \frac{2t}{t^2 + 1}$ $$y = \frac{2(1)}{(1)^{2} + 1}$$ $$y = \frac{2}{2}$$ $$y = 1$$ So the curve meets the y-axis at (0, 1). [©] Pearson Education Ltd 2009 # **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 3 # **Question:** A curve has parametric equations $x = 4at^2$, y = a(2t - 1), where a is a constant. The curve passes through the point (4, 0). Find the value of a. #### **Solution:** When $$y = 0$$ $a (2t - 1) = 0$ $2t - 1 = 0$ $2t = 1$ $t = \frac{1}{2}$ When $$t = \frac{1}{2}, x = 4$$ So substitute $t = \frac{1}{2}$ and x = 4 into $x = 4at^2$ $$4a \left(\frac{1}{2} \right)^2 = 4$$ $$4a \times \frac{1}{4} = 4$$ $$a = 4$$ So the value of a is 4. ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 4 ### **Question:** A curve has parametric equations x = b (2t - 3), $y = b (1 - t^2)$, where b is a constant. The curve passes through the point (0, -5). Find the value of b. #### **Solution:** When $$x = 0$$ $b (2t - 3) = 0$ $2t - 3 = 0$ $2t = 3$ $t = \frac{3}{2}$ When $$t = \frac{3}{2}, y = -5$$ So substitute $t = \frac{3}{2}$ and y = -5 into y = b ($1 - t^2$) $$b \left[1 - \left(\frac{3}{2} \right)^2 \right] = -5$$ $$b \left(1 - \frac{9}{4} \right) = -5$$ $$b\left(\begin{array}{c} -5\\ \hline 4 \end{array}\right) = -5$$ $$b = \frac{-5}{\left(\frac{-5}{4}\right)}$$ $$b = 4$$ So the value of *b* is 4. ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 5 ## **Question:** A curve has parametric equations x = p(2t - 1), $y = p(t^3 + 8)$, where p is a constant. The curve meets the x-axis at (2, 0) and the y-axis at A. - (a) Find the value of p. - (b) Find the coordinates of A. #### **Solution:** (a) When $$y = 0$$ $p(t^3 + 8) = 0$ $t^3 + 8 = 0$ $t^3 = -8$ $t = \sqrt[3]{-8}$ $t = -2$ When $t = -2$, $x = 2$ So substitute $t = -2$ and $x = 2$ into $x = p(2t - 1)$ $p[2(-2) - 1] = 2$ $p(-4 - 1) = 2$ $p(-5) = 2$ $p = -\frac{2}{5}$ (b) When $$x = 0$$ $p(2t - 1) = 0$ $2t - 1 = 0$ $2t = 1$ $t = \frac{1}{2}$ When the curve meets the y-axis $t = \frac{1}{2}$ So substitute $t = \frac{1}{2}$ into $y = p (t^3 + 8)$ $$y = p \left[\left(\frac{1}{2} \right)^3 + 8 \right]$$ but $$p = -\frac{2}{5}$$ So $y = -\frac{2}{5} \left[\left(\frac{1}{2} \right)^3 + 8 \right] = -\frac{2}{5} \left(\frac{1}{8} + 8 \right) = -\frac{2}{5} \times \frac{65}{8} = -\frac{13}{4}$ So the coordinates of A are $\left(0, -\frac{13}{4} \right)$. ### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 6 ### **Question:** A curve is given parametrically by the equations $x = 3qt^2$, y = 4 ($t^3 + 1$), where q is a constant. The curve meets the x-axis at X and the y-axis at Y. Given that OX = 2OY, where O is the origin, find the value of q. #### **Solution:** (1) When $$y = 0$$ $4 (t^3 + 1) = 0$ $t^3 + 1 = 0$ $t^3 = -1$ $t = \sqrt[3]{-1}$ $t = -1$ Substitute $t = -1$ into $x = 3qt^2$ $x = 3q (-1)^2$ $x = 3q$ So the coordinates of X are $(3q, 0)$. (2) When $x = 0$ $3qt^2 = 0$ $t^2 = 0$ $t = 0$ Substitute $t = 0$ into $y = 4 (t^3 + 1)$ $y = 4 [(0)^3 + 1]$ $y = 4$ So the coordinates of Y are $(0, 4)$. (3) Now $OX = 3q$ and $OY = 4$ As $OX = 2OY$ $(3q) = 2 (4)$ $3q = 8$ $q = \frac{8}{3}$ So the value of q is $\frac{8}{3}$. ### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 7 ## **Question:** Find the coordinates of the point of intersection of the line with parametric equations x = 3t + 2, y = 1 - t and the line y + x = 2. #### **Solution:** (1) Substitute $$x = 3t + 2$$ and $y = 1 - t$ into $y + x = 2$ $(1 - t) + (3t + 2) = 2$ $1 - t + 3t + 2 = 2$ $2t + 3 = 2$ $2t = -1$ $t = -\frac{1}{2}$ (2) Substitute $$t = -\frac{1}{2}$$ into $x = 3t + 2$ $$x = 3 \left(-\frac{1}{2} \right) + 2 = -\frac{3}{2} + 2 = \frac{1}{2}$$ (3) Substitute $$t = -\frac{1}{2}$$ into $y = 1 - t$ $$y = 1 - \left(-\frac{1}{2} \right) = 1 + \frac{1}{2} = \frac{3}{2}$$ So the coordinates of the point of intersection are $\left(\begin{array}{c} \frac{1}{2} \end{array}, \begin{array}{c} \frac{3}{2} \end{array}\right)$. ### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 8 ## **Question:** Find the coordinates of the points of intersection of the curve with parametric equations $x = 2t^2 - 1$, y = 3 (t + 1) and the line 3x - 4y = 3. ## **Solution:** (1) Substitute $$x = 2t^2 - 1$$ and $y = 3$ ($t + 1$) into $3x - 4y = 3$ 3 ($2t^2 - 1$) $- 4$ [3 ($t + 1$)] $= 3$ 3 ($2t^2 - 1$) $- 12$ ($t + 1$) $= 3$ 6 $t^2 - 3 - 12t - 12 = 3$ 6 $t^2 - 12t - 15 = 3$ 6 $t^2 - 12t - 18 = 0$ (\div 6) $t^2 - 2t - 3 = 0$ ($t - 3$) ($t + 1$) $= 0$ so $t = 3$ and $t = -1$ (2) Substitute $t = 3$ into $x = 2t^2 - 1$ and $y = 3$ ($t + 1$) $x = 2$ (3 ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 9 ## **Question:** Find the values of t at the points of intersection of the line 4x - 2y - 15 = 0 with the parabola $x = t^2$, y = 2t and give the coordinates of these points. ### **Solution:** (1) Substitute $$x = t^2$$ and $y = 2t$ into $4x - 2y - 15 = 0$ $$4(t^2) - 2(2t) - 15 = 0$$ $$4t^2 - 4t - 15 = 0$$ $$(2t+3)(2t-5)=0$$ So $$2t + 3 = 0$$ \Rightarrow $2t = -3$ \Rightarrow $t = \frac{-3}{2}$ and $$2t - 5 = 0 \quad \Rightarrow \quad 2t = 5 \quad \Rightarrow \quad t = \frac{5}{2}$$ (2) Substitute $$t = -\frac{3}{2}$$ into $x = t^2$ and $y = 2t$ $$x = \left(-\frac{3}{2} \right)^2 = \frac{9}{4}$$ $$y = 2 \left(-\frac{3}{2} \right) = -3$$ (3) Substitute $$t = \frac{5}{2}$$ into $x = t^2$ and $y = 2t$ $$x = \left(\begin{array}{c} \frac{5}{2} \end{array}\right)^2 = \frac{25}{4}$$ $$y = 2 \left(\frac{5}{2} \right) = 5$$ So the coordinates of the points of intersection are $\left(\frac{9}{4}, -3\right)$ and $\left(\frac{9}{4}, -3\right)$ $$\frac{25}{4}$$, 5 . #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise B, Question 10 #### **Question:** Find the points of intersection of the parabola $x = t^2$, y = 2t with the circle $x^2 + y^2 - 9x + 4 = 0.$ #### **Solution:** (1) Substitute $$x = t^2$$ and $y = 2t$ into $x^2 + y^2 - 9x + 4 = 0$ $(t^2)^2 + (2t)^2 - 9(t^2) + 4 = 0$ $t^4 + 4t^2 - 9t^2 + 4 = 0$ $(t^2 - 4)(t^2 - 1) = 0$ So $t^2 - 4 = 0 \Rightarrow t^2 = 4 \Rightarrow t = \sqrt{4} \Rightarrow t = \pm 2$ and $t^2 - 1 = 0 \Rightarrow t^2 = 1 \Rightarrow t = \sqrt{1} \Rightarrow t = \pm 1$ (2) Substitute $t = 2$ into $x = t^2$ and $y = 2t$ (2) Substitute $$t = 2$$ into $x = t^2$ and $y = 2t$ $$x = (2)^{2} = 4$$ $y = 2(2) = 4$ (3) Substitute $$t = -2$$ into $x = t^2$ and $y = 2t$ $$x = (-2)^2 = 4$$ $y = 2(-2) = -4$ (4) Substitute $$t = 1$$ into $x = t^2$ and $y = 2t$ $$x = (1)^{2} = 1$$ $y = 2(1) = 2$ (5) Substitute $$t = -1$$ into $x = t^2$ and $y = 2t$ $$x = (-1)^2 = 1$$ $y = 2(-1) = -2$ So the coordinates of the points of intersection are (4, 4), (4, -4), (1, 2)and (1, -2). ## **Edexcel AS and A Level Modular Mathematics** $\begin{array}{l}
Coordinate\ geometry\ in\ the\ (x,y)\ plane\\ Exercise\ C,\ Question\ 1 \end{array}$ #### **Question:** A curve is given by the parametric equations $x = 2 \sin t$, $y = \cos t$. Complete the table and draw a graph of the curve for $0 \le t \le 2\pi$. | t | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$ | $\frac{5\pi}{6}$ | π | $\frac{7\pi}{6}$ | $\frac{4\pi}{3}$ | $\frac{3\pi}{2}$ | $\frac{5\pi}{3}$ | $\frac{11\pi}{6}$ | 2π | |---------------|---|-----------------|-----------------|-----------------|------------------|------------------|------|------------------|------------------|------------------|------------------|-------------------|--------| | $x = 2\sin t$ | | 98 | 1.73 | | 1.73 | 33
93 | 60 B | -1 | | -2 | | | 0 | | $y = \cos t$ | | 0.87 | | | | | -1 | | -0.5 | | 0.5 | | | #### **Solution:** | t | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$ | $\frac{5\pi}{6}$ | π | $\frac{7\pi}{6}$ | $\frac{4\pi}{3}$ | $\frac{3\pi}{2}$ | $\frac{5\pi}{3}$ | $\frac{11\pi}{6}$ | 2π | |---------------|---|-----------------|-----------------|-----------------|------------------|------------------|----|------------------|------------------|------------------|------------------|-------------------|--------| | $x = 2\sin t$ | 0 | 1 | 1.73 | 2 | 1.73 | 1 | 0 | -1 | -1.73 | -2 | -1.73 | -1 | 0 | | $y = \cos t$ | 1 | 0.87 | 0.5 | 0 | -0.5 | -0.87 | -1 | -0.87 | -0.5 | 0 | 0.5 | 0.87 | 1 | ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x,y) plane Exercise C, Question 2 #### **Question:** A curve is given by the parametric equations $x = \sin t$, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$. Draw a graph of the curve. #### **Solution:** | t | $\frac{-4\pi}{10}$ | $\frac{-3\pi}{10}$ | $\frac{-2\pi}{10}$ | $\frac{-\pi}{10}$ | 0 | $\frac{\pi}{10}$ | $\frac{2\pi}{10}$ | $\frac{3\pi}{10}$ | $\frac{4\pi}{10}$ | |--------------|--------------------|--------------------|--------------------|-------------------|---|------------------|-------------------|-------------------|-------------------| | $x = \sin t$ | -0.95 | -0.81 | -0.59 | -0.31 | 0 | 0.31 | 0.59 | 0.81 | 0.95 | | $y = \tan t$ | -3.08 | -1.38 | -0.73 | -0.32 | 0 | 0.32 | 0.73 | 1.38 | 3.08 | Answers are given to 2 d.p. #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise C, Question 3 ## **Question:** Find the cartesian equation of the curves given by the following parametric equations: (a) $$x = \sin t$$, $y = \cos t$ (b) $$x = \sin t - 3$$, $y = \cos t$ (c) $$x = \cos t - 2$$, $y = \sin t + 3$ (d) $$x = 2 \cos t$$, $y = 3 \sin t$ (e) $$x = 2 \sin t - 1$$, $y = 5 \cos t + 4$ (f) $$x = \cos t$$, $y = \sin 2t$ (g) $$x = \cos t$$, $y = 2 \cos 2t$ (h) $$x = \sin t$$, $y = \tan t$ (i) $$x = \cos t + 2$$, $y = 4 \sec t$ (j) $$x = 3 \cot t$$, $y = \csc t$ #### **Solution:** (a) $$x = \sin t$$, $y = \cos t$ $$x^{2} = \sin^{2} t$$, $y^{2} = \cos^{2} t$ As $\sin^{2} t + \cos^{2} t = 1$ $$x^{2} + y^{2} = 1$$ (b) $$x = \sin t - 3$$, $y = \cos t$ $\sin t = x + 3$ $\sin^2 t = (x + 3)^2$ $\cos t = y$ $\cos^2 t = y^2$ As $\sin^2 t + \cos^2 t = 1$ $(x + 3)^2 + y^2 = 1$ (c) $$x = \cos t - 2$$, $y = \sin t + 3$ $\cos t = x + 2$ $\sin t = y - 3$ As $\sin^2 t + \cos^2 t = 1$ $(y - 3)^2 + (x + 2)^2 = 1$ or $(x + 2)^2 + (y - 3)^2 = 1$ (d) $$x = 2 \cos t$$, $y = 3 \sin t$ $$\sin t = \frac{y}{3}$$ $$\cos t = \frac{x}{2}$$ As $\sin^2 t + \cos^2 t = 1$ $$\left(\frac{y}{3}\right)^2 + \left(\frac{x}{2}\right)^2 = 1 \quad \text{or} \quad \left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$$ (e) $$x = 2 \sin t - 1$$, $y = 5 \cos t + 4$ $2 \sin t - 1 = x$ $2 \sin t = x + 1$ $\sin t = \frac{x+1}{2}$ and $5 \cos t + 4 = y$ $5 \cos t = y - 4$ $\cos t = \frac{y-4}{5}$ As $$\sin^2 t + \cos^2 t = 1$$ $$\left(\frac{x+1}{2}\right)^2 + \left(\frac{y-4}{5}\right)^2 = 1$$ (f) $$x = \cos t$$, $y = \sin 2t$ As $\sin 2t = 2 \sin t \cos t$ $y = 2 \sin t \cos t = (2 \sin t)$ x Now $\sin^2 t + \cos^2 t = 1$ So $\sin^2 t + x^2 = 1$ $\Rightarrow \sin^2 t = 1 - x^2$ $\Rightarrow \sin t = \sqrt{1 - x^2}$ So $y = (2\sqrt{1 - x^2})$ x or $y = 2x\sqrt{1 - x^2}$ (g) $$x = \cos t$$, $y = 2 \cos 2t$ As $\cos 2t = 2 \cos^2 t - 1$ $$y = 2 (2 \cos^2 t - 1)$$ But $x = \cos t$ So $y = 2 (2x^2 - 1)$ $y = 4x^2 - 2$ (h) $$x = \sin t$$, $y = \tan t$ As $\tan t = \frac{\sin t}{\cos t}$ $y = \frac{\sin t}{\cos t}$ But $x = \sin t$ So $y = \frac{x}{\cos t}$ Now $\cos t = \sqrt{1 - \sin^2 t} = \sqrt{1 - x^2}$ (from $\sin^2 t + \cos^2 t = 1$) So $y = \frac{x}{\sqrt{1 - x^2}}$ (i) $$x = \cos t + 2$$, $y = 4$ $\sec t$ As $\sec t = \frac{1}{\cos t}$ $y = 4 \times \frac{1}{\cos t} = \frac{4}{\cos t}$ Now $x = \cos t + 2 \implies \cos t = x - 2$ So $y = \frac{4}{x - 2}$ (j) $$x = 3 \cot t$$, $y = \operatorname{cosec} t$ As $\sin^2 t + \cos^2 t = 1$ $\frac{\sin^2 t}{\sin^2 t} + \frac{\cos^2 t}{\sin^2 t} = \frac{1}{\sin^2 t}$ $\left(\div \sin^2 t \right)$ $1 + \left(\frac{\cos t}{\sin t} \right)^2 = \left(\frac{1}{\sin t} \right)^2$ $1 + \cot^2 t = \operatorname{cosec}^2 t$ Now $x = 3 \cot t \implies \cot t = \frac{x}{3}$ and $y = \operatorname{cosec} t$ So $1 + \left(\frac{x}{3} \right)^2 = (y)^2$ (using $1 + \cos^2 t = \operatorname{cosec}^2 t$) or $$y^2 = 1 + \left(\frac{x}{3}\right)^2$$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise C, Question 4 #### **Question:** A circle has parametric equations $x = \sin t - 5$, $y = \cos t + 2$. - (a) Find the cartesian equation of the circle. - (b) Write down the radius and the coordinates of the centre of the circle. #### **Solution:** (a) $$x = \sin t - 5$$, $y = \cos t + 2$ $\sin t = x + 5$ and $\cos t = y - 2$ As $\sin^2 t + \cos^2 t = 1$ $(x + 5)^2 + (y - 2)^2 = 1$ (b) This is a circle with centre (-5, 2) and radius 1. #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise C, Question 5 #### **Question:** A circle has parametric equations $x = 4 \sin t + 3$, $y = 4 \cos t - 1$. Find the radius and the coordinates of the centre of the circle. #### **Solution:** $$x = 4 \sin t + 3$$ $$4 \sin t = x - 3$$ $$\sin t = \frac{x - 3}{4}$$ and $$y = 4 \cos t - 1$$ $$4 \cos t = y + 1$$ $$\cos t = \frac{y+1}{4}$$ As $$\sin^2 t + \cos^2 t = 1$$ $$\left(\frac{x-3}{4}\right)^2 + \left(\frac{y+1}{4}\right)^2 = 1$$ $$\frac{(x-3)^2}{4^2} + \frac{(y+1)^2}{4^2} = 1$$ $$\frac{(x-3)^2}{16} + \frac{(y+1)^2}{16} = 1$$ $(x-3)^2 + (y+1)^2 = 16$ Multiply throughout by 16 So the centre of the circle is (3, -1) and the radius is 4. ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 1 #### **Question:** The following curves are given parametrically. In each case, find an expression for $y \frac{dx}{dt}$ in terms of t. (a) $$x = t + 3$$, $y = 4t - 3$ (b) $$x = t^3 + 3t$$, $y = t^2$ (c) $$x = (2t - 3)^2$$, $y = 1 - t^2$ (d) $$x = 6 - \frac{1}{t}$$, $y = 4t^3$, $t > 0$ (e) $$x = \sqrt{t}, y = 6t^3, t \ge 0$$ (f) $$x = \frac{4}{t^2}$$, $y = 5t^2$, $t < 0$ (g) $$x = 5t^{\frac{1}{2}}$$, $y = 4t^{-\frac{3}{2}}$, $t > 0$ (h) $$x = t^{\frac{1}{3}} - 1$$, $y = \sqrt{t}$, $t \ge 0$ (i) $$x = 16 - t^4$$, $y = 3 - \frac{2}{t}$, $t < 0$ (j) $$x = 6t^{\frac{2}{3}}, y = t^2$$ #### **Solution:** (a) $$x = t + 3$$, $y = 4t - 3$ $\frac{dx}{dt} = 1$ So $$y \frac{dx}{dt} = \left(4t - 3\right) \times 1 = 4t - 3$$ (b) $$x = t^3 + 3t$$, $y = t^2$ $$\frac{dx}{dt} = 3t^2 + 3$$ So $y \frac{dx}{dt} = t^2 \left(3t^2 + 3 \right) = 3t^2 \left(t^2 + 1 \right)$ Factorise 3 (c) $$x = (2t - 3)^2$$, $y = 1 - t^2$ $x = 4t^2 - 12t + 9$ $\frac{dx}{dt} = 8t - 12$ So $y \frac{dx}{dt} = (1 - t^2)(8t - 12) = 4(1 - t^2)(2t - 3)$ Factorise 4 (d) $$x = 6 - \frac{1}{t}$$, $y = 4t^3$ $$x = 6 - t^{-1}$$ $$\frac{dx}{dt} = t^{-2}$$ So $y \frac{dx}{dt} = 4t^3 \times t^{-2} = 4t$ (e) $$x = \sqrt{t}$$, $y = 6t^3$ $x = t^{\frac{1}{2}}$ $\frac{dx}{dt} = \frac{1}{2}t^{-\frac{1}{2}}$ So $y \frac{dx}{dt} = 6t^3 \times \frac{1}{2}t^{-\frac{1}{2}} = 3t^{3-\frac{1}{2}} = 3t^{\frac{5}{2}}$ (f) $$x = \frac{4}{t^2}$$, $y = 5t^2$ $x = 4t^{-2}$ $\frac{dx}{dt} = -8t^{-3}$ So $y \frac{dx}{dt} = 5t^2 \times -8t^{-3} = -40t^{2-3} = -40t^{-1} = -\frac{40}{t}$ (g) $$x = 5t^{\frac{1}{2}}$$, $y = 4t^{-\frac{3}{2}}$ $$\frac{dx}{dt} = 5 \times \frac{1}{2}t^{-\frac{1}{2}} = \frac{5}{2}t^{-\frac{1}{2}}$$ So $y \frac{dx}{dt} = 4t^{-\frac{3}{2}} \times \frac{5}{2}t^{-\frac{1}{2}} = 10t^{-\frac{3}{2}} = \frac{1}{2} = 10t^{-2}$ (h) $$x = t^{\frac{1}{3}} - 1$$, $y = \sqrt{t}$ $$\frac{dx}{dt} = \frac{1}{3}t^{\frac{1}{3}} - 1 = \frac{1}{3}t^{-\frac{2}{3}}$$ So $y \frac{dx}{dt} = \sqrt{t} \times \frac{1}{3}t^{-\frac{2}{3}} = t^{\frac{1}{2}} \times \frac{1}{3}t^{-\frac{2}{3}} = \frac{1}{3}t^{\frac{1}{2}} - \frac{2}{3} = \frac{1}{3}t^{-\frac{1}{6}}$ (i) $$x = 16 - t^4$$, $y = 3 - \frac{2}{t}$ $$\frac{dx}{dt} = -4t^3$$ So $y \frac{dx}{dt} = \left(3 - \frac{2}{t}\right) \left(-4t^3\right)$ $$= 3 \times \left(-4t^3\right) + \frac{2}{t} \times 4t^3$$ $$= -12t^3 + 8t^2 \quad [\text{or } 8t^2 - 12t^3 \text{ or } 4t^2 \quad (2 - 3t)]$$ (j) $$x = 6t^{\frac{2}{3}}, y = t^2$$ $$\frac{dx}{dt} = 6 \times \frac{2}{3}t^{\frac{2}{3}} - 1 = 4t^{-\frac{1}{3}}$$ So $y \frac{dx}{dt} = t^2 \times 4t^{-\frac{1}{3}} = 4t^{2-\frac{1}{3}} = 4t^{\frac{5}{3}}$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 2 ## **Question:** A curve has parametric equations x = 2t - 5, y = 3t + 8. Work out $\int_{0}^{4} y \frac{dx}{dt} dt$. #### **Solution:** $$x = 2t - 5, y = 3t + 8$$ $$\frac{dx}{dt} = 2$$ So $y \frac{dx}{dt} = \left(3t + 8\right) \times 2 = 6t + 16$ $$\int_{0}^{4} y \frac{dx}{dt} dt = \int_{0}^{4} 6t + 16 dt$$ $$= \left[3t^{2} + 16t\right]_{0}^{4}$$ $$= \left[3(4)^{2} + 16(4)\right] - \left[3(0)^{2} + 16(0)\right]$$ $$= (3 \times 16 + 16 \times 4) - 0$$ $$= 48 + 64$$ $$= 112$$ ## **Edexcel AS and A
Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 3 #### **Question:** A curve has parametric equations $x = t^2 - 3t + 1$, $y = 4t^2$. Work out $\int_{-1}^{5} y \frac{dx}{dt} dt$. #### **Solution:** $$x = t^{2} - 3t + 1, y = 4t^{2}$$ $$\frac{dx}{dt} = 2t - 3$$ So $y \frac{dx}{dt} = 4t^{2} \left(2t - 3 \right) = 8t^{3} - 12t^{2}$ $$\int_{-1}^{5} y \frac{dx}{dt} dt = \int_{-1}^{5} 8t^{3} - 12t^{2} dt$$ $$= \left[2t^{4} - 4t^{3} \right]_{-1}^{5}$$ $$= \left[2(5)^{4} - 4(5)^{3} \right] - \left[2(-1)^{4} - 4(-1)^{3} \right]$$ $$= 750 - 6$$ $$= 744$$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 4 #### **Question:** A curve has parametric equations $x = 3t^2$, $y = \frac{1}{t} + t^3$, t > 0. Work out $\int_{0.5}^{3} y \frac{dx}{dt} dt$. #### **Solution:** $$x = 3t^{2}, y = \frac{1}{t} + t^{3}$$ $$\frac{dx}{dt} = 6t$$ $$\operatorname{So} y \frac{dx}{dt} = \left(\frac{1}{t} + t^{3}\right) \times 6t = \frac{1}{t} \times 6t + t^{3} \times 6t = 6 + 6t^{4}$$ $$\int_{0.5}^{3} y \frac{dx}{dt} dt = \int_{0.5}^{3} 6 + 6t^{4} dt$$ $$= \left[6t + \frac{6}{5}t^{5}\right]_{0.5}^{3}$$ $$= \left[6\left(3\right) + \frac{6}{5}\left(3\right)^{5}\right] - \left[6\left(0.5\right) + \frac{6}{5}\left(0.5\right)\right]$$ $$= 309.6 - 3.0375$$ $$= 306.5625 \quad (\text{or } 306 \frac{9}{16})$$ #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 5 #### **Question:** A curve has parametric equations $x = t^3 - 4t$, $y = t^2 - 1$. Work out $\int_{-2}^{2} y \frac{dx}{dt} dt$. #### **Solution:** $$x = t^{3} - 4t, y = t^{2} - 1$$ $$\frac{dx}{dt} = 3t^{2} - 4$$ So $y \frac{dx}{dt} = \left(t^{2} - 1\right) \times \left(3t^{2} - 4\right) = 3t^{4} - 4t^{2} - 3t^{2} + 4 = 3t^{4} - 7t^{2} + 4$ $$\int_{-2}^{2} 3t^{4} - 7t^{2} + 4 dt = \left[\frac{3}{5}t^{5} - \frac{7}{3}t^{3} + 4t\right]_{-2}^{2}$$ $$= \left[\frac{3}{5}(2)^{5} - \frac{7}{3}(2)^{3} + 4(2)\right] - \left[\frac{3}{5}(-2)^{5} - \frac{7}{3}(-2)^{3} + (-2)^{3}\right]$$ $$= 8\frac{8}{15} - \left(-8\frac{8}{15}\right)$$ $$= 17\frac{1}{15}$$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 6 ## **Question:** A curve has parametric equations $x = 9t^{\frac{4}{3}}$, $y = t^{-\frac{1}{3}}$, t > 0. - (a) Show that $y \frac{dx}{dt} = a$, where a is a constant to be found. - (b) Work out $\int_{3}^{5} y \frac{dx}{dt} dt$. #### **Solution:** (a) $$x = 9t^{\frac{4}{3}}, y = t^{-\frac{1}{3}}$$ $$\frac{dx}{dt} = 9 \times \frac{4}{3}t^{\frac{4}{3}} - 1 = 9 \times \frac{4}{3}t^{\frac{1}{3}} = 12t^{\frac{1}{3}}$$ So $y^{\frac{dx}{dt}} = t^{-\frac{1}{3}} \times 12t^{\frac{1}{3}} = 12t^{-\frac{1}{3}} + \frac{1}{3} = 12t^{0} = 12$ So $a = 12$ (b) $$\int_{3}^{5} y \frac{dx}{dt} dt = \int_{3}^{5} 12 dt = \left[12t \right]_{3}^{5} = 12 \left(5 \right) - 12 \left(3 \right) = 24$$ # **Solutionbank**Edexcel AS and A Level Modular Mathematics Coordinate geometry in the (x, y) plane Exercise D, Question 7 #### **Question:** A curve has parametric equations $x = \sqrt{t}$, $y = 4\sqrt{t^3}$, t > 0. - (a) Show that $y \frac{dx}{dt} = pt$, where p is a constant to be found. - (b) Work out $\int_{1}^{6} y \frac{dx}{dt} dt$. #### **Solution:** (a) $$x = \sqrt{t}, y = 4\sqrt{t^3}$$ $x = t^{\frac{1}{2}}$ $\frac{dx}{dt} = \frac{1}{2}t^{\frac{1}{2}} - 1 = \frac{1}{2}t^{-\frac{1}{2}}$ $y \frac{dx}{dt} = 4\sqrt{t^3} \times \frac{1}{2}t^{-\frac{1}{2}}$ $= 4t^{\frac{3}{2}} \times \frac{1}{2}t^{-\frac{1}{2}}$ $= 2t^{\frac{3}{2}} - \frac{1}{2}$ $= 2t^1$ $= 2t$ So $p = 2$ (b) $$\int_{1}^{6} y \frac{dx}{dt} dt = \int_{1}^{6} 2t dt = [t^{2}]_{1}^{6} = (6)^{2} - (1)^{2} = 35$$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 8 ## **Question:** The diagram shows a sketch of the curve with parametric equations $x = t^2 - 3$, y = 3t, t > 0. The shaded region R is bounded by the curve, the x-axis and the lines x = 1 and x = 6. - (a) Find the value of t when - (i) x = 1 - (ii) x = 6 - (b) Find the area of *R*. ## **Solution:** (a) Substitute x = 1 into $x = t^2 - 3$ $$t^2 - 3 = 1$$ $$t^2 = 4$$ $$t = 2 \qquad (as \ t > 0)$$ Substitute x = 6 into $x = t^2 - 3$ $$t^2 - 3 = 6$$ $$t^2 = 9$$ $$t = 3$$ (as $t > 0$) (b) $$\int_{1}^{6} y dx = \int_{2}^{3} y \frac{dx}{dt} dt$$ $$\frac{dx}{dt} = 2t$$ So $y \frac{dx}{dt} = 3t \times 2t = 6t^2$ $$\int_{2}^{3} y \frac{dx}{dt} dt = \int_{2}^{3} 6t^2 dt$$ $$= [2t^3]_{2}^{3}$$ $$= 2(3)^{3} - 2(2)^{3}$$ $$= 54 - 16$$ $$= 38$$ #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 9 #### **Question:** The diagram shows a sketch of the curve with parametric equations $x = 4t^2$, y = t (5-2t), $t \ge 0$. The shaded region R is bounded by the curve and the x-axis. Find the area of R. #### **Solution:** When $$x = 0$$ $$4t^{2} = 0$$ $$t^{2} = 0$$ $$t = 0$$ When $x = 25$ $$4t^{2} = 25$$ $$t^{2} = \frac{25}{4}$$ $$t = \sqrt{\frac{25}{4}}$$ $$t = \frac{5}{2} \quad (as \ t \ge 0)$$ So $\int_{0}^{25} y dx = \int_{0}^{5} \frac{5}{2} y \frac{dx}{dt} dt$ So $$\int_0^{25} y dx = \int_0^{2} y \frac{dx}{dt} dt$$ $$\frac{\mathrm{d}x}{\mathrm{d}t} = 8t$$ So $$y \frac{dx}{dt} = t \left(5 - 2t \right) \times 8t = 8t^2 \left(5 - 2t \right) = 40t^2 - 16t^3$$ $$\int_{0}^{\frac{5}{2}y} \frac{dx}{dt} dt = \int_{0}^{\frac{5}{2}} 40t^{2} - 16t^{3} dt$$ $$= \left[\frac{40}{3}t^{3} - 4t^{4} \right]_{0}^{\frac{5}{2}}$$ $$= \left[\frac{40}{3} \left(\frac{5}{2} \right)^{3} - 4 \left(\frac{5}{2} \right)^{4} \right] - \left[\frac{40}{3} (0)^{3} - 4 (0)^{4} \right]$$ $$= 52 \frac{1}{12} - 0$$ $$= 52 \frac{1}{12}$$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise D, Question 10 ## **Question:** The region R is bounded by the curve with parametric equations $x = t^3$, $y = \frac{1}{3t^2}$, the x-axis and the lines x = -1 and x = -8. - (a) Find the value of t when - (i) x = -1 - (ii) x = -8 - (b) Find the area of R. #### **Solution:** - (a) (i) Substitute x = -1 into $x = t^3$ $t^3 = -1$ $t = \sqrt[3]{-1}$ t = -1 - (ii) Substitute x = -8 into $x = t^3$ $t^3 = -8$ $t = \sqrt[3]{-8}$ t = -2 - (b) $R = \int_{-8}^{-1} y dx = \int_{-2}^{-1} y \frac{dx}{dt} dt$ $\frac{dx}{dt} = 3t^2$ So $$y \frac{dx}{dt} = \frac{1}{3t^2} \times 3t^2 = 1$$ $$\int_{-2}^{-1} y \, \frac{dx}{dt} dt = \int_{-2}^{-1} 1 dt = \left[t \right]_{-2}^{-1} = \left(-1 \right) - \left(-2 \right)$$ = -1 + 2 = 1 #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 1 #### **Question:** The diagram shows a sketch of the curve with parametric equations $x = 4 \cos t$, $y = 3 \sin t$, $0 \le t < 2\pi$. - (a) Find the coordinates of the points A and B. - (b) The point C has parameter $t = \frac{\pi}{6}$. Find the exact coordinates of C. - (c) Find the cartesian equation of the curve. ## **Solution:** (a) (1) At $$A$$, $y = 0 \Rightarrow 3 \sin t = 0 \Rightarrow \sin t = 0$ So $$t = 0$$ and $t = \pi$ Substitute $$t = 0$$ and $t = \pi$ into $x = 4 \cos t$ $$t = 0$$ \Rightarrow $x = 4 \cos(0) = 4 \times 1 = 4$ $$t = \pi$$ \Rightarrow $x = 4 \cos \pi = 4 \times (-1) = -4$ So the coordinates of A are (4, 0). (2) At $$B$$, $x = 0 \Rightarrow 4 \cos t = 0 \Rightarrow \cos t = 0$ So $$t = \frac{\pi}{2}$$ and $t = \frac{3\pi}{2}$ Substitute $$t = \frac{\pi}{2}$$ and $t = \frac{3\pi}{2}$ into $y = 3 \sin t$ $$t = \frac{\pi}{2} \implies y = 3 \sin \left(\frac{\pi}{2}\right) = 3 \times 1 = 3$$ $$t = \frac{3\pi}{2} \implies y = 3 \sin \left(\frac{3\pi}{2}\right) = 3 \times -1 = -3$$ So the coordinates of B are (0, 3) (b) Substitute $t = \frac{\pi}{6}$ into $x = 4 \cos t$ and $y = 3 \sin t$ $$x = 4 \cos \left(\frac{\pi}{6}\right) = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$$ $$y = 3 \sin \left(\frac{\pi}{6}\right) = 3 \times \frac{1}{2} = \frac{3}{2}$$ So the coordinates of C are $\left(2\sqrt{3}, \frac{3}{2}\right)$ (c) $x = 4 \cos t$, $y = 3 \sin t$ $$\cos t = \frac{x}{4}$$ and $\sin t = \frac{y}{3}$ $$As \sin^2 t + \cos^2 t = 1$$ $$\left(\begin{array}{c} \frac{y}{3} \end{array}\right)^2 + \left(\begin{array}{c} \frac{x}{4} \end{array}\right)^2 = 1$$ or $\left(\begin{array}{c} \frac{x}{4} \end{array}\right)^2 + \left(\begin{array}{c} \frac{y}{3} \end{array}\right)^2 = 1$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 2 ## **Question:** The diagram shows a sketch of the curve with parametric equations $x = \cos t$, $y = \frac{1}{2} \sin 2t$. $0 \le t < 2\pi$. The curve is symmetrical about both axes. - (a) Copy the diagram and label the points having parameters $t=0,\,t=\frac{\pi}{2},\,t=\pi$ and $t=\frac{3\pi}{2}$. - (b) Show that the cartesian equation of the curve is $y^2 = x^2 (1 x^2)$. ## **Solution:** (a) (1) Substitute $$t = 0$$ into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$ $$x = \cos 0 = 1$$ $$y = \frac{1}{2} \sin \left(2 \times 0 \right) = \frac{1}{2} \sin 0 = \frac{1}{2} \times 0 = 0$$ So when t = 0, (x, y) = (1, 0) (2) Substitute $$t = \frac{\pi}{2}$$ into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$ $$x = \cos \frac{\pi}{2} = 0$$ $$y = \frac{1}{2} \sin \left(2 \times \frac{\pi}{2} \right) = \frac{1}{2} \sin \pi = \frac{1}{2} \times 0 = 0$$ So when $$t = \frac{\pi}{2}$$, $(x, y) = (0, 0)$ (3) Substitute $t = \pi$ into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$ $$x = \cos \pi = -1$$ $$y = \frac{1}{2} \sin \left(2\pi\right) = \frac{1}{2} \times 0 = 0$$ So when $t = \pi$, (x, y) = (-1, 0) (4) Substitute $t = \frac{3\pi}{2}$ into $x = \cos t$ and $y = \frac{1}{2} \sin 2t$ $$x = \cos \frac{3\pi}{2} = 0$$ $$y = \frac{1}{2} \sin \left(2 \times \frac{3\pi}{2}\right) = \frac{1}{2} \sin \left(3\pi\right) = \frac{1}{2} \times 0 = 0$$ So when $t = \frac{3\pi}{2}$, (x, y) = (0, 0) (b) $$y = \frac{1}{2} \sin 2t = \frac{1}{2} \times 2
\sin t \cos t = \sin t \cos t$$ As $$x = \cos t$$ $$y = \sin t \times x$$ $$y = x \sin t$$ Now $\sin^2 t + \cos^2 t = 1$ So $$\sin^2 t + x^2 = 1$$ $$\Rightarrow \sin^2 t = 1 - x^2$$ $$\Rightarrow \sin^2 t = 1 - x^2$$ $$\Rightarrow \sin t = \sqrt{1 - x^2}$$ So $$y = x\sqrt{1 - x^2}$$ or $y^2 = x^2 (1 - x^2)$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 3 ## **Question:** A curve has parametric equations $x = \sin t$, $y = \cos 2t$, $0 \le t < 2\pi$. - (a) Find the cartesian equation of the curve. The curve cuts the x-axis at (a, 0) and (b, 0). - (b) Find the value of a and b. #### **Solution:** (a) $$x = \sin t$$, $y = \cos 2t$ As $\cos 2t = 1 - 2 \sin^2 t$ $y = 1 - 2x^2$ (b) Substitute $$y = 0$$ into $y = 1 - 2x^2$ $$0 = 1 - 2x^2$$ $$2x^2 = 1$$ $$x^2 = \frac{1}{2}$$ $$x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{1}}{\sqrt{2}} = \pm \frac{1}{\sqrt{2}}$$ $$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$ So the curve meets the x-axis at $\left(\frac{\sqrt{2}}{2}, 0\right)$ and $\left(-\frac{\sqrt{2}}{2}, 0\right)$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 4 #### **Question:** A curve has parametric equations $x = \frac{1}{1+t}$, $y = \frac{1}{(1+t)(1-t)}$, $t \neq \pm 1$. Express t in terms of x. Hence show that the cartesian equation of the curve is $y = \frac{x^2}{2x-1}$. #### **Solution:** $$(1) x = \frac{1}{1+t}$$ $$x \times \left(1+t\right) = \frac{1}{(1+t)} \times \left(1+t\right)$$ Multiply each side by $(1+t)$ $$x(1+t) = 1$$ Simplify $$\frac{x(1+t)}{x} = \frac{1}{x}$$ Divide each side by x $$1 + t = \frac{1}{x}$$ Simplify So $$t = \frac{1}{x} - 1$$ Substitute $$t = \frac{1}{x} - 1$$ into $y = \frac{1}{(1+t)(1-t)}$ $$y = \frac{1}{(1 + \frac{1}{x} - 1) [1 - (\frac{1}{x} - 1)]}$$ $$=\frac{1}{\frac{1}{r}(1-\frac{1}{r}+1)}$$ $$=\frac{1}{\frac{1}{r}(2-\frac{1}{r})}$$ $$= \frac{1}{\frac{1}{x} \left(\frac{2x}{x} - \frac{1}{x} \right)}$$ $$= \frac{1}{\frac{1}{x} \left(\frac{2x-1}{x} \right)}$$ $$= \frac{1}{\left(\frac{2x-1}{x^2}\right)}$$ $$= \frac{x^2}{2x-1} \qquad \left(\text{Remember } \frac{1}{\left(\frac{a}{b}\right)} = \frac{b}{a} \right)$$ So the cartesian equation of the curve is $y = \frac{x^2}{2x-1}$. #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 5 ## **Question:** A circle has parametric equations $x = 4 \sin t - 3$, $y = 4 \cos t + 5$. - (a) Find the cartesian equation of the circle. - (b) Draw a sketch of the circle. - (c) Find the exact coordinates of the points of intersection of the circle with the y-axis. #### **Solution:** (a) $$x = 4 \sin t - 3$$, $y = 4 \cos t + 5$ $4 \sin t = x + 3$ $\sin t = \frac{x+3}{4}$ and $4 \cos t = y - 5$ $\cos t = \frac{y-5}{4}$ As $\sin^2 t + \cos^2 t = 1$ $\left(\frac{x+3}{4}\right)^2 + \left(\frac{y-5}{4}\right)^2 = 1$ $\frac{(x+3)^2}{4^2} + \frac{(y-5)^2}{4^2} = 1$ $\frac{(x+3)^2}{4^2} \times 4^2 + \frac{(y-5)^2}{4^2} \times 4^2 = 1 \times 4^2$ $(x+3)^2 + (y-5)^2 = 4^2$ or $(x+3)^2 + (y-5)^2 = 16$ (b) The circle $(x + 3)^2 + (y - 5)^2 = 4^2$ has centre (-3, 5) and radius 4. (c) Substitute $$x = 0$$ into $(x + 3)^2 + (y - 5)^2 = 4^2$ $(0 + 3)^2 + (y - 5)^2 = 4^2$ $3^2 + (y - 5)^2 = 4^2$ $9 + (y - 5)^2 = 16$ $(y - 5)^2 = 7$ $y - 5 = \pm \sqrt{7}$ $y = 5 \pm \sqrt{7}$ So the circle meets the y-axis at $(0, 5 + \sqrt{7})$ and $(0, 5 - \sqrt{7})$. ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 6 #### **Question:** Find the cartesian equation of the line with parametric equations $x = \frac{2-3t}{1+t}$, y = $$\frac{3+2t}{1+t}$$, $t \neq -1$. #### **Solution:** $$x = \frac{2-3t}{1+t}$$ $$x \left(1+t\right) = \frac{2-3t}{(1+t)} \times \left(1+t\right)$$ $$x (1+t) = 2-3t$$ $$x + xt = 2-3t$$ $$x + xt + 3t = 2$$ $$xt + 3t = 2-x$$ $$t (x+3) = 2-x$$ $$t \frac{(x+3)}{(x+3)} = \frac{2-x}{x+3}$$ $$t = \frac{2-x}{x+3}$$ Substitute $$t = \frac{2-x}{x+3}$$ into $y = \frac{3+2t}{1+t}$ $$y = \frac{3+2(\frac{2-x}{x+3})}{1+(\frac{2-x}{x+3})}$$ $$= \frac{3+2(\frac{2-x}{x+3})}{1+(\frac{2-x}{x+3})} \times \frac{(x+3)}{(x+3)}$$ $$= \frac{3 \times (x+3) + 2(\frac{2-x}{x+3}) \times (x+3)}{1 \times (x+3) + (\frac{2-x}{x+3}) \times (x+3)}$$ $$= \frac{3(x+3) + 2(2-x)}{(x+3) + (2-x)}$$ $$= \frac{3x + 9 + 4 - 2x}{x + 3 + 2 - x}$$ $$= \frac{x+13}{5}$$ So $y = \frac{x}{5} + \frac{13}{5}$ #### **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 7 #### **Question:** A curve has parametric equations $x = t^2 - 1$, $y = t - t^3$, where t is a parameter. - (a) Draw a graph of the curve for $-2 \le t \le 2$. - (b) Find the area of the finite region enclosed by the loop of the curve. #### **Solution:** | t | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 | 2 | |---------------|----|-------|----|--------|----|-------|---|--------|----| | $x = t^2 - 1$ | 3 | 1.25 | 0 | -0.75 | -1 | -0.75 | 0 | 1.25 | 3 | | $y = t - t^3$ | 6 | 1.875 | 0 | -0.375 | 0 | 0.375 | 0 | -1.875 | -6 | (b) $$A = 2 \int_{-1}^{0} y dx = 2 \int_{0}^{1} y \frac{dx}{dt} dt$$, When $x = -1$, $t^2 - 1 = -1$, So $t = 0$ When $x = 0$, $t^2 - 1 = 0$, So $t = 1$ $$\frac{dx}{dt} = 2t$$ So $y \frac{dx}{dt} = \left(t - t^3 \right) \times 2t = 2t^2 - 2t^4$ Therefore $A = 2 \int_0^1 2t^2 - 2t^4 dt$ $$= 2 \left[\frac{2}{3}t^3 - \frac{2}{5}t^5 \right]_0^1$$ $$= 2 \left(\left[\frac{2}{3}(1)^3 - \frac{2}{5}(1)^5 \right] - \left[\frac{2}{3}(0)^3 - \frac{2}{5}(0)^5 \right] \right)$$ $$= 2 \left[\left(\frac{2}{3} - \frac{2}{5} \right) - 0 \right]$$ $$= 2 \times \frac{4}{15}$$ $$= \frac{8}{15}$$ So the area of the loop is $\frac{8}{15}$. ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 8 ## **Question:** A curve has parametric equations $x = t^2 - 2$, y = 2t, where $-2 \le t \le 2$. - (a) Draw a graph of the curve. - (b) Indicate on your graph where - (i) t = 0 - (ii) t > 0 - (iii) t < 0 - (c) Calculate the area of the finite region enclosed by the curve and the y-axis. ## **Solution:** - t > 0 t > 0 t < 0 - (b) (i) When t = 0, y = 2 (0) = 0. This is where the curve meets the *x*-axis. (ii) When t > 0, y > 0. This is where the curve is above the *x*-axis. (iii) When t < 0, y < 0. This is where the curve is below the *x*-axis. (c) $$A = 2 \int_{-2}^{0} y dx = 2 \int_{0}^{\sqrt{2}} y \frac{dx}{dt} dt$$, When $x = -2$, $t^2 - 2 = -2$, so $t = 0$ When $x = 0$, $t^2 - 2 = 0$, so $t = \sqrt{2}$ $$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t$$ So $$y \frac{dx}{dt} = 2t \times 2t = 4t^2$$ Therefore $A = 2 \int_0^{\sqrt{2}} 4t^2 dt$ $= 2 \left[\frac{4}{3}t^3 \right]_0^{\sqrt{2}}$ $= 2 \left[\frac{4}{3}(\sqrt{2})^3 - \frac{4}{3}(0)^3 \right]$ $= 2 \times \frac{4}{3}(\sqrt{2})^3$ $= \frac{8}{3}(\sqrt{2})^3$ $= \frac{16}{3}\sqrt{2}$, As $(\sqrt{2})^3 = (\sqrt{2} \times \sqrt{2}) \times \sqrt{2} = 2\sqrt{2}$ ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 9 ## **Question:** Find the area of the finite region bounded by the curve with parametric equations $x = t^3$, $y = \frac{4}{t}$, $t \neq 0$, the x-axis and the lines x = 1 and x = 8. #### **Solution:** (1) When $$x = 1$$, $t^3 = 1$, so $t = \sqrt[3]{1} = 1$ When $x = 8$, $t^3 = 8$, so $t = \sqrt[3]{8} = 2$ (2) $A = \int_{1}^{8} y dx = \int_{1}^{2} y \frac{dx}{dt} dt$ $$(3) \frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2$$ So $$y \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{4}{t} \times 3t^2 = 12t$$ Therefore $$A = \int_{1}^{2} 12t dt$$ = $\begin{bmatrix} 6t^2 \end{bmatrix}_{1}^{2}$ = $6(2)^2 - 6(1)^2$ = $24 - 6$ = 18 ## **Edexcel AS and A Level Modular Mathematics** Coordinate geometry in the (x, y) plane Exercise E, Question 10 ## **Question:** The diagram shows a sketch of the curve with parametric equations $x = 3 \sqrt{t}$, y = t (4 - t), where $0 \le t \le 4$. The region R is bounded by the curve and the x-axis. - (a) Show that $y \frac{dx}{dt} = 6t^{\frac{1}{2}} \frac{3}{2}t^{\frac{3}{2}}$. - (b) Find the area of R. ## **Solution:** (a) $$x = 3\sqrt{t} = 3t^{\frac{1}{2}}$$ $$\frac{dx}{dt} = \frac{1}{2} \times 3t^{\frac{1}{2} - 1} = \frac{3}{2}t^{-\frac{1}{2}}$$ $$y^{\frac{dx}{dt}} = t \left(4 - t\right) \times \frac{3}{2}t^{-\frac{1}{2}}$$ $$= \left(4t - t^2\right) \times \frac{3}{2}t^{-\frac{1}{2}}$$ $$= 4t \times \frac{3}{2}t^{-\frac{1}{2}} - t^2 \times \frac{3}{2}t^{-\frac{1}{2}}$$ $$= 6t^{1 - \frac{1}{2}} - \frac{3}{2}t^{2 - \frac{1}{2}}$$ $$= 6t^{\frac{1}{2}} - \frac{3}{2}t^{\frac{3}{2}}$$ (b) $$A = \int_{0}^{4} y \frac{dx}{dt} dt$$ $$= \int_{0}^{4} 6t^{\frac{1}{2}} - \frac{3}{2}t^{\frac{3}{2}} dt$$ $$= \left[\frac{6t^{\frac{3}{2}}}{(\frac{3}{2})} - \frac{\frac{3}{2}t^{\frac{5}{2}}}{(\frac{5}{2})} \right]_{0}^{4}$$ $$= \left[4t^{\frac{3}{2}} - \frac{3}{5}t^{\frac{5}{2}} \right]_{0}^{4}$$ $$= \left[4(4)^{\frac{3}{2}} - \frac{3}{5}(4)^{\frac{5}{2}} \right] - \left[4(0)^{\frac{3}{2}} - \frac{3}{5}(0)^{\frac{5}{2}} \right]$$ $$= \left(4 \times 8 - \frac{3}{5} \times 32 \right) - 0$$ $$= 32 - 19^{\frac{1}{5}}$$ $$= 12^{\frac{4}{5}}$$ ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise A, Question 1 ## **Question:** Find the binomial expansion of the following up to and including the terms in x^3 . State the range values of x for which these expansions are valid. (a) $$(1 + 2x)^3$$ (b) $$\frac{1}{1-x}$$ (c) $$\sqrt{(1+x)}$$ (d) $$\frac{1}{(1+2x)^3}$$ (e) $$\sqrt[3]{(1-3x)}$$ (f) $$(1-10x)^{\frac{3}{2}}$$ (g) $$\left(1+\frac{x}{4}\right)-4$$ (h) $$\frac{1}{(1+2x^2)}$$ ## **Solution:** (a) $$(1+2x)^3$$ Use expansion with $n = 3$ and x replaced with $2x = 1+3\left(2x\right) + \frac{3 \times 2 \times (2x)^2}{2!} + \frac{3 \times 2 \times 1 \times (2x)^3}{3!} + \dots$ $$\frac{3 \times 2 \times 1 \times 0 \times (2x)^4}{4!} + \dots$$ = $$1 + 6x + 12x^2 + 8x^3 +
0x^4$$ All terms after $0x^4$ will also be zero = $1 + 6x + 12x^2 + 8x^3$ Expansion is finite and exact. Valid for all values of x. (b) $$\frac{1}{1-x}$$ Write in index form $$= (1-x)^{-1} \quad \text{Use expansion with } n = -1 \text{ and } x \text{ replaced with } -x$$ $$= 1 + \left(-1 \right) \left(-x \right) + \frac{(-1)(-2)(-x)^2}{2!} \frac{(-1)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)^2}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)}{2!} \frac{(-1)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)}{2!} + \frac{(-1)(-x)(-x)$$ $$\frac{(-1)(-2)(-3)(-x)^3}{3!} + \dots$$ $$= 1 + 1x + 1x^{2} + 1x^{3} + \dots$$ = 1 + x + x^{2} + x^{3} + \dots Expansion is infinite. Valid when $|-x| < 1 \Rightarrow |x| < 1$. (c) $\sqrt{1+x}$ Write in index form = $(1+x)^{\frac{1}{2}}$ Use expansion with $n=\frac{1}{2}$ and x replaced with x $$= 1 + \left(\frac{1}{2}\right) \left(x\right) + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(x\right)^{2}}{2!} +$$ $$\frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(x\right)^{3}}{3!} + \dots$$ $$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots$$ Expansion is infinite. Valid when |x| < 1. (d) $\frac{1}{(1+2r)^3}$ Write in index form = $(1 + 2x)^{-3}$ Use expansion with n = -3 and x replaced with 2x $$=1+\left(\begin{array}{c} -3 \end{array}\right)\left(\begin{array}{c} 2x \end{array}\right)+\frac{\left(\begin{array}{c} -3 \end{array}\right)\left(\begin{array}{c} -4 \end{array}\right)\left(\begin{array}{c} 2x \end{array}\right)^{2}}{2!}+$$ $$\frac{(-3)(-4)(-5)(2x)^3}{3!} + \dots$$ $$= 1 - 6x + 24x^2 - 80x^3 + \dots$$ Expansion is infinite. Valid when $|2x| < 1 \Rightarrow |x| < \frac{1}{2}$. (e) $$\sqrt[3]{(1-3x)}$$ Write in index form $$= (1-3x)^{\frac{1}{3}}$$ Use expansion with $n = \frac{1}{3}$ and x replaced with $-3x$ $$= 1 + \left(\frac{1}{3}\right) \left\{ -3x \right\} + \frac{\left(\frac{1}{3}\right) \left(-\frac{2}{3}\right) \left(-3x\right)^{2}}{2!} +$$ $$\frac{\left(\frac{1}{3}\right) \left(-\frac{2}{3}\right) \left(-\frac{5}{3}\right) \left(-3x\right)^{3}}{3!} + \dots$$ $$= 1 - x - x^2 - \frac{5}{3}x^3 + \dots$$ Expansion is infinite. Valid when $|-3x| < 1 \Rightarrow |x| < \frac{1}{3}$. (f) $(1-10x)^{\frac{3}{2}}$ Use expansion with $n=\frac{3}{2}$ and x replaced with -10x $$= 1 + \left(\frac{3}{2}\right) \left(-10x\right) + \frac{\left(\frac{3}{2}\right) \left(\frac{1}{2}\right) \left(-10x\right)^{2}}{2!} +$$ $$\frac{\left(\begin{array}{c} \frac{3}{2} \right) \left(\begin{array}{c} \frac{1}{2} \right) \left(\begin{array}{c} -\frac{1}{2} \right) \left(-10x\right)^{3}}{3!} + \dots$$ $$= 1 - 15x + \frac{3}{8} \times 100x^{2} - \frac{1}{16} \times \left(-1000x^{3} \right) + \dots$$ $$= 1 - 15x + \frac{75}{2}x^{2} + \frac{125}{2}x^{3} + \dots$$ Expansion is infinite. Valid when $|-10x| < 1 \Rightarrow |x| < \frac{1}{10}$. (g) $$\left(1 + \frac{x}{4}\right)^{-4}$$ Use expansion with $n = -4$ and x replaced with $\frac{x}{4}$ $$= 1 + \left(-4\right) \left(\frac{x}{4}\right) + \frac{(-4)(-5)}{2!} \left(\frac{x}{4}\right)^{2} + \frac{(-4)(-5)(-6)}{3!} \left(\frac{x}{4}\right)^{3} + \dots$$ $$= 1 - x + 10 \times \frac{x^{2}}{16} - 20 \times \frac{x^{3}}{64} + \dots$$ $$= 1 - x + \frac{5}{8}x^{2} - \frac{5}{16}x^{3} + \dots$$ Expansion is infinite. Valid when $\left| \begin{array}{c} \frac{x}{4} \end{array} \right| < 1 \implies |x| < 4$. (h) $$\frac{1}{1+2x^2}$$ Write in index form $$= (1+2x^2)^{-1} \quad \text{Use expansion with } n = -1 \text{ and } x \text{ replaced with } 2x^2$$ $$= 1 + \left(-1\right) \left(2x^2\right) + \frac{(-1)(-2)(2x^2)^2}{2!} + \dots$$ $$= 1 - 2x^2 + \dots$$ Expansion is infinite. Valid when $|2x^2| < 1 \implies |x| < \frac{1}{\sqrt{2}}$. ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise A, Question 2 ## **Question:** By first writing $\frac{(1+x)}{(1-2x)}$ as $(1+x)(1-2x)^{-1}$ show that the cubic approximation to $\frac{(1+x)}{(1-2x)}$ is $1+3x+6x^2+12x^3$. State the range of values of x for which this expansion is valid. #### **Solution:** $$\frac{1+x}{1-2x} = \left(1+x\right) (1-2x)^{-1} \quad \text{Expand } (1-2x)^{-1} \text{ using binomial expansion}$$ $$= \left(1+x\right) \left[1+\left(-1\right)\left(-2x\right) + \frac{(-1)(-2)(-2x)^{2}}{2!} + \frac{(-1)(-2)(-3)(-2x)^{3}}{3!} + \dots\right]$$ $$= (1+x)(1+2x+4x^{2}+8x^{3}+\dots) \quad \text{Multiply out}$$ $$= 1+2x+4x^{2}+8x^{3}+\dots+x+2x^{2}+4x^{3}+8x^{4}+\dots \quad \text{Add like terms}$$ $$= 1+3x+6x^{2}+12x^{3}+\dots$$ $$(1-2x)^{-1} \text{ is only valid when } |-2x| < 1 \Rightarrow |x| < \frac{1}{2}$$ So expansion of $\frac{1+x}{1-2x}$ is only valid when $|x| < \frac{1}{2}$. ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise A, Question 3 ## **Question:** Find the binomial expansion of $\sqrt{(1+3x)}$ in ascending powers of x up to and including the term in x^3 . By substituting x = 0.01 in the expansion, find an approximation to $\sqrt{103}$. By comparing it with the exact value, comment on the accuracy of your approximation. #### **Solution:** $$\sqrt{(1+3x)} = (1+3x)^{\frac{1}{2}}$$ $$= 1 + \left(\frac{1}{2}\right) \left(\frac{1}{3}\right) + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(3x\right)^{2}}{2!} + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(3x\right)^{2}}{3!} + \dots$$ $$=1+\frac{3}{2}x-\frac{9}{8}x^2+\frac{27}{16}x^3+\ldots$$ This expansion is valid if $|3x| < 1 \implies |x| < \frac{1}{3}$ Substitute x = 0.01 (OK, as $|x| < \frac{1}{3}$) into both sides to give $$\sqrt{1+3\times0.01} \simeq 1 + \frac{3}{2}\times0.01 - \frac{9}{8}\times0.01^{2} + \frac{27}{16}\times0.01^{3}$$ $$\sqrt{\frac{1.03}{100}} \simeq 1 + 0.015 - 0.0001125 + 0.00000016875$$ $$\sqrt{\frac{103}{100}} \simeq 1.014889188$$ $$\left(\sqrt{\frac{103}{100}} = \frac{\sqrt{103}}{\sqrt{100}} = \frac{\sqrt{103}}{10}\right)$$ $$\sqrt{\frac{103}{10}} \simeq 1.014889188$$ $$\left(\times 10\right)$$ $$\sqrt{103} \simeq 10.14889188$$ Using a calculator $\sqrt{103} = 10.14889157$ Hence approximation correct to 6 d.p. ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise A, Question 4 ## **Question:** In the expansion of $(1 + ax)^{-\frac{1}{2}}$ the coefficient of x^2 is 24. Find possible values of the constant a and the corresponding term in x^3 . #### **Solution:** $$(1+ax)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right) \left(ax\right) + \frac{\left(-\frac{1}{2}\right)^{-\frac{3}{2}} (ax)^{2}}{2!} + \frac{1}{2!}$$ $$\frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})(ax)^3}{3!} + \dots$$ $$=1-\frac{1}{2}ax+\frac{3}{8}a^2x^2-\frac{5}{16}a^3x^3+\ldots$$ This expansion is valid if $|ax| < 1 \implies |x| < \frac{1}{a}$. If coefficient of x^2 is 24 then $$\frac{3}{8}a^2 = 24$$ $$a^2 = 64$$ $$a = \pm 8$$ Term in x^3 is $$-\frac{5}{16}a^3x^3 = -\frac{5}{16}(\pm 8)^3x^3 = \pm 160x^3$$ If a = 8, term in x^3 is $-160x^3$ If a = -8, term in x^3 is $+160x^3$ ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise A, Question 5 #### **Question:** Show that if x is small, the expression $\sqrt{\left(\frac{1+x}{1-x}\right)}$ is approximated by $1+x+\frac{1}{2}x^2$. ## **Solution:** $$\frac{\sqrt{\frac{1+x}{1-x}}}{1-x} = \left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$$ $$= (1+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}} \quad \text{Expand using the binomial expansion}$$ $$= \left[1+\left(\frac{1}{2}\right)(x) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})(x)^{2}}{2!} + \dots \right] \quad \left[1+\left(-\frac{1}{2}\right)(-x) + \frac{\left(-\frac{1}{2}\right)(-\frac{3}{2})(-x)^{2}}{2!} + \dots \right]$$ $$= \left(1+\frac{1}{2}x - \frac{3}{8}x^{2} + \dots \right) \quad \left(1+\frac{1}{2}x + \frac{3}{8}x^{2} + \dots \right)$$ $$= 1\left(1+\frac{1}{2}x + \frac{3}{8}x^{2} + \dots \right) + \frac{1}{2}x\left(1+\frac{1}{2}x + \frac{3}{8}x^{2} + \dots \right) - \frac{1}{8}x^{2}\left(1+\frac{1}{2}x + \frac{3}{8}x^{2} + \dots \right)$$ $$= 1+\frac{1}{2}x + \frac{3}{8}x^{2} + \frac{1}{2}x + \frac{1}{4}x^{2} - \frac{1}{8}x^{2} + \dots \quad \text{Add like terms}$$ $$= 1+x + \frac{1}{2}x^{2} + \dots$$ Hence $$\sqrt{\frac{1+x}{1-x}} \approx 1+x + \frac{1}{2}x^{2}$$ If terms larger than or equal to x^3 are ignored. #### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise A, Question 6 ## **Question:** Find the first four terms in the expansion of $(1-3x)^{\frac{3}{2}}$. By substituting in a suitable value of x, find an approximation to $97^{\frac{3}{2}}$. #### **Solution:** $$(1-3x)^{\frac{3}{2}} = 1 + (\frac{3}{2})^{\frac{3}{2}} = 1 + (\frac{3}{2})^{\frac{3}{2}} (\frac{3}{2})^{\frac{3$$ Expansion is valid if $|-3x| < 1 \Rightarrow |x| < \frac{1}{3}$. Substitute x = 0.01 into both sides of expansion to give
$$(1-3\times0.01)^{\frac{3}{2}}=1-\frac{9\times0.01}{2}+\frac{27\times(0.01)^{2}}{8}+\frac{27\times(0.01)^{3}}{16}+\ldots$$ $$(0.97)^{\frac{3}{2}} \simeq 1 - 0.045 + 0.0003375 + 0.000001687$$ $$(0.97)^{\frac{3}{2}} \simeq 0.955339187$$ $$\left(\begin{array}{c} \frac{97}{100} \end{array}\right) \frac{3}{2} \simeq 0.955339187 , \qquad \left[\begin{array}{c} \left(\begin{array}{c} \frac{97}{100} \end{array}\right) \frac{3}{2} = \frac{97\frac{3}{2}}{100\frac{3}{2}} = \frac{97\frac{3}{2}}{(\sqrt{100})^3} = \frac{97\frac{3}{2}}{1000} \end{array}\right]$$ $$\frac{97\frac{3}{2}}{1000} \simeq 0.955339187 \qquad \left(\times 1000 \right)$$ $$97^{\frac{3}{2}} \simeq 955.339187$$ ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise B, Question 1 ## **Question:** Find the binomial expansions of the following in ascending powers of x as far as the term in x^3 . State the range of values of x for which the expansions are valid. (a) $$\sqrt{(4+2x)}$$ (b) $$\frac{1}{2+x}$$ (c) $$\frac{1}{(4-x)^2}$$ (d) $$\sqrt{(9+x)}$$ (e) $$\frac{1}{\sqrt{(2+x)}}$$ (f) $$\frac{5}{3+2x}$$ (g) $$\frac{1+x}{2+x}$$ (h) $$\left(\begin{array}{c} 2+x\\ 1-x \end{array}\right)$$ ## **Solution:** (a) $$\sqrt{(4+2x)}$$ Write in index form. $$= (4+2x)^{\frac{1}{2}}$$ Take out a factor of 4 $$= \left[4\left(1+\frac{2x}{4}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}$$ Remember to put the 4 to the power $\frac{1}{2}$ $$= 4^{\frac{1}{2}}\left(1+\frac{x}{2}\right)^{\frac{1}{2}}$$ $4^{\frac{1}{2}} = 2$ $$= 2\left(1+\frac{x}{2}\right)^{\frac{1}{2}}$$ Use the binomial expansion with $n = \frac{1}{2}$ and $x = \frac{x}{2}$ $$= 2 \left[1 + \left(\frac{1}{2} \right) \left(\frac{x}{2} \right) + \frac{\left(\frac{1}{2} \right) \left(-\frac{1}{2} \right) \left(\frac{x}{2} \right)^{2}}{2!} + \right]$$ $$\frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})(\frac{x}{2})^3}{3!} + \dots$$ $$= 2 \left(1 + \frac{x}{4} - \frac{x^2}{32} + \frac{x^3}{128} + \dots \right)$$ Multiply by the 2 $$= 2 + \frac{x}{2} - \frac{x^2}{16} + \frac{x^3}{64}$$ Valid if $$\left| \begin{array}{c} \frac{x}{2} \right| < 1 \implies |x| < 2$$ (b) $$\frac{1}{2+x}$$ Write in index form = $$(2+x)^{-1}$$ Take out a factor of 2 = $\left[2\left(1+\frac{x}{2}\right)^{-1}\right]^{-1}$ Remember to put 2 to the power -1 = $2^{-1}\left(1+\frac{x}{2}\right)^{-1}$, $2^{-1}=\frac{1}{2}$. Use the binomial expansion with $$n = -1$$ and $x = \frac{x}{2}$ $$= \frac{1}{2} \left[\begin{array}{c} 1 + \left(\begin{array}{c} -1 \end{array} \right) \left(\begin{array}{c} \frac{x}{2} \end{array} \right) + \frac{(-1)(-2)}{2!} \left(\begin{array}{c} \frac{x}{2} \end{array} \right)^2 + \right]$$ $$\frac{(-1)(-2)(-3)}{3!}\left(\begin{array}{c}x\\\overline{2}\end{array}\right)3+\ldots$$ $$= \frac{1}{2} \left(1 - \frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{8} + \dots \right)$$ Multiply by the $\frac{1}{2}$ $$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16}$$ Valid if $\left| \frac{x}{2} \right| < 1 \implies |x| < 2$ (c) $$\frac{1}{(4-x)^2}$$ Write in index form $$= (4-x)^{-2} \quad \text{Take 4 out as a factor}$$ $$= \left[4\left(1-\frac{x}{4}\right)^{-2}\right] - 2$$ $$= 4^{-2}\left(1-\frac{x}{4}\right)^{-2}, \quad 4^{-2} = \frac{1}{16}. \text{ Use the binomial expansion with}$$ $$n = -2 \text{ and } x = \frac{x}{4}$$ $$= \frac{1}{16}\left[1+\left(-2\right)\left(-\frac{x}{4}\right) + \frac{(-2)(-3)}{2!}\left(-\frac{x}{4}\right)^2 + \frac{(-2)(-3)(-4)}{3!}\left(-\frac{x}{4}\right)^3 + \dots\right]$$ $$= \frac{1}{16}\left(1+\frac{x}{2}+\frac{3x^2}{16}+\frac{x^3}{16}+\dots\right) \quad \text{Multiply by } \frac{1}{16}$$ $$= \frac{1}{16}+\frac{x}{32}+\frac{3x^2}{256}+\frac{x^3}{256}$$ $$\text{Valid for } \left|\frac{x}{4}\right| < 1 \implies |x| < 4$$ (d) $$\sqrt{9+x}$$ Write in index form $$= (9+x)^{\frac{1}{2}} \quad \text{Take 9 out as a factor}$$ $$= \left[9 \left(1 + \frac{x}{9} \right) \right]^{\frac{1}{2}}$$ $$= 9^{\frac{1}{2}} \left(1 + \frac{x}{9} \right)^{\frac{1}{2}}, \quad 9^{\frac{1}{2}} = 3. \text{ Use binomial expansion with } n = \frac{1}{2} \text{ and }$$ $$x = \frac{x}{9}$$ $$=3\left[\begin{array}{c} 1+\left(\frac{1}{2}\right)\left(\frac{x}{9}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{x}{9}\right)^{2}+\right.$$ $$\frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3!}\left(\frac{x}{9}\right)^{3}+ \dots$$ $$= 3 \left(1 + \frac{x}{18} - \frac{x^2}{648} + \frac{x^3}{11664} + \dots \right)$$ Multiply by 3 $$= 3 + \frac{x}{6} - \frac{x^2}{216} + \frac{x^3}{3888}$$ Valid for $\left| \begin{array}{c} \frac{x}{9} \end{array} \right| < 1 \implies |x| < 9$ (e) $\frac{1}{\sqrt{2+x}}$ Write in index form $$= (2 + x)^{-\frac{1}{2}}$$ Take out a factor of 2 $$= \left[2\left(1 + \frac{x}{2}\right)\right]^{-\frac{1}{2}}$$ $$=2^{-\frac{1}{2}}\left(1+\frac{x}{2}\right)^{-\frac{1}{2}}, \qquad 2^{-\frac{1}{2}}=\frac{1}{2^{\frac{1}{2}}}=\frac{1}{\sqrt{2}}.$$ Use binomial expansion with $n = -\frac{1}{2}$ and $x = \frac{x}{2}$ $$= \frac{1}{\sqrt{2}} \left[1 + \left(-\frac{1}{2} \right) \left(\frac{x}{2} \right) + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{2!} \left(\frac{x}{2} \right)^{2} + \right]$$ $$\frac{\left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right)}{3!} \left(\frac{x}{2}\right) 3 + \dots$$ $$= \frac{1}{\sqrt{2}} \left(1 - \frac{x}{4} + \frac{3x^2}{32} - \frac{5x^3}{128} + \dots\right) \qquad \text{Multiply by } \frac{1}{\sqrt{2}}$$ $$= \frac{1}{\sqrt{2}} - \frac{x}{4\sqrt{2}} + \frac{3x^2}{32\sqrt{2}} - \frac{5x^3}{128\sqrt{2}} + \dots \qquad \text{Rationalise surds}$$ $$= \frac{\sqrt{2}}{2} - \frac{\sqrt{2}x}{8} + \frac{3\sqrt{2}x^2}{64} - \frac{52x^3}{256}$$ $$\text{Valid if } \left|\frac{x}{2}\right| < 1 \implies |x| < 2$$ $$(f) \frac{5}{3+2x} \qquad \text{Write in index form}$$ $$= 5 \left(3 + 2x\right) - 1 \qquad \text{Take out a factor of 3}$$ $$= 5 \left[3 \left(1 + \frac{2x}{3}\right)\right] - 1$$ $$= 5 \times 3^{-1} \left(1 + \frac{2x}{3}\right)^{-1}, \quad 3^{-1} = \frac{1}{3}. \text{ Use binomial expansion with}$$ $$n = -1 \text{ and } x = \frac{2x}{3}$$ $$= \frac{5}{3} \left[1 + \left(-1\right) \left(\frac{2x}{3}\right) + \frac{(-1)(-2)}{2!} \left(\frac{2x}{3}\right)^2 \left(\frac$$ $$= \frac{3}{3} \left[1 + \left[-1 \right] \left(\frac{2x}{3} \right) + \frac{(1)(2)}{2!} \left(\frac{2x}{3} \right)^{2} \right]$$ $$= \frac{5}{3} \left(1 - \frac{2x}{3} + \frac{4x^{2}}{9} - \frac{8x^{3}}{27} + \dots \right)$$ $$= \frac{5}{3} - \frac{10x}{9} + \frac{20x^{2}}{27} - \frac{40x^{3}}{81}$$ $$Valid if \left| \frac{2x}{3} \right| < 1 \implies |x| < \frac{3}{2}$$ $$= \frac{1}{2} + \frac{1}{4}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3}$$ Valid if $\begin{vmatrix} \frac{x}{2} \end{vmatrix} < 1 \Rightarrow |x| < 2$ (h) $$\sqrt{\frac{2+x}{1-x}}$$ = $(2+x)^{\frac{1}{2}}(1-x)^{-\frac{1}{2}}$ Put both in index form $= 2^{\frac{1}{2}} \left(1 + \frac{x}{2} \right)^{\frac{1}{2}} (1 - x)^{-\frac{1}{2}}$ Expand both using the binomial expansion $$= \sqrt{2} \left[1 + \left(\frac{1}{2} \right) \left(\frac{x}{2} \right) + \frac{\left(\frac{1}{2} \right) \left(-\frac{1}{2} \right)}{2!} \left(\frac{x}{2} \right)^2 + \right]$$ $$\frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3!} \left(\frac{x}{2}\right)^{3} + \dots \left| \begin{array}{c} 1 \\ 1 \\ \end{array} \right| 1 + \left(-\frac{1}{2}\right) \left| -x \right| + \dots$$ $$\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-x\right)^{2}}{2!} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(-x\right)^{3}}{3!} + \dots$$ $$= \sqrt{2} \left(1 + \frac{1}{4}x - \frac{1}{32}x^2 + \frac{1}{128}x^3 + \dots \right) \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \dots \right)$$ Multiply out $$= \sqrt{2} \left[1 \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \dots \right) + \frac{1}{4}x \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \dots \right) + \frac{1}{4}x \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \dots \right) + \frac{1}{128}x^3 \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \dots \right) + \frac{1}{128}x^3 \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \dots \right) + \frac{1}{8}x^2 + \frac{3}{32}x^3 - \frac{1}{32}x^2 - \frac{1}{64}x^3 + \dots \right)$$ $$= \sqrt{2} \left(1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \frac{1}{4}x + \frac{1}{8}x^2 + \frac{3}{32}x^3 - \frac{1}{32}x^2 - \frac{1}{64}x^3 + \dots \right)$$ Collect like terms $$= \sqrt{2} \left(1 + \frac{3}{4}x + \frac{15}{32}x^2 + \frac{51}{128}x^3 + \dots \right)$$ Multiply by $\sqrt{2}$ $$= \sqrt{2} + \frac{3\sqrt{2}}{4}x + \frac{15\sqrt{2}}{32}x^2 + \frac{51\sqrt{2}}{128}x^3$$ Valid if $\left| \frac{x}{2} \right| < 1$ and $\left| -x \right| < 1 \Rightarrow \left| x \right| < 1$ for both to be valid ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise B, Question 2 ## **Question:** Prove that if x is sufficiently small, $\frac{3+2x-x^2}{4-x}$ may be approximated by $\frac{3}{4}$ + $\frac{11}{16}x - \frac{5}{64}x^2$. What does 'sufficiently small' mean in this question? ## **Solution:** $$\frac{3+2x-x^2}{4-x} \equiv \left(3+2x-x^2\right) \left(4-x\right)^{-1} \quad \text{Write } \frac{1}{4-x} \text{ as } \left(4-x\right)^{-1}$$ $$= \left(3+2x-x^2\right) \left[4\left(1-\frac{x}{4}\right)\right]^{-1} \quad \text{Take out a factor of 4}$$ $$= \left(3+2x-x^2\right) \frac{1}{4} \left(1-\frac{x}{4}\right)^{-1} \quad \text{Expand } \left(1-\frac{x}{4}\right)^{-1} \text{ using the binomial expansion}$$ $$= \left(3+2x-x^2\right) \frac{1}{4} \left[1+\left(-1\right)\left(-\frac{x}{4}\right)+\frac{(-1)(-2)}{2!}\left(-\frac{x}{4}\right)^{-1} \right]$$ $$= \left(3+2x-x^2\right) \frac{1}{4} \left(1+\frac{x}{4}+\frac{x^2}{16}+\dots\right) \quad \text{Multiply expansion by }$$ $$= \left(3+2x-x^2\right) \left(\frac{1}{4}+\frac{x}{16}+\frac{x^2}{64}+\dots\right) \quad \text{Multiply result by }$$ $$(3+2x-x^2)$$ $$=
3\left(\frac{1}{4}+\frac{x}{16}+\frac{x^2}{64}+\dots\right) + 2x\left(\frac{1}{4}+\frac{x}{16}+\frac{x^2}{64}+\dots\right) - x^2\left(\frac{1}{4}+\frac{x}{16}+\frac{x^2}{64}+\dots\right)$$ $$=\frac{3}{4}+\frac{3}{16}x+\frac{3}{64}x^2+\frac{1}{2}x+\frac{1}{8}x^2-\frac{1}{4}x^2+\dots$$ Ignore any terms bigger than x^2 $$= \frac{3}{4} + \frac{11}{16}x - \frac{5}{64}x^2$$ Expansion is valid if $$\begin{vmatrix} -x \\ 4 \end{vmatrix} < 1 \Rightarrow |x| < 4$$ ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise B, Question 3 ## **Question:** Find the first four terms in the expansion of $\sqrt{(4-x)}$. By substituting $x=\frac{1}{9}$, find a fraction that is an approximation to $\sqrt{35}$. By comparing this to the exact value, state the degree of accuracy of your approximation. #### **Solution:** $$\sqrt{(4-x)} = (4-x)^{\frac{1}{2}}$$ $$= [4(1-\frac{x}{4})]^{\frac{1}{2}}$$ $$= 4^{\frac{1}{2}}(1-\frac{x}{4})^{\frac{1}{2}}$$ $$= 2[1+(\frac{1}{2})(-\frac{x}{4}) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(-\frac{x}{4})^2 + \frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3!}$$ $$(-\frac{x}{4})^3 + \dots]$$ $$= 2(1-\frac{x}{8}-\frac{x^2}{128}-\frac{x^3}{1024}+\dots)$$ $$= 2-\frac{x}{4}-\frac{x^2}{64}-\frac{x^3}{512}+\dots$$ Valid for $\left| -\frac{x}{4} \right| < 1 \implies |x| < 4$ Substitute $x = \frac{1}{9}$ into both sides of the expansion: $$\sqrt{\left(4 - \frac{1}{9}\right)} \simeq 2 - \frac{\frac{1}{9}}{4} - \frac{\left(\frac{1}{9}\right)^2}{64} - \frac{\left(\frac{1}{9}\right)^3}{512}$$ $$\sqrt{\frac{35}{9}} \simeq 2 - \frac{1}{36} - \frac{1}{5184} - \frac{1}{373248}$$ $$\frac{\sqrt{35}}{3} \simeq \frac{736055}{373248}$$ $$\sqrt{35} \simeq 3 \times \frac{736055}{373248} = \frac{736055}{124416} = 5.916079 \quad 925$$ By calculator $\sqrt{35} = 5.916079 \mid 783$ Fraction accurate to 6 decimal places ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise B, Question 4 ## **Question:** The expansion of $(a + bx)^{-2}$ may be approximated by $\frac{1}{4} + \frac{1}{4}x + cx^2$. Find the values of the constants a, b and c. ### **Solution:** $$(a+bx)^{-2} = [a(1+\frac{bx}{a})]^{-2} \quad \text{Take out a factor of } a$$ $$= a^{-2}(1+\frac{bx}{a})^{-2}$$ $$= \frac{1}{a^2}(1+\frac{bx}{a})^{-2}$$ $$= \frac{1}{a^2}[1+(-2)(\frac{bx}{a}) + \frac{(-2)(-3)}{2!}(\frac{bx}{a})^2 + \dots]$$ $$= \frac{1}{a^2} - \frac{2bx}{a^3} + \frac{3b^2x^2}{a^4} + \dots$$ Compare this to $\frac{1}{4} + \frac{1}{4}x + cx^2$ Comparing constant terms: $\frac{1}{a^2} = \frac{1}{4}$ $$\Rightarrow a^2 = 4 \quad (\sqrt{})$$ $$\Rightarrow$$ $a = \pm 2$ Comparing terms in x: $\frac{-2b}{a^3} = \frac{1}{4}$ $$\Rightarrow$$ $b = \frac{a^3}{-8}$ Substitute $a = \pm 2$ $$\Rightarrow b = \frac{(\pm 2)^3}{-8}$$ $$\Rightarrow$$ $b = \pm 1$ Compare terms in x^2 : $c = \frac{3b^2}{a^4}$ Substitute $a^4 = 16$, $b^2 = 1$ $$\Rightarrow$$ $c = \frac{3 \times 1}{16}$ $$\Rightarrow \quad c = \frac{3}{16}$$ Hence $$a = \pm 2, b \pm 1, c = \frac{3}{16}$$ ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion **Exercise C, Question 1** ## **Question:** - (a) Express $\frac{8x+4}{(1-x)(2+x)}$ as partial fractions. - (b) Hence or otherwise expand $\frac{8x+4}{(1-x)(2+x)}$ in ascending powers of x as far as the term in x^2 . - (c) State the set of values of x for which the expansion is valid. #### **Solution:** (a) Let $$\frac{8x+4}{(1-x)(2+x)} \equiv \frac{A}{(1-x)} + \frac{B}{(2+x)} \equiv \frac{A(2+x)+B(1-x)}{(1-x)(2+x)}$$ Set the numerators equal: $8x+4 \equiv A(2+x) + B(1-x)$ Substitute $$x = 1$$: $8 \times 1 + 4 = A \times 3 + B \times 0$ $$\Rightarrow$$ 12 = 3A $$\Rightarrow$$ $A = 4$ Substitute $$x = -2$$: $8 \times (-2) + 4 = A \times 0 + B \times 3$ $$\Rightarrow$$ $-12 = 3B$ $$\Rightarrow$$ $B = -4$ Hence $$\frac{8x+4}{(1-x)(2+x)} \equiv \frac{4}{(1-x)} - \frac{4}{(2+x)}$$ (b) $$\frac{4}{(1-x)} = 4(1-x)^{-1}$$ = $4\left[1+\left(-1\right)\left(-x\right) + \frac{(-1)(-2)(-x)^2}{2!} + \dots\right]$ $$= 4 (1 + x + x^{2} + \dots)$$ $$= 4 + 4x + 4x^{2} + \dots$$ $$\frac{4}{(2+x)} = 4 (2+x)^{-1}$$ $$= 4 \left[2 \left(1 + \frac{x}{2} \right) \right] - 1$$ $$= 4 \times 2^{-1} \left(1 + \frac{x}{2} \right) - 1$$ $$= 4 \times \frac{1}{2} \times \left[1 + \left(-1 \right) \left(\frac{x}{2} \right) + \frac{(-1)(-2)}{2!} \left(\frac{x}{2} \right) \right]$$ $$= 2 \left(1 - \frac{x}{2} + \frac{x^2}{4} + \dots \right)$$ $$= 2 - x + \frac{1}{2}x^2 + \dots$$ Therefore $$\frac{8x+4}{(1-x)(2+x)} \equiv \frac{4}{(1-x)} - \frac{4}{(2+x)}$$ $$= \left(4+4x+4x^2+\dots\right) - \left(2-x+\frac{1}{2}x^2+\dots\right)$$ $$= 2+5x+\frac{7x^2}{2}$$ (c) $$\frac{4}{(1-x)}$$ is valid for $|x| < 1$ $\frac{4}{(2+x)}$ is valid for $|x| < 2$ Both are valid when $|x| < 1$. ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise C, Question 2 ### **Question:** - (a) Express $\frac{-2x}{(2+x)^2}$ as a partial fraction. - (b) Hence prove that $\frac{-2x}{(2+x)^2}$ can be expressed in the form $0 \frac{1}{2}x + Bx^2 + Cx^3$ where constants *B* and *C* are to be determined. - (c) State the set of values of x for which the expansion is valid. ### **Solution:** (a) Let $$\frac{-2x}{(2+x)^2} \equiv \frac{A}{(2+x)} + \frac{B}{(2+x)^2} \equiv \frac{A(2+x)+B}{(2+x)^2}$$ Set the numerators equal: $-2x \equiv A(2+x)+B$ Substitute $x = -2$: $4 = A \times 0 + B \Rightarrow B = 4$ Equate terms in x : $-2 = A \Rightarrow A = -2$ Hence $\frac{-2x}{(2+x)^2} \equiv \frac{-2}{(2+x)} + \frac{4}{(2+x)^2}$ (b) $$\frac{-2}{2+x} = -2(2+x)^{-1}$$ $$= -2\left[2\left(1+\frac{x}{2}\right)\right] - 1$$ $$= -2 \times 2^{-1} \times \left(1+\frac{x}{2}\right) - 1$$ $$= -1 \times \left[1+\left(-1\right)\left(\frac{x}{2}\right) + \frac{(-1)(-2)}{2!}\left(\frac{x}{2}\right)^2 + \frac{(-1)(-2)(-3)}{3!}\left(\frac{x}{2}\right)^3 + \dots\right]$$ $$= -1 \times \left(1-\frac{x}{2} + \frac{x^2}{4} - \frac{x^3}{8} + \dots\right)$$ $$= -1 + \frac{x}{2} - \frac{x^2}{4} + \frac{x^3}{8} + \dots$$ $$\frac{4}{(2+x)^2} = 4(2+x)^{-2}$$ $$= 4\left[2\left(1 + \frac{x}{2}\right)\right]^{-2}$$ $$= 4 \times 2^{-2} \times \left(1 + \frac{x}{2}\right)^{-2}$$ $$= 1 \times \left[1 + \left(-2\right)\left(\frac{x}{2}\right) + \frac{(-2)(-3)}{2!}\left(\frac{x}{2}\right)^2 + \frac{(-2)(-3)(-4)}{3!}\left(\frac{x}{2}\right)^3 + \dots\right]$$ $$= 1 \times \left(1 - x + \frac{3x^2}{4} - \frac{x^3}{2} + \dots\right)$$ $$= 1 - x + \frac{3x^2}{4} - \frac{x^3}{2} + \dots$$ Hence $$\frac{-2x}{(2+x)^{2}} \equiv \frac{-2}{(2+x)} + \frac{4}{(2+x)^{2}}$$ $$= -1 + \frac{x}{2} - \frac{x^{2}}{4} + \frac{x^{3}}{8} + 1 - x + \frac{3x^{2}}{4} - \frac{x^{3}}{2} + \dots$$ $$= 0 - \frac{1}{2}x + \frac{1}{2}x^{2} - \frac{3}{8}x^{3}$$ Hence $B = \frac{1}{2}$, (coefficient of x^2) and $C = -\frac{3}{8}$, (coefficients of x^3) (c) $$\frac{-2}{(2+x)}$$ is valid for $|x| < 2$ $$\frac{4}{(2+x)^2}$$ is valid for $|x| < 2$ Hence whole expression is valid |x| < 2. ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise C, Question 3 ## **Question:** - (a) Express $\frac{6+7x+5x^2}{(1+x)(1-x)(2+x)}$ as a partial fraction. - (b) Hence or otherwise expand $\frac{6+7x+5x^2}{(1+x)(1-x)(2+x)}$ in ascending powers of x as far as the term in x^3 . - (c) State the set of values of x for which the expansion is valid. #### **Solution:** (a) Let $$\frac{6+7x+5x^2}{(1+x)(1-x)(2+x)} \equiv \frac{A}{(1+x)} + \frac{B}{(1-x)} + \frac{C}{(2+x)}$$ $$\equiv \frac{A(1-x)(2+x)+B(1+x)(2+x)+C(1+x)(1-x)}{(1+x)(1-x)(2+x)}$$ Set the numerators equal: $$6 + 7x + 5x^{2} \equiv A \left(1 - x \right) \left(2 + x \right) + B \left(1 + x \right) \left(2 + x \right) + C$$ $$\left(1 + x \right) \left(1 - x \right)$$ Substitute x = 1: $6 + 7 + 5 = A \times 0 + B \times 2 \times 3 + C \times 0$ $$\Rightarrow$$ 18 = 6B $$\Rightarrow B = 3$$ Substitute x = -1: $6 - 7 + 5 = A \times 2 \times 1 + B \times 0 + C \times 0$ $$\Rightarrow$$ 4 = 2A $$\Rightarrow A = 2$$ Substitute x = -2: $6 - 14 + 20 = A \times 0 + B \times 0 + C \times (-1) \times 3$ $$\Rightarrow$$ 12 = $-3C$ $$\Rightarrow$$ $C = -4$ Hence $$\frac{6+7x+5x^2}{(1+x)(1-x)(2+x)} \equiv \frac{2}{(1+x)} + \frac{3}{(1-x)} - \frac{4}{(2+x)}$$ $$(b) \frac{2}{1+x} = 2(1+x)^{-1}$$ $$= 2\left[1+\left(-1\right)\left(x\right) + \frac{(-1)(-2)(x)^2}{2!} + \frac{(-1)(-2)(x)^2}{2!} + \frac{(-1)(-2)(-3)(x)^3}{3!} + \dots\right]$$ $$= 2(1-x+x^2-x^3+\dots)$$ $$= 2-2x+2x^2-2x^3 \quad \text{Valid for } |x| < 1$$ $$= 3\left[1+\left(-1\right)\left(-x\right) + \frac{(-1)(-2)(-x)^2}{2!} + \frac{(-1)(-2)(-x)^2}{2!} + \frac{(-1)(-2)(-3)(-x)^3}{3!} + \dots\right]$$ $$= 3(1+x+x^2+x^3+\dots)$$ $$= 3(1+x+x^2+x^3+\dots)$$ $$= 3(1+x+x^2+x^3+\dots)$$ $$= 3+3x+3x^2+3x^3 \quad \text{Valid for } |x| < 1$$ $$= 4\left[2\left(1+\frac{x}{2}\right)\right]-1$$ $$= 4\left[2\left(1+\frac{x}{2}\right)\right]-1$$ $$= 4\times2^{-1}\times\left(1+\frac{x}{2}\right)-1$$ $$= 2\left[1+\left(-1\right)\left(\frac{x}{2}\right)+\frac{(-1)(-2)}{2!}\left(\frac{x}{2}\right)^2+\frac{(-1)(-2)(-3)}{3!}\left(\frac{x}{2}\right)^3+\dots\right]$$ $$= 2\left(1-\frac{x}{2}+\frac{x^2}{4}-\frac{x^3}{8}+\dots\right)$$ $$= 2-x+\frac{x^2}{2}-\frac{x^3}{4} \quad \text{Valid for } |x| < 2$$ Hence $$\frac{6+7x+5x^2}{(1+x)(1-x)(2+x)} \equiv \frac{2}{(1+x)} + \frac{3}{(1-x)} - \frac{4}{(2+x)}$$ $$= \left(2-2x+2x^2-2x^3\right) + \left(3+3x+3x^2+3x^3\right)$$ $$-\left(2-x+\frac{x^2}{2}-\frac{x^3}{4}\right)$$ $$= 2+3-2-2x+3x+x+2x^2+3x^2-$$ $$\frac{x^2}{2}-2x^3+3x^3+\frac{x^3}{4}$$ $$= 3+2x+\frac{9}{2}x^2+\frac{5}{4}x^3$$ (c) All expansions are valid when |x| < 1. #### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 1 ### **Question:** Find binomial expansions of the following in ascending powers of x as far as the term in x^3 . State the set of values of x for which the expansion is valid. (a) $$(1-4x)^3$$ (b) $$\sqrt{(16+x)}$$ (c) $$\frac{1}{(1-2x)}$$ (d) $$\frac{4}{2+3x}$$ (e) $$\frac{4}{\sqrt{(4-x)}}$$ $$(f) \frac{1+x}{1+3x}$$
(g) $$\left(\begin{array}{c} \frac{1+x}{1-x} \end{array}\right)^2$$ (h) $$\frac{x-3}{(1-x)(1-2x)}$$ #### **Solution:** (a) $$(1-4x)^3$$ Use binomial expansion with $n = 3$ and $x = -4x$ = $1 + (3) (-4x) + \frac{(3)(2)(-4x)^2}{2!} +$ $$\frac{(3)(2)(1)(-4x)^3}{3!}$$ As $n = 3$ expansion is finite and exact $$= 1 - 12x + 48x^2 - 64x^3$$ Valid for all x (b) $$\sqrt{16 + x}$$ Write in index form = $(16 + x)^{\frac{1}{2}}$ Take out a factor of 16 $$= \left[16 \left(1 + \frac{x}{16} \right) \right] \frac{1}{2}$$ $$= 16 \frac{1}{2} \left(1 + \frac{x}{16} \right) \frac{1}{2} \quad \text{Use binomial expansion with } n = \frac{1}{2} \text{and } x = \frac{x}{16}$$ $$= 4 \left[1 + \frac{1}{2} \left(\frac{x}{16} \right) + \frac{\left(\frac{1}{2} \right) \left(-\frac{1}{2} \right)}{2!} \left(\frac{x}{16} \right) 2 + \frac{\left(\frac{1}{2} \right) \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{3!} \left(\frac{x}{16} \right) 3 + \dots \right]$$ $$= 4 \left(1 + \frac{x}{32} - \frac{x^2}{2048} + \frac{x^3}{65536} + \dots \right) \quad \text{Multiply by 4}$$ $$= 4 + \frac{x}{8} - \frac{x^2}{512} + \frac{x^3}{16384} + \dots$$ $$\text{Valid for } \left| \frac{x}{16} \right| < 1 \quad \Rightarrow \quad |x| < 16$$ (c) $$\frac{1}{1-2x}$$ Write in index form $$= (1-2x)^{-1} \quad \text{Use binomial expansion with } n = -1 \text{ and } x = -2x$$ $$= 1 + \left(-1\right) \left(-2x\right) + \frac{(-1)(-2)(-2x)^{2}}{2!} + \frac{(-1)(-2)(-3)(-2x)^{3}}{3!} + \dots$$ $$= 1 + 2x + 4x^{2} + 8x^{3} + \dots$$ $$\text{Valid for } |2x| < 1 \implies |x| < \frac{1}{2}$$ (d) $$\frac{4}{2+3x}$$ Write in index form $$= 4 (2+3x)^{-1}$$ Take out a factor of 2 $$= 4 \left[2 \left(1 + \frac{3x}{2} \right) \right]^{-1}$$ $$= 4 \times 2^{-1} \times \left(1 + \frac{3x}{2} \right)^{-1}$$ Use binomial expansion with $n = -1$ and $$x = \frac{3x}{2}$$ $$= 2 \left[1 + \left(-1 \right) \left(\frac{3x}{2} \right) + \frac{(-1)(-2)}{2!} \left(\frac{3x}{2} \right)^{2} + \frac{(-1)(-2)(-3)}{3!} \left(\frac{3x}{2} \right)^{3} + \dots \right]$$ $$= 2 \left(1 - \frac{3x}{2} + \frac{9x^{2}}{4} - \frac{27x^{3}}{8} + \dots \right) \quad \text{Multiply by 2}$$ $$= 2 - 3x + \frac{9x^{2}}{2} - \frac{27x^{3}}{4} + \dots$$ $$\text{Valid for } \left| \frac{3x}{2} \right| < 1 \implies |x| < \frac{2}{3}$$ (e) $$\frac{4}{\sqrt{4-x}} = 4 \left(\sqrt{4-x}\right)^{-1}$$ Write in index form $$= 4 \left(4-x\right)^{-\frac{1}{2}}$$ Take out a factor of 4 $$= 4 \left[4 \left(1-\frac{x}{4}\right)^{-\frac{1}{2}}\right]$$ $$= 4 \times 4^{-\frac{1}{2}} \left(1-\frac{x}{4}\right)^{-\frac{1}{2}}$$ Use binomial expansion with $n = -\frac{1}{2}$ and $x = -\frac{x}{4}$ $$= 4^{\frac{1}{2}} \left[1 + \left(-\frac{1}{2} \right) \left(-\frac{x}{4} \right) + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{2!} \left(-\frac{x}{4} \right)^{2} + \right]$$ $$\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(-\frac{x}{4}\right)^{3} + \dots$$ $$= 2\left(1 + \frac{x}{8} + \frac{3}{128}x^{2} + \frac{5}{1024}x^{3} + \dots\right)$$ Multiply by 2 $$= 2 + \frac{x}{4} + \frac{3}{64}x^2 + \frac{5}{512}x^3 + \dots$$ Valid $\left| -\frac{x}{4} \right| < 1 \implies |x| < 4$ (f) $$\frac{1+x}{1+3x} = \left(1+x\right) \left(1+3x\right)^{-1}$$ Write $\frac{1}{1+3x}$ in index form then expand $$= \left(1+x\right) \left[1+\left(-1\right) \left(3x\right) + \frac{(-1)(-2)(3x)^2}{2!} + \frac{(-1)(-2)(-3)(3x)^3}{3!} + \dots\right]$$ $$= (1+x) \left(1-3x+9x^2-27x^3+\dots\right)$$ Multiply out $$= 1-3x+9x^2-27x^3+x-3x^2+9x^3+\dots$$ Collect like terms $$= 1-2x+6x^2-18x^3+\dots$$ Valid for $|3x| < 1 \Rightarrow |x| < \frac{1}{3}$ (g) $$\left(\frac{1+x}{1-x}\right)^2 = \frac{(1+x)^2}{(1-x)^2}$$ Write in index form $$= (1+x)^2 (1-x)^{-2} \quad \text{Expand } (1-x)^{-2} \quad \text{using binomial expansion}$$ $$= \left(1+2x+x^2\right) \left[1+\left(-2\right)\left(-x\right) + \frac{(-2)(-3)(-x)^2}{2!} + \frac{(-2)(-3)(-x)^2}{2!} + \dots\right]$$ $$= (1+2x+x^2) (1+2x+3x^2+4x^3+\dots) \quad \text{Multiply out brackets}$$ $$= 1+2x+3x^2+4x^3+2x+4x^2+6x^3+x^2+2x^3+\dots \quad \text{Collect like}$$ terms $$= 1+4x+8x^2+12x^3+\dots$$ Valid for $|x| < 1$ (h) Let $$\frac{x-3}{(1-x)(1-2x)} \equiv \frac{A}{(1-x)} + \frac{B}{(1-2x)}$$ Put in partial fraction form $$\equiv \frac{A(1-2x) + B(1-x)}{(1-x)(1-2x)}$$ Add fractions. Set the numerators equal: $$x - 3 \equiv A (1 - 2x) + B (1 - x)$$ Substitute $x = 1$: $1 - 3 = A \times -1 + B \times 0$ $\Rightarrow -2 = -1A$ $$\Rightarrow A = 2$$ Substitute $x = \frac{1}{2}$: $\frac{1}{2} - 3 = A \times 0 + B \times \frac{1}{2}$ $$\Rightarrow -2\frac{1}{2} = \frac{1}{2}B$$ $$\Rightarrow B = -5$$ Hence $\frac{x-3}{(1-x)(1-2x)} = \frac{2}{(1-x)} - \frac{5}{(1-2x)}$ $$\frac{2}{(1-x)} = 2(1-x)^{-1}$$ $$= 2\left[1 + (-1)(-x) + \frac{(-1)(-2)(-x)^{2}}{2!} + \frac{(-1)(-2)(-3)(-x)^{3}}{3!} + \dots\right]$$ $$= 2(1 + x + x^{2} + x^{3} + \dots)$$ $$= 2 + 2x + 2x^{2} + 2x^{3}$$ $$\frac{5}{(1-2x)} = 5(1-2x)^{-1}$$ $$= 5\left[1 + (-1)(-2x) + \frac{(-1)(-2)(-2x)^{2}}{2!} + \frac{(-1)(-2)(-3)(-2x)^{3}}{3!} + \dots\right]$$ $$= 5(1 + 2x + 4x^{2} + 8x^{3} + \dots)$$ $$= 5 + 10x + 20x^{2} + 40x^{3}$$ Hence $\frac{x-3}{(1-x)(1-2x)} = \frac{2}{(1-x)} - \frac{5}{(1-2x)}$ $$= (2 + 2x + 2x^{2} + 2x^{3}) - (5 + 10x + 20x^{2} + 40x^{3})$$ $$= -3 - 8x - 18x^{2} - 38x^{3}$$ $$\frac{2}{1-x}$$ is valid for $|x| < 1$ $$\frac{5}{1-2x}$$ is valid for $|x| < 1$ $$= \frac{5}{1-2x}$$ is valid for $|2x| < 1 \Rightarrow |x| < \frac{1}{2}$ Both are valid when $|x| < \frac{1}{2}$. ### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 2 #### **Question:** Find the first four terms of the expansion in ascending powers of *x* of: $$\left(1-\frac{1}{2}x\right)^{\frac{1}{2}}, |x| < 2$$ and simplify each coefficient. (adapted) #### **Solution:** $$(1 - \frac{1}{2}x) = 1 + (\frac{1}{2}) (-\frac{1}{2}x) + \frac{(\frac{1}{2}) (-\frac{1}{2}) (-\frac{1}{2}x)^{2}}{2!} + \frac{(\frac{1}{2}) (-\frac{1}{2}) (-\frac{1}{2}x)^{3}}{3!} + \dots$$ $$= 1 - \frac{1}{4}x + (-\frac{1}{8}) \times (\frac{1}{4}x^{2}) + (\frac{1}{16}) \times (-\frac{1}{8}x^{3}) + \dots$$ $$= 1 - \frac{1}{4}x - \frac{1}{32}x^{2} - \frac{1}{128}x^{3}$$ ### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 3 #### **Question:** Show that if x is sufficiently small then $\frac{3}{\sqrt{(4+x)}}$ can be approximated by $\frac{3}{2} - \frac{3}{16}x + \frac{9}{256}x^2$. ### **Solution:** $$\frac{3}{\sqrt{4+x}} = 3 \left(\sqrt{4+x}\right)^{-1} \quad \text{Write in index form}$$ $$= 3 \left(4+x\right)^{-\frac{1}{2}} \quad \text{Take out a factor of 4}$$ $$= 3 \left[4 \left(1+\frac{x}{4}\right)\right]^{-\frac{1}{2}}$$ $$= 3 \times 4^{-\frac{1}{2}} \times \left(1+\frac{x}{4}\right)^{-\frac{1}{2}} \quad 4^{-\frac{1}{2}} = \frac{1}{4^{\frac{1}{2}}} = \frac{1}{2}$$ $$= \frac{3}{2} \times \left[1+\left(-\frac{1}{2}\right)\left(\frac{x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(\frac{x}{4}\right)^{2}}{2!} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(\frac{x}{4}\right)^{3}}{3!} + \dots\right]$$ $$= \frac{3}{2} \left(1-\frac{x}{8} + \frac{3}{128}x^{2} + \dots\right) \quad \text{Multiply by } \frac{3}{2}$$ $$= \frac{3}{2} - \frac{3}{16}x + \frac{9}{256}x^{2} + \dots$$ $$= \frac{3}{2} - \frac{3}{16}x + \frac{9}{256}x^{2} \quad \text{If terms higher than } x^{2} \text{ are ignored}$$ #### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 4 #### **Question:** Given that |x| < 4, find, in ascending powers of x up to and including the term in x^3 , the series expansion of: (a) $$(4-x)^{\frac{1}{2}}$$ (b) $$(4-x)^{\frac{1}{2}}(1+2x)$$ (adapted) #### **Solution:** (a) $$(4-x)^{\frac{1}{2}}$$ Take out a factor of 4 = $\left[4\left(1-\frac{x}{4}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}$ = $4^{\frac{1}{2}}\left(1-\frac{x}{4}\right)^{\frac{1}{2}}$ Use binomial expansion with $n=\frac{1}{2}$ and $x=-\frac{x}{4}$ = $2\left[1+\left(\frac{1}{2}\right)\left(-\frac{x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right)^{2}}{2!}+\right]$ $$\frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{x}{4}\right)^{3}}{3!} + \dots$$ $$= 2 \left(1 - \frac{x}{8} - \frac{x^2}{128} - \frac{x^3}{1024} + \dots \right)$$ Multiply by 2 $$= 2 - \frac{x}{4} - \frac{x^2}{64} - \frac{x^3}{512} + \dots$$ (b) $$(4-x)^{\frac{1}{2}}(1+2x)$$ Use answer from part (a) = $\left(2-\frac{x}{4}-\frac{x^2}{64}-\frac{x^3}{512}+\dots\right)\left(1+2x\right)$ Multiply out brackets $$=2-\frac{x}{4}-\frac{x^2}{64}-\frac{x^3}{512}+\ldots+4x-\frac{x^2}{2}-\frac{x^3}{32}+\ldots$$ Collect like terms $$=2+\frac{15}{4}x-\frac{33}{64}x^2-\frac{17}{512}x^3+\dots$$ ## **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 5 #### **Question:** - (a) Find the first four terms of the expansion, in ascending powers of x, of $(2+3x)^{-1}$, $|x| < \frac{2}{3}$ - (b) Hence or otherwise, find the first four non-zero terms of the expansion, in ascending powers of x, of: $$\frac{1+x}{2+3x}$$, $|x| < \frac{2}{3}$ #### **Solution:** (a) $$(2+3x)^{-1}$$ Take out factor of 2 $$= \left[2\left(1+\frac{3x}{2}\right)\right]^{-1}$$ $$= 2^{-1}\left(1+\frac{3x}{2}\right)^{-1}$$ Use binomial expansion with $n = -1$ and $x = \frac{3x}{2}$ $$= \frac{1}{2}\left[1+\left(-1\right)\left(\frac{3x}{2}\right) + \frac{(-1)(-2)}{2!}\left(\frac{3x}{2}\right)^{2} + \frac{(-1)(-2)(-3)}{3!}\left(\frac{3x}{2}\right)^{3} + \dots\right]$$ $$\frac{3x}{3!} \left(\frac{3x}{2} \right)^{3} + \dots \right]$$ $$= \frac{1}{2} \left(1 - \frac{3}{2}x + \frac{9}{4}x^{2} - \frac{27}{8}x^{3} + \dots \right) \quad \text{Multiply by } \frac{1}{2}$$ $$= \frac{1}{2} - \frac{3}{4}x + \frac{9}{8}x^{2} - \frac{27}{16}x^{3} + \dots$$ $$\text{Valid for } \left| \frac{3x}{2} \right| < 1 \implies |x| < \frac{2}{3}$$ (b)
$$\frac{1+x}{2+3x}$$ Put in index form = $(1+x)(2+3x)^{-1}$ Use expansion from part (a) $$= \left(1+x\right) \left(\frac{1}{2} - \frac{3}{4}x + \frac{9}{8}x^2 - \frac{27}{16}x^3 + \dots\right)$$ Multiply out $$= \frac{1}{2} - \frac{3}{4}x + \frac{9}{8}x^2 - \frac{27}{16}x^3 + \frac{1}{2}x - \frac{3}{4}x^2 + \frac{9}{8}x^3 + \dots$$ Collect like terms $$= \frac{1}{2} - \frac{1}{4}x + \frac{3}{8}x^2 - \frac{9}{16}x^3 + \dots$$ Valid for $$\left|\begin{array}{c} \frac{3x}{2} \right| < 1 \implies |x| < \frac{2}{3}$$ ### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 6 #### **Question:** Find, in ascending powers of x up to and including the term in x^3 , the series expansion of $(4 + x)^{-\frac{1}{2}}$, giving your coefficients in their simplest form. #### **Solution:** $$(4+x)^{-\frac{1}{2}} = \left[4 \left(1 + \frac{x}{4} \right) \right]^{-\frac{1}{2}}$$ Take out factor of 4 $$= 4^{-\frac{1}{2}} \left(1 + \frac{x}{4} \right)^{-\frac{1}{2}}$$ $4^{-\frac{1}{2}} = \frac{1}{4^{\frac{1}{2}}} = \frac{1}{2}$ $$= \frac{1}{2} \left(1 + \frac{x}{4} \right)^{-\frac{1}{2}}$$ Use binomial expansion with $n = -\frac{1}{2}$ and $x = \frac{x}{4}$ $$= \frac{1}{2} \left[1 + \left(-\frac{1}{2} \right) \left(\frac{x}{4} \right) + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^{2}}{2!} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} -\frac{3}{2}$$ $$\frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})(\frac{x}{4})^3}{3!} + \dots$$ $$= \frac{1}{2} \left(1 - \frac{1}{8}x + \frac{3}{128}x^2 - \frac{5}{1024}x^3 + \dots \right)$$ $$\approx \frac{1}{2} - \frac{1}{16}x + \frac{3}{256}x^2 - \frac{5}{2048}x^3$$ Valid for $$\begin{vmatrix} x \\ 4 \end{vmatrix} < 1 \Rightarrow |x| < 4$$ ### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 7 #### **Question:** $$f(x) = (1+3x)^{-1}, |x| < \frac{1}{3}.$$ - (a) Expand f(x) in ascending powers of x up to and including the term in x^3 . - (b) Hence show that, for small *x*: $$\frac{1+x}{1+3x} \approx 1 - 2x + 6x^2 - 18x^3.$$ (c) Taking a suitable value for x, which should be stated, use the series expansion in part (b) to find an approximate value for $\frac{101}{103}$, giving your answer to 5 decimal places. #### **Solution:** (a) $$(1+3x)^{-1}$$ Use binomial expansion with $n = -1$ and $x = 3x$ $$= 1 + \left(-1\right) \left(3x\right) + \frac{(-1)(-2)(3x)^{2}}{2!} + \frac{(-1)(-2)(-3)(3x)^{3}}{3!} + \dots$$ $$= 1 - 3x + 9x^{2} - 27x^{3} + \dots$$ (b) $$\frac{1+x}{1+3x} = \left(1+x\right) (1+3x)^{-1}$$ Use expansion from part (a) = $(1+x) (1-3x+9x^2-27x^3+\dots)$ Multiply out = $1-3x+9x^2-27x^3+x-3x^2+9x^3+\dots$ Collect like terms = $1-2x+6x^2-18x^3+\dots$ Ignore terms greater than x^3 Hence $\frac{1+x}{1+3x} \approx 1-2x+6x^2-18x^3$ (c) Substitute x = 0.01 into both sides of the above $$\frac{1+0.01}{1+3\times0.01} - 1-2\times0.01+6\times0.01^2 - 18\times0.01^3$$ $$\frac{1.01}{1.03} \simeq 1 - 0.02 + 0.0006 - 0.000018$$, $\left[\frac{1.01}{1.03} = \frac{101}{103} \right]$ $$\frac{101}{103} \simeq 0.980582$$ Round to 5 d.p. $$\frac{101}{103} \simeq 0.98058$$ (5 d.p.) [©] Pearson Education Ltd 2009 #### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 8 #### **Question:** Obtain the first four non-zero terms in the expansion, in ascending powers of x, of the function f(x) where $f(x) = \frac{1}{\sqrt{(1+3x^2)}}$, $3x^2 < 1$. #### **Solution:** $$f_{(x)} = \frac{1}{\sqrt{1+3x^2}} = (\sqrt{1+3x^2})^{-1}$$ $$= (1+3x^2)^{-\frac{1}{2}} \quad \text{Use binomial expansion with } n = -\frac{1}{2} \text{ and } x = 3x^2$$ $$= 1 + (-\frac{1}{2}) (3x^2) + \frac{(-\frac{1}{2}) (-\frac{3}{2}) (3x^2)^2}{2!} + \frac{(-\frac{1}{2}) (-\frac{3}{2}) (3x^2)^3}{3!} + \dots$$ $$= 1 - \frac{3x^2}{2} + \frac{27x^4}{8} - \frac{135x^6}{16}$$ Valid for $|3x^2| < 1$ ### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 9 #### **Question:** Give the binomial expansion of $(1 + x)^{\frac{1}{2}}$ up to and including the term in x^3 . By substituting $x = \frac{1}{4}$, find the fraction that is an approximation to $\sqrt{5}$. #### **Solution:** Using binomial expansion $$(1+x) = 1 + \left(\frac{1}{2}\right) (x) + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) (x)^{2}}{2!} + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) (x)^{3}}{3!} + \dots$$ $$= 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3}$$ Expansion is valid if |x| < 1. Substituting $x = \frac{1}{4}$ in both sides of expansion gives $$\left(1 + \frac{1}{4}\right)^{\frac{1}{2}} \simeq 1 + \frac{1}{2} \times \frac{1}{4} - \frac{1}{8} \times \left(\frac{1}{4}\right)^{2} + \frac{1}{16} \times \left(\frac{1}{4}\right)^{3}$$ $$\left(\frac{5}{4}\right)^{\frac{1}{2}} \simeq 1 + \frac{1}{8} - \frac{1}{128} + \frac{1}{1024} \qquad \left[\left(\frac{5}{4}\right)^{\frac{1}{2}} = \sqrt{\frac{5}{4}}\right]$$ $$\sqrt{\frac{5}{4}} \simeq \frac{1145}{1024} \qquad \left[\sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{\sqrt{4}} = \frac{\sqrt{5}}{2}\right]$$ $$\frac{\sqrt{5}}{2} \simeq \frac{1145}{1024} \qquad \text{Multiply both sides by 2}$$ $$\sqrt{5} \simeq \frac{1145}{512}$$ ### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 10 ### **Question:** When $(1 + ax)^n$ is expanded as a series in ascending powers of x, the coefficients of x and x^2 are -6 and 27 respectively. - (a) Find the values of a and n. - (b) Find the coefficient of x^3 . - (c) State the values of x for which the expansion is valid. #### **Solution:** (a) Using binomial expansion $$(1+ax)^n = 1+n \left(ax\right) + \frac{n(n-1)(ax)^2}{2!} +$$ $$\frac{n(n-1)(n-2)(ax)^3}{3!} + \dots$$ If coefficient of x is -6 then na = -6 ① If coefficient of x^2 is 27 then $\frac{n(n-1)a^2}{2} = 27$ ② From ① $a = \frac{-6}{n}$. Substitute in ②: $$\frac{n(n-1)}{2} \left(\begin{array}{c} -6 \\ n \end{array} \right)^2 = 27$$ $$\frac{n(n-1)}{2} \times \frac{36}{n^2} = 27$$ $$\frac{(n-1)18}{n} = 27$$ $$(n-1)18 = 27n$$ $$18n - 18 = 27n$$ $$-18 = 9n$$ $$n = -2$$ Substitute n = -2 back in ①: $-2a = -6 \implies a = 3$ (b) Coefficient of x^3 is $$\frac{n(n-1)(n-2)a^3}{3!} = \frac{(-2)\times(-3)\times(-4)\times3^3}{3\times2\times1} = -108$$ (c) $$(1 + 3x)^{-2}$$ is valid if $|3x| < 1 \implies |x| < \frac{1}{3}$ #### **Edexcel AS and A Level Modular Mathematics** The binomial expansion Exercise D, Question 11 #### **Question:** - (a) Express $\frac{9x^2 + 26x + 20}{(1+x)(2+x)^2}$ as a partial fraction. - (b) Hence or otherwise show that the expansion of $\frac{9x^2 + 26x + 20}{(1+x)(2+x)^2}$ in ascending powers of x can be approximated to $5 \frac{7x}{2} + Bx^2 + Cx^3$ where B and C are constants to be found. - (c) State the set of values of x for which this expansion is valid. #### **Solution:** (a) Let $$\frac{9x^2 + 26x + 20}{(1+x)(2+x)^2} \equiv \frac{A}{(1+x)} + \frac{B}{(2+x)} + \frac{C}{(2+x)^2}$$ $$\Rightarrow \frac{9x^2 + 26x + 20}{(1+x)(2+x)^2} \equiv \frac{A(2+x)^2 + B(1+x)(2+x) + C(1+x)}{(1+x)(2+x)^2}$$ Set the numerators equal: $$9x^{2} + 26x + 20 \equiv A(2+x)^{2} + B(1+x)(2+x) + C(1+x)$$ Substitute $x = -2$: $36 - 52 + 20 = A \times 0 + B \times 0 + C \times (-1)$ $\Rightarrow 4 = -1C$ $\Rightarrow C = -4$ Substitute $$x = -1$$: $9 - 26 + 20 = A \times 1 + B \times 0 + C \times 0$ $\Rightarrow 3 = 1A$ $$\Rightarrow A = 3$$ Equate terms in x^2 : 9 = A + B $$\Rightarrow$$ 9 = 3 + B $$\Rightarrow B = 6$$ Hence $$\frac{9x^2 + 26x + 20}{(1+x)(2+x)^2} \equiv \frac{3}{(1+x)} + \frac{6}{(2+x)} - \frac{4}{(2+x)^2}$$ (b) Using binomial expansion Hence $$\frac{9x^{2} + 26x + 20}{(1+x)(2+x)^{2}} \equiv \frac{3}{(1+x)} + \frac{6}{(2+x)} - \frac{4}{(2+x)^{2}}$$ $$\approx \left(3 - 3x + 3x^{2} - 3x^{3}\right) + \left(3 - \frac{3x}{2} + \frac{3}{4}x^{2} - \frac{3}{8}x^{3}\right) - \left(1 - x + \frac{3}{4}x^{2} - \frac{1}{2}x^{3}\right)$$ $$\approx 3 - 3x + 3x^{2} - 3x^{3} + 3 - \frac{3x}{2} + \frac{3}{4}x^{2} - \frac{3}{8}x^{3} - 1 + x - \frac{3}{4}x^{2} + \frac{1}{2}x^{3}$$ $$- 5 - \frac{7x}{2} + 3x^2 - \frac{23}{8}x^3$$ Hence $$B = 3$$ and $C = \frac{-23}{8}$ (c) $$\frac{3}{(1+x)}$$ is valid if $|x| < 1$ $\frac{6}{(2+x)}$ is valid if $|x| < 2$ $\frac{4}{(2+x)^2}$ is valid if $|x| < 2$ Therefore, they *all* become valid if |x| < 1. [©] Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular Mathematics**
Differentiation Exercise A, Question 1 ### **Question:** Find $\frac{dy}{dx}$ for each of the following, leaving your answer in terms of the parameter t: (a) $$x = 2t$$, $y = t^2 - 3t + 2$ (b) $$x = 3t^2$$, $y = 2t^3$ (c) $$x = t + 3t^2$$, $y = 4t$ (d) $$x = t^2 - 2$$, $y = 3t^5$ (e) $$x = \frac{2}{t}$$, $y = 3t^2 - 2$ (f) $$x = \frac{1}{2t-1}$$, $y = \frac{t^2}{2t-1}$ (g) $$x = \frac{2t}{1+t^2}$$, $y = \frac{1-t^2}{1+t^2}$ (h) $$x = t^2 e^t$$, $y = 2t$ (i) $$x = 4 \sin 3t$$, $y = 3 \cos 3t$ (j) $$x = 2 + \sin t$$, $y = 3 - 4 \cos t$ (k) $$x = \sec t$$, $y = \tan t$ (1) $$x = 2t - \sin 2t$$, $y = 1 - \cos 2t$ #### **Solution:** (a) $$x = 2t$$, $y = t^2 - 3t + 2$ $\frac{dx}{dt} = 2$, $\frac{dy}{dt} = 2t - 3$ Using the chain rule $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)}{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)} = \frac{2t-3}{2}$$ (b) $$x = 3t^2$$, $y = 2t^3$ $\frac{dx}{dt} = 6t$, $\frac{dy}{dt} = 6t^2$ Using the chain rule $$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{6t^2}{6t} = t$$ (c) $$x = t + 3t^2$$, $y = 4t$ $$\frac{dx}{dt} = 1 + 6t$$, $$\frac{dy}{dt} = 4$$ $$\therefore \frac{dy}{dx} = \frac{4}{1 + 6t}$$ (from the chain rule) (d) $$x = t^2 - 2$$, $y = 3t^5$ $$\frac{dx}{dt} = 2t$$, $$\frac{dy}{dt} = 15t^4$$ $$\therefore \frac{dy}{dx} = \frac{15t^4}{2t} = \frac{15t^3}{2}$$ (from the chain rule) (e) $$x = \frac{2}{t}$$, $y = 3t^2 - 2$ $$\frac{dx}{dt} = -2t^{-2}$$, $\frac{dy}{dt} = 6t$ $$\therefore \frac{dy}{dx} = \frac{6t}{-2t^{-2}} = -3t^3$$ (from the chain rule) (f) $$x = \frac{1}{2t-1}$$, $y = \frac{t^2}{2t-1}$ As $x = (2t-1)^{-1}$, $\frac{dx}{dt} = -2(2t-1)^{-2}$ (from the chain rule) Use the quotient rule to give $$\frac{dy}{dt} = \frac{(2t-1)(2t) - t^2(2)}{(2t-1)^2} = \frac{2t^2 - 2t}{(2t-1)^2} = \frac{2t(t-1)}{(2t-1)^2}$$ Hence $\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$ $$= \frac{2t(t-1)}{(2t-1)^2} \div -2(2t-1)^{-2}$$ $$= \frac{2t(t-1)}{(2t-1)^2} \div \frac{-2}{(2t-1)^2}$$ $$= \frac{2t(t-1)}{(2t-1)^2} \times \frac{(2t-1)^2}{-2}$$ $$= -t(t-1) \text{ or } t(1-t)$$ $$(g) x = \frac{2t}{1+t^2}, y = \frac{1-t^2}{1+t^2}$$ $$\frac{dx}{dt} = \frac{(1+t^2) 2 - 2t (2t)}{(1+t^2)^2} = \frac{2-2t^2}{(1+t^2)^2}$$ and $$\frac{dy}{dt} = \frac{(1+t^2) (-2t) - (1-t^2) (2t)}{(1+t^2)^2} = \frac{-4t}{(1+t^2)^2}$$ Hence $$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$$ $$= \frac{-4t}{(1+t^2)^2} \div \frac{2-2t^2}{(1+t^2)^2}$$ $$= \frac{-4t}{2(1-t^2)}$$ $$= -\frac{2t}{(1-t^2)} \text{ or } \frac{2t}{t^2-1}$$ (h) $$x = t^2 e^t$$, $y = 2t$ $$\frac{dx}{dt} = t^2 e^t + e^t 2t$$ (from the product rule) and $\frac{dy}{dt} = 2$ $$\therefore \frac{dy}{dx} = \frac{2}{t^2e^t + 2te^t} = \frac{2}{te^t(t+2)}$$ (from the chain rule) (i) $$x = 4 \sin 3t$$, $y = 3 \cos 3t$ $$\frac{dx}{dt} = 12 \cos 3t$$, $$\frac{dy}{dt} = -9 \sin 3t$$ $$\therefore \frac{dy}{dx} = \frac{-9 \sin 3t}{12 \cos 3t} = -\frac{3}{4} \tan 3t$$ (from the chain rule) (j) $$x = 2 + \sin t$$, $y = 3 - 4\cos t$ $$\frac{dx}{dt} = \cos t$$, $$\frac{dy}{dt} = 4\sin t$$ $$\therefore \frac{dy}{dx} = \frac{4\sin t}{\cos t} = 4\tan t$$ (from the chain rule) (k) $$x = \sec t$$, $y = \tan t$ $$\frac{dx}{dt} = \sec t \tan t$$, $$\frac{dy}{dt} = \sec^2 t$$ Hence $$\frac{dy}{dx} = \frac{\sec^2 t}{\sec t \tan t}$$ $$= \frac{\sec t}{\tan t}$$ $$= \frac{1}{\cos t} \times \frac{\cos t}{\sin t}$$ $$= \frac{1}{\sin t}$$ = cosec t (1) $$x = 2t - \sin 2t$$, $y = 1 - \cos 2t$ $$\frac{dx}{dt} = 2 - 2\cos 2t$$, $$\frac{dy}{dt} = 2\sin 2t$$ Hence $$\frac{dy}{dx} = \frac{2\sin 2t}{2 - 2\cos 2t}$$ $$= \frac{2 \times 2\sin t \cos t}{2 - 2(1 - 2\sin^2 t)}$$ (using double angle formulae) $$= \frac{\sin t \cos t}{\sin^2 t}$$ $$= \frac{\cos t}{\sin t}$$ $$= \cot t$$ ### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise A, Question 2 ### **Question:** - (a) Find the equation of the tangent to the curve with parametric equations $x = 3t 2\sin t$, $y = t^2 + t\cos t$, at the point *P*, where $t = \frac{\pi}{2}$. - (b) Find the equation of the tangent to the curve with parametric equations $x = 9 t^2$, $y = t^2 + 6t$, at the point P, where t = 2. #### **Solution:** (a) $$x = 3t - 2\sin t$$, $y = t^2 + t\cos t$ $$\frac{dx}{dt} = 3 - 2\cos t$$, $$\frac{dy}{dt} = 2t + \left(-t\sin t + \cos t\right)$$ $$\therefore \frac{dy}{dx} = \frac{2t - t\sin t + \cos t}{3 - 2\cos t}$$ When $$t = \frac{\pi}{2}$$, $\frac{dy}{dx} = \frac{(\pi - \frac{\pi}{2})}{3} = \frac{\pi}{6}$ \therefore the tangent has gradient $\frac{\pi}{6}$. When $$t = \frac{\pi}{2}$$, $x = \frac{3\pi}{2} - 2$ and $y = \frac{\pi^2}{4}$ \therefore the tangent passes through the point $\left(\frac{3\pi}{2} - 2, \frac{\pi^2}{4}\right)$ The equation of the tangent is $$y - \frac{\pi^2}{4} = \frac{\pi}{6} \left[x - \left(\frac{3\pi}{2} - 2 \right) \right]$$ $$\therefore y - \frac{\pi^2}{4} = \frac{\pi}{6}x - \frac{\pi^2}{4} + \frac{\pi}{3}$$ i.e. $$y = \frac{\pi}{6}x + \frac{\pi}{3}$$ (b) $$x = 9 - t^2$$, $y = t^2 + 6t$ $$\frac{\mathrm{d}x}{\mathrm{d}t} = -2t, \frac{\mathrm{d}y}{\mathrm{d}t} = 2t + 6$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2t+6}{-2t}$$ At the point where t = 2, $\frac{dy}{dx} = \frac{10}{-4} = \frac{-5}{2}$ Also at t = 2, x = 5 and y = 16. : the tangent has equation $$y - 16 = \frac{-5}{2} \left(x - 5 \right)$$ $$\therefore 2y - 32 = -5x + 25$$ i.e. $$2y + 5x = 57$$ ### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise A, Question 3 ### **Question:** - (a) Find the equation of the normal to the curve with parametric equations $x = e^t$, $y = e^t + e^{-t}$, at the point P, where t = 0. - (b) Find the equation of the normal to the curve with parametric equations $x = 1 \cos 2t$, $y = \sin 2t$, at the point *P*, where $t = \frac{\pi}{6}$. #### **Solution:** (a) $$x = e^t$$, $y = e^t + e^{-t}$ $$\frac{dx}{dt} = e^t \text{ and } \frac{dy}{dt} = e^t - e^{-t}$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^t - \mathrm{e}^{-t}}{\mathrm{e}^t}$$ When $$t = 0$$, $\frac{dy}{dx} = 0$:. gradient of curve is 0 \therefore normal is parallel to the *y*-axis. When $$t = 0$$, $x = 1$ and $y = 2$ \therefore equation of the normal is x = 1 (b) $$x = 1 - \cos 2t$$, $y = \sin 2t$ $$\frac{dx}{dt} = 2 \sin 2t$$ and $\frac{dy}{dt} = 2 \cos 2t$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2t}{2\sin 2t} = \cot 2t$$ When $$t = \frac{\pi}{6}$$, $\frac{dy}{dx} = \frac{1}{\tan \frac{\pi}{3}} = \frac{1}{\sqrt{3}}$ \therefore gradient of the normal is $-\sqrt{3}$ When $$t = \frac{\pi}{6}$$, $x = 1 - \cos \frac{\pi}{3} = \frac{1}{2}$ and $y = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$: equation of the normal is $$y - \frac{\sqrt{3}}{2} = -\sqrt{3} \left(x - \frac{1}{2} \right)$$ i.e. $$y - \frac{\sqrt{3}}{2} = -\sqrt{3}x + \frac{\sqrt{3}}{2}$$ $$\therefore y + \sqrt{3}x = \sqrt{3}$$ ### **Edexcel AS and A Level Modular Mathematics** Differentiation Exercise A, Question 4 #### **Question:** Find the points of zero gradient on the curve with parametric equations x = $$\frac{t}{1-t}$$, $y = \frac{t^2}{1-t}$, $t \neq 1$. You do not need to establish whether they are maximum or minimum points. #### **Solution:** $$x = \frac{t}{1-t}, y = \frac{t^2}{1-t}$$ Use the quotient rule to give $$\frac{dx}{dt} = \frac{(1-t) \times 1 - t(-1)}{(1-t)^2} = \frac{1}{(1-t)^2}$$ and $$\frac{dy}{dt} = \frac{(1-t)2t - t^2(-1)}{(1-t)^2} = \frac{2t - t^2}{(1-t)^2}$$ $$\therefore \frac{dy}{dx} = \frac{2t - t^2}{(1 - t)^2} \div \frac{1}{(1 - t)^2} = t \left(2 - t\right)$$ When $$\frac{dy}{dx} = 0$$, $t = 0$ or 2 When t = 0 then x = 0, y = 0 When $$t = 2$$ then $x = -2$, $y = -4$ \therefore (0, 0) and (-2, -4) are the points of zero gradient. ### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise B, Question 1 ### **Question:** Find an expression in terms of x and y for $\frac{dy}{dx}$, given that: (a) $$x^2 + y^3 = 2$$ (b) $$x^2 + 5y^2 = 14$$ (c) $$x^2 + 6x - 8y + 5y^2 = 13$$ (d) $$y^3 + 3x^2y - 4x = 0$$ (e) $$3y^2 - 2y + 2xy = x^3$$ (f) $$x = \frac{2y}{x^2 - y}$$ (g) $$(x-y)^4 = x + y + 5$$ (h) $$e^x y = x e^y$$ (i) $$\sqrt{(xy)} + x + y^2 = 0$$ ### **Solution:** (a) $$x^2 + y^3 = 2$$ Differentiate with respect to *x*: $$2x + 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x}{3y^2}$$ (b) $$x^2 + 5y^2 = 14$$ $2x + 10y \frac{dy}{dx} = 0$ $$\therefore \frac{dy}{dx} = \frac{-2x}{10y} = -\frac{x}{5y}$$ (c) $$x^2 + 6x - 8y + 5y^2 = 13$$ $2x + 6 - 8\frac{dy}{dx} + 10y\frac{dy}{dx} = 0$ $2x + 6 = \left(8 - 10y\right)\frac{dy}{dx}$ $$\therefore \frac{dy}{dx} = \frac{2x + 6}{8 - 10y} = \frac{x + 3}{4 - 5y}$$ (d) $$y^3 + 3x^2y - 4x = 0$$ Differentiate with respec Differentiate with respect to *x*: $$3y^{2} \frac{dy}{dx} + \left(3x^{2} \frac{dy}{dx} + y \times 6x\right) - 4 = 0$$ $$\frac{dy}{dx} \left(3y^{2} + 3x^{2}\right) = 4 - 6xy$$ $$\therefore \frac{dy}{dx} = \frac{4 - 6xy}{3(x^{2} + y^{2})}$$ (e) $$3y^2 - 2y + 2xy - x^3 = 0$$ $6y \frac{dy}{dx} - 2 \frac{dy}{dx} + \left(2x \frac{dy}{dx} + y \times 2\right) - 3x^2 = 0$ $\frac{dy}{dx} \left(6y - 2 + 2x\right) = 3x^2 - 2y$ $\therefore \frac{dy}{dx} = \frac{3x^2 - 2y}{2x + 6y - 2}$ (f) $$x = \frac{2y}{x^2 - y}$$ $$\therefore x^3 - xy = 2y$$ i.e. $x^3 - xy - 2y = 0$ Differentiate with respect to x: $$3x^{2} - \left(x\frac{dy}{dx} + y \times 1\right) - 2\frac{dy}{dx} = 0$$ $$3x^{2} - y = \frac{dy}{dx}\left(x + 2\right)$$ $$\therefore \frac{dy}{dx} = \frac{3x^{2} - y}{x + 2}$$ (g) $(x-y)^4 = x + y + 5$ Differentiate with respect to *x*: 4 ($$x - y$$) $\frac{3}{4} \left(1 - \frac{dy}{dx} \right) = 1 + \frac{dy}{dx}$ (The chain rule was used to differentiate the first term.) $$\therefore 4 (x-y)^{3} - 1 = \frac{dy}{dx} \left[1 + 4 (x-y)^{3} \right]$$ $$\therefore \frac{dy}{dx} = \frac{4(x-y)^3 - 1}{1 + 4(x-y)^3}$$ (h) $$e^x y = x e^y$$ Differentiate
with respect to *x*: $$e^x \frac{dy}{dx} + ye^x = xe^y \frac{dy}{dx} + e^y \times 1$$ $$e^x \frac{dy}{dx} - xe^y \frac{dy}{dx} = e^y - ye^x$$ $$\frac{dy}{dx} \left(e^x - xe^y \right) = e^y - ye^x$$ $$\therefore \frac{dy}{dx} = \frac{e^y - ye^x}{e^x - xe^y}$$ $$(i)\sqrt{xy} + x + y^2 = 0$$ Differentiate with respect to *x*: $$\frac{1}{2}(xy) - \frac{1}{2}(x\frac{dy}{dx} + y \times 1) + 1 + 2y\frac{dy}{dx} = 0$$ Multiply both sides by $2\sqrt{xy}$: $$\left(x\frac{dy}{dx} + y\right) + 2\sqrt{xy} + 4y\sqrt{xy}\frac{dy}{dx} = 0$$ $$\frac{dy}{dx}\left(x+4y\sqrt{xy}\right) = -\left(2\sqrt{xy}+y\right)$$ $$\therefore \frac{dy}{dx} = \frac{-(2\sqrt{xy} + y)}{x + 4y\sqrt{xy}}.$$ ### **Edexcel AS and A Level Modular Mathematics** Differentiation Exercise B, Question 2 ### **Question:** Find the equation of the tangent to the curve with implicit equation $x^2 + 3xy^2 - y^3 = 9$ at the point (2, 1). #### **Solution:** $$x^2 + 3xy^2 - y^3 = 9$$ Differentiate with respect to x: $$2x + \left[3x \left(2y \frac{dy}{dx} \right) + y^2 \times 3 \right] - 3y^2 \frac{dy}{dx} = 0$$ When x = 2 and y = 1 $$4 + \left(12 \frac{dy}{dx} + 3\right) - 3 \frac{dy}{dx} = 0$$ $$\therefore 9 \frac{dy}{dx} = -7$$ i.e. $$\frac{dy}{dx} = \frac{-7}{9}$$ \therefore the gradient of the tangent at (2, 1) is $\frac{-7}{9}$. The equation of the tangent is $$\left(\begin{array}{c}y-1\end{array}\right) = \frac{-7}{9}\left(\begin{array}{c}x-2\end{array}\right)$$ $$\therefore 9y - 9 = -7x + 14$$ $$\therefore 9y + 7x = 23$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise B, Question 3 ### **Question:** Find the equation of the normal to the curve with implicit equation $(x + y)^3 = x^2 + y$ at the point (1, 0). ## **Solution:** $$(x + y)^3 = x^2 + y$$ Differentiate with respect to x: $$3(x+y)^{2}\left(1+\frac{dy}{dx}\right)=2x+\frac{dy}{dx}$$ At the point (1, 0), x = 1 and y = 0 $$\therefore 3 \left(1 + \frac{dy}{dx}\right) = 2 + \frac{dy}{dx}$$ $$\therefore 2 \frac{dy}{dx} = -1 \implies \frac{dy}{dx} = \frac{-1}{2}$$ - \therefore The gradient of the normal at (1, 0) is 2. - : the equation of the normal is $$y - 0 = 2 (x - 1)$$ i.e. $y = 2x - 2$ ### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise B, Question 4 ## **Question:** Find the coordinates of the points of zero gradient on the curve with implicit equation $x^2 + 4y^2 - 6x - 16y + 21 = 0$. ### **Solution:** $$x^2 + 4y^2 - 6x - 16y + 21 = 0 \qquad \boxed{1}$$ Differentiate with respect to *x*: $$2x + 8y \frac{dy}{dx} - 6 - 16 \frac{dy}{dx} = 0$$ $$8y \frac{\mathrm{d}y}{\mathrm{d}x} - 16 \frac{\mathrm{d}y}{\mathrm{d}x} = 6 - 2x$$ $$\left(8y - 16\right) \frac{\mathrm{d}y}{\mathrm{d}x} = 6 - 2x$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6 - 2x}{8y - 16}$$ For zero gradient $$\frac{dy}{dx} = 0 \implies 6 - 2x = 0 \implies x = 3$$ Substitute x = 3 into ① to give $$9 + 4y^2 - 18 - 16y + 21 = 0$$ $$\Rightarrow$$ 4y² - 16y + 12 = 0 [\div 4] $$\Rightarrow \quad y^2 - 4y + 3 = 0$$ $$\Rightarrow$$ $(y-1)(y-3)=0$ $$\Rightarrow$$ $y = 1 \text{ or } 3$ \therefore the coordinates of the points of zero gradient are (3, 1) and (3, 3). ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise C, Question 1 ### **Question:** Find $\frac{dy}{dx}$ for each of the following: (a) $$y = 3^x$$ (b) $$y = \left(\frac{1}{2}\right)^x$$ (c) $$y = xa^x$$ (d) $$y = \frac{2^x}{x}$$ #### **Solution:** (a) $$y = 3^x$$ $$\frac{dy}{dx} = 3^x \ln 3$$ (b) $$y = \left(\frac{1}{2}\right)^x$$ $$\frac{dy}{dx} = \left(\frac{1}{2}\right)^x \ln \frac{1}{2}$$ (c) $$y = xa^x$$ Use the product rule to give $$\frac{\mathrm{d}y}{\mathrm{d}x} = xa^x \ln a + a^x \times 1 = a^x \left(x \ln a + 1 \right)$$ (d) $$y = \frac{2^x}{x}$$ Use the quotient rule to give $$\frac{dy}{dx} = \frac{x \times 2^{x} \ln 2 - 2^{x} \times 1}{x^{2}} = \frac{2^{x} (x \ln 2 - 1)}{x^{2}}$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise C, Question 2 ### **Question:** Find the equation of the tangent to the curve $y = 2^x + 2^{-x}$ at the point $\left(2, 4, \frac{1}{4}\right)$. ### **Solution:** $$y = 2^{x} + 2^{-x}$$ $\frac{dy}{dx} = 2^{x} \ln 2 - 2^{-x} \ln 2$ When $$x = 2$$, $\frac{dy}{dx} = 4 \ln 2 - \frac{1}{4} \ln 2 = \frac{15}{4} \ln 2$ \therefore the equation of the tangent at $\left(2, 4\frac{1}{4}\right)$ is $$y - 4\frac{1}{4} = \frac{15}{4} \ln 2 \left(x - 2 \right)$$ $$\therefore 4y = (15 \ln 2) x + (17 - 30 \ln 2)$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise C, Question 3 ### **Question:** A particular radioactive isotope has an activity R millicuries at time t days given by the equation $R = 200 (0.9)^{t}$. Find the value of $\frac{dR}{dt}$, when t = 8. ### **Solution:** $$R = 200 (0.9)^{t}$$ $$\frac{dR}{dt} = 200 \times \ln 0.9 \times (0.9)^{t}$$ Substitute $t = 8$ to give $$\frac{dR}{dt} = -9.07 (3 \text{ s.f.})$$ ### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise C, Question 4 ### **Question:** The population of Cambridge was 37 000 in 1900 and was about 109 000 in 2000. Find an equation of the form $P = P_0 k^t$ to model this data, where t is measured as years since 1900. Evaluate $\frac{dP}{dt}$ in the year 2000. What does this value represent? #### **Solution:** $$P = P_0 k^t$$ When $t = 0$, $P = 37\,000$ ∴ $37\,000 = P_0 \times k^0 = P_0 \times 1$ ∴ $P_0 = 37\,000$ ∴ $P = 37\,000\,(k)^t$ When $t = 100$, $P = 109\,000$ ∴ $109\,000 = 37\,000\,(k)^{-100}$ ∴ $k^{100} = \frac{109\,000}{37\,000}$ ∴ $k = 100\sqrt{\frac{109}{37}} \approx 1.01$ $$\frac{dP}{dt} = 37\,000 k^t \ln k$$ When $$t = 100$$ $$\frac{dP}{dt} = 37\ 000 \times \left(\frac{109}{37}\right) \times \ln k = 1000 \times 109 \times \frac{1}{100} \ln \frac{109}{37}$$ = 1178 people per year Rate of increase of the population during the year 2000. **Differentiation** Exercise D, Question 1 ## **Question:** Given that $V = \frac{1}{3}\pi r^3$ and that $\frac{dV}{dt} = 8$, find $\frac{dr}{dt}$ when r = 3. ### **Solution:** $$V = \frac{1}{3}\pi r^3$$ $$\therefore \frac{dV}{dr} = \pi r^2$$ Using the chain rule $$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$$ $$\therefore 8 = \pi r^2 \times \frac{dr}{dt}$$ $$\therefore \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{8}{\pi r^2}$$ When $$r = 3$$, $\frac{dr}{dt} = \frac{8}{9\pi}$ **Differentiation** Exercise D, Question 2 ## **Question:** Given that $A = \frac{1}{4}\pi r^2$ and that $\frac{dr}{dt} = 6$, find $\frac{dA}{dt}$ when r = 2. ### **Solution:** $$A = \frac{1}{4}\pi r^2$$ $$\frac{\mathrm{d}A}{\mathrm{d}r} = \frac{1}{2}\pi r$$ Using the chain rule $$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{1}{2}\pi r \times 6 = 3\pi r$$ When $$r = 2$$, $\frac{dA}{dt} = 6\pi$ **Differentiation** Exercise D, Question 3 ### **Question:** Given that $y = xe^x$ and that $\frac{dx}{dt} = 5$, find $\frac{dy}{dt}$ when x = 2. ### **Solution:** $$y = xe^{x}$$ $$\frac{dy}{dx} = xe^{x} + e^{x} \times 1$$ Using the chain rule $$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = e^x \left(x + 1 \right) \times 5$$ When $$x = 2$$, $\frac{dy}{dt} = 15e^2$ **Differentiation** Exercise D, Question 4 ## **Question:** Given that $r = 1 + 3 \cos \theta$ and that $\frac{d\theta}{dt} = 3$, find $\frac{dr}{dt}$ when $\theta = \frac{\pi}{6}$. #### **Solution:** $$r = 1 + 3\cos\theta$$ $$\frac{\mathrm{d}r}{\mathrm{d}\theta} = -3\sin\theta$$ Using the chain rule $$\frac{dr}{dt} = \frac{dr}{d\theta} \times \frac{d\theta}{dt} = -3 \sin \theta \times 3 = -9 \sin \theta$$ When $$\theta = \frac{\pi}{6}, \frac{dr}{dt} = \frac{-9}{2}$$ **Differentiation** Exercise E, Question 1 ### **Question:** In a study of the water loss of picked leaves the mass M grams of a single leaf was measured at times t days after the leaf was picked. It was found that the rate of loss of mass was proportional to the mass M of the leaf. Write down a differential equation for the rate of change of mass of the leaf. ### **Solution:** $\frac{dM}{dt}$ represents rate of change of mass. $$\therefore \frac{dM}{dt} \propto -M$$, as rate of *loss* indicates a negative quantity. $$\therefore \frac{dM}{dt} = -kM$$, where k is the positive constant of proportionality. ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise E, Question 2 ## **Question:** A curve C has equation y = f(x), y > 0. At any point P on the curve, the gradient of C is proportional to the product of the x and the y coordinates of P. The point A with coordinates (4, 2) is on C and the gradient of C at A is $\frac{1}{2}$. Show that $$\frac{dy}{dx} = \frac{xy}{16}$$. #### **Solution:** The gradient of the curve is given by $\frac{dy}{dx}$. $$\therefore \frac{dy}{dx} \propto xy \qquad \text{(which is the product of } x \text{ and } y\text{)}$$ $$\therefore \frac{dy}{dx} = kxy, \text{ where } k \text{ is a constant of proportion.}$$ When $$x = 4$$, $y = 2$ and $\frac{dy}{dx} = \frac{1}{2}$ $$\therefore \ \frac{1}{2} = k \times 4 \times 2$$ $$\therefore k = \frac{1}{16}$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy}{16}$$ **Differentiation** Exercise E, Question 3 ### **Question:** Liquid is pouring into a container at a constant rate of 30 cm³ s⁻¹. At time t seconds liquid is leaking from the container at a rate of $\frac{2}{15}V$ cm³ s⁻¹, where V cm³ is the volume of liquid in the container at that time. Show that $$-15 \frac{dV}{dt} = 2V - 450$$ #### **Solution:** Let the rate of increase of the volume of liquid be $\frac{dV}{dt}$. Then $$\frac{\mathrm{d}V}{\mathrm{d}t} = 30 - \frac{2}{15}V$$ Multiply both sides by -15: $$-15 \frac{dV}{dt} = 2V - 450$$ **Differentiation** Exercise E, Question 4 ### **Question:** An electrically charged body loses its charge Q coulombs at a rate, measured in coulombs per second, proportional to the charge Q. Write down a differential equation in terms
of Q and t where t is the time in seconds since the body started to lose its charge. ### **Solution:** The rate of change of the charge is $\frac{dQ}{dt}$. - $\therefore \frac{dQ}{dt} \propto -Q$, as the body is *losing* charge the negative sign is required. - $\therefore \frac{dQ}{dt} = -kQ$, where k is the positive constant of proportion. **Differentiation** Exercise E, Question 5 ### **Question:** The ice on a pond has a thickness x mm at a time t hours after the start of freezing. The rate of increase of x is inversely proportional to the square of x. Write down a differential equation in terms of x and t. #### **Solution:** The rate of increase of x is $\frac{dx}{dt}$. $$\therefore \frac{dx}{dt} \propto \frac{1}{x^2}$$, as there is an *inverse* proportion. $$\therefore \frac{dx}{dt} = \frac{k}{x^2}$$, where k is the constant of proportion. Differentiation Exercise E, Question 6 ### **Question:** In another pond the amount of pondweed (P) grows at a rate proportional to the amount of pondweed already present in the pond. Pondweed is also removed by fish eating it at a constant rate of Q per unit of time. Write down a differential equation relating P and t, where t is the time which has elapsed since the start of the observation. ### **Solution:** The rate of increase of pondweed is $\frac{dP}{dt}$. This is proportional to P. $$\therefore \frac{\mathrm{d}P}{\mathrm{d}t} \propto P$$ $$\therefore \frac{dP}{dt} = kP, \text{ where } k \text{ is a constant.}$$ But also pondweed is removed at a rate Q $$\therefore \frac{\mathrm{d}P}{\mathrm{d}t} = kP - Q$$ **Differentiation** Exercise E, Question 7 ### **Question:** A circular patch of oil on the surface of some water has radius r and the radius increases over time at a rate inversely proportional to the radius. Write down a differential equation relating r and t, where t is the time which has elapsed since the start of the observation. #### **Solution:** The rate of increase of the radius is $\frac{dr}{dt}$. - $\therefore \frac{dr}{dt} \propto \frac{1}{r}$, as it is *inversely* proportional to the radius. - $\therefore \frac{dr}{dt} = \frac{k}{r}$, where k is the constant of proportion. Differentiation Exercise E, Question 8 ### **Question:** A metal bar is heated to a certain temperature, then allowed to cool down and it is noted that, at time t, the rate of loss of temperature is proportional to the difference in temperature between the metal bar, θ , and the temperature of its surroundings θ_0 . Write down a differential equation relating θ and t. #### **Solution:** The rate of change of temperature is $\frac{d\theta}{dt}$. $$\therefore \frac{d\theta}{dt} \propto - \left(\theta - \theta_0\right)$$ The rate of *loss* indicates the negative sign. $$\therefore \frac{d\theta}{dt} = -k \left(\theta - \theta_0 \right), \text{ where } k \text{ is the positive constant of proportion.}$$ ### **Edexcel AS and A Level Modular Mathematics** Differentiation Exercise E, Question 9 ### **Question:** Fluid flows out of a cylindrical tank with constant cross section. At time t minutes, t > 0, the volume of fluid remaining in the tank is $V \, \text{m}^3$. The rate at which the fluid flows in $\text{m}^3 \, \text{min}^{-1}$ is proportional to the square root of V. Show that the depth h metres of fluid in the tank satisfies the differential equation $\frac{dh}{dt} = -k \, \sqrt{h}$, where k is a positive constant. #### **Solution:** Let the rate of flow of fluid be $\frac{-dV}{dt}$, as fluid is flowing *out* of the tank, and the volume left in the tank is decreasing. $$\therefore \frac{-\,\mathrm{d}V}{\,\mathrm{d}t} \, \propto \, \sqrt{V}$$ $$\therefore \frac{dV}{dt} = -k' \sqrt{V}, \text{ where } k' \text{ is a positive constant.}$$ But V = Ah, where A is the constant cross section. $$\therefore \frac{\mathrm{d}V}{\mathrm{d}h} = A$$ Use the chain rule to find $\frac{dh}{dt}$: $$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$$ $$\therefore \frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} = \frac{-k'\sqrt{V}}{A}$$ But $$V = Ah$$, $$\therefore \frac{dh}{dt} = \frac{-k\sqrt{Ah}}{A} = \left(\frac{-k'}{\sqrt{A}}\right) \quad \sqrt{h} = -k\sqrt{h}, \text{ where } \frac{k'}{\sqrt{A}} \text{ is a positive}$$ constant. ### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise E, Question 10 ### **Question:** At time t seconds the surface area of a cube is $A ext{ cm}^2$ and the volume is $V ext{cm}^3$. The surface area of the cube is expanding at a constant rate $2 ext{ cm}^2 ext{s}^{-1}$. Show that $$\frac{dV}{dt} = \frac{1}{2}V^{\frac{1}{3}}$$. #### **Solution:** Rate of expansion of surface area is $\frac{dA}{dt}$. Need $\frac{dV}{dt}$ so use the chain rule. $$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}A} \times \frac{\mathrm{d}A}{\mathrm{d}t}$$ As $$\frac{dA}{dt} = 2$$, $\frac{dV}{dt} = 2 \frac{dV}{dA}$ or $2 \div \left(\frac{dA}{dV}\right)$ Let the cube have edge of length x cm. Then $$V = x^3$$ and $A = 6x^2$. Eliminate *x* to give $A = 6V^{\frac{2}{3}}$ $$\therefore \frac{dA}{dV} = 4V^{\frac{-1}{3}}$$ From ① $$\frac{dV}{dt} = \frac{2}{4V^{-\frac{1}{3}}} = \frac{2V^{\frac{1}{3}}}{4} = \frac{1}{2}V^{\frac{1}{3}}$$ ### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise E, Question 11 ### **Question:** An inverted conical funnel is full of salt. The salt is allowed to leave by a small hole in the vertex. It leaves at a constant rate of 6 cm 3 s $^{-1}$. Given that the angle of the cone between the slanting edge and the vertical is 30 degrees, show that the volume of the salt is $\frac{1}{9}\pi h^3$, where h is the height of salt at time t seconds. Show that the rate of change of the height of the salt in the funnel is inversely proportional to h^2 . Write down the differential equation relating h and t. ### **Solution:** Use $$V = \frac{1}{3}\pi r^2 h$$ As $$\tan 30^{\circ} = \frac{r}{h}$$ $$\therefore r = h \tan 30^{\circ} = \frac{h}{\sqrt{3}}$$ $$\therefore V = \frac{1}{3}\pi \left(\frac{h^2}{3}\right) \times h = \frac{1}{9}\pi h^3 \qquad \boxed{1}$$ It is given that $\frac{dV}{dt} = -6$. To find $\frac{dh}{dt}$ use the chain rule: $$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}h}{\mathrm{d}V} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h}$$ From ① $$\frac{dV}{dh} = \frac{1}{3}\pi h^2$$ $$\therefore \frac{\mathrm{d}h}{\mathrm{d}t} = -6 \div \frac{1}{3}\pi h^2$$ $$\therefore \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-18}{\pi h^2}$$ **Differentiation** Exercise F, Question 1 ## **Question:** The curve C is given by the equations $$x = 4t - 3, y = \frac{8}{t^2}, t > 0$$ where t is a parameter. At A, t = 2. The line l is the normal to C at A. - (a) Find $\frac{dy}{dx}$ in terms of t. - (b) Hence find an equation of l. ### **Solution:** (a) $$x = 4t - 3$$, $y = \frac{8}{t^2} = 8t^{-2}$ $$\therefore \frac{dx}{dt} = 4 \text{ and } \frac{dy}{dt} = -16t^{-3}$$ $$\therefore \frac{dy}{dx} = \frac{-16t^{-3}}{4} = \frac{-4}{t^3}$$ - (b) When t = 2 the curve has gradient $\frac{-4}{8} = -\frac{1}{2}$. - :. the normal has gradient 2. Also the point A has coordinates (5, 2) : the equation of the normal is $$y-2=2 (x-5)$$ i.e. $y=2x-8$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 2 ## **Question:** The curve C is given by the equations x = 2t, $y = t^2$, where t is a parameter. Find an equation of the normal to C at the point P on C where t = 3. ### **Solution:** $$x = 2t, y = t^{2}$$ $$\frac{dx}{dt} = 2, \frac{dy}{dt} = 2t$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2t}{2} = t$$ When t = 3 the gradient of the curve is 3. \therefore the gradient of the normal is $-\frac{1}{3}$. Also at the point P where t = 3, the coordinates are (6, 9). : the equation of the normal is $$y - 9 = -\frac{1}{3} \left(x - 6 \right)$$ i.e. $$3y - 27 = -x + 6$$ $$\therefore 3y + x = 33$$ ### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 3 ## **Question:** The curve C has parametric equations $$x = t^3$$, $y = t^2$, $t > 0$ Find an equation of the tangent to C at A(1, 1). ### **Solution:** $$x = t^3$$, $y = t^2$ $\frac{dx}{dt} = 3t^2$ and $\frac{dy}{dt} = 2t$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2t}{3t^2} = \frac{2}{3t}$$ At the point (1, 1) the value of t is 1. - \therefore the gradient of the curve is $\frac{2}{3}$, which is also the gradient of the tangent. - : the equation of the tangent is $$y-1=\frac{2}{3}\left(x-1\right)$$ i.e. $$y = \frac{2}{3}x + \frac{1}{3}$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 4 ### **Question:** A curve *C* is given by the equations $x = 2 \cos t + \sin 2t$, $y = \cos t - 2 \sin 2t$, $0 < t < \pi$ where *t* is a parameter. - (a) Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ in terms of t. - (b) Find the value of $\frac{dy}{dx}$ at the point P on C where $t = \frac{\pi}{4}$. - (c) Find an equation of the normal to the curve at P. #### **Solution:** (a) $$x = 2\cos t + \sin 2t$$, $y = \cos t - 2\sin 2t$ $\frac{dx}{dt} = -2\sin t + 2\cos 2t$, $\frac{dy}{dt} = -\sin t - 4\cos 2t$ (b) $$\therefore \frac{dy}{dx} = \frac{-\sin t - 4\cos 2t}{-2\sin t + 2\cos 2t}$$ When $$t = \frac{\pi}{4}$$, $\frac{dy}{dx} = \frac{\frac{-1}{\sqrt{2}} - 0}{\frac{-2}{\sqrt{2}} + 0} = \frac{1}{2}$ (c) \therefore the gradient of the normal at the point P, where $t = \frac{\pi}{4}$, is -2. The coordinates of P are found by substituting $t = \frac{\pi}{4}$ into the parametric equations, to give $$x = \frac{2}{\sqrt{2}} + 1, y = \frac{1}{\sqrt{2}} - 2$$: the equation of the normal is $$y - \left(\frac{1}{\sqrt{2}} - 2\right) = -2\left[x - \left(\frac{2}{\sqrt{2}} + 1\right)\right]$$ i.e. $$y - \frac{1}{\sqrt{2}} + 2 = -2x + \frac{4}{\sqrt{2}} + 2$$ $\therefore y + 2x = \frac{5\sqrt{2}}{2}$ ## **Edexcel
AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 5 ## **Question:** A curve is given by x = 2t + 3, $y = t^3 - 4t$, where t is a parameter. The point A has parameter t = -1 and the line l is the tangent to C at A. The line l also cuts the curve at B. - (a) Show that an equation for l is 2y + x = 7. - (b) Find the value of t at B. ### **Solution:** (a) $$x = 2t + 3$$, $y = t^3 - 4t$ At point A, $t = -1$. \therefore the coordinates of the point A are (1, 3) $$\frac{\mathrm{d}x}{\mathrm{d}t} = 2$$ and $\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2 - 4$ $$\therefore \frac{dy}{dx} = \frac{3t^2 - 4}{2}$$ At the point A, $\frac{dy}{dx} = -\frac{1}{2}$ - \therefore the gradient of the tangent at A is $-\frac{1}{2}$. - \therefore the equation of the tangent at A is $$y-3=-\frac{1}{2}\left(x-1\right)$$ i.e. $$2y - 6 = -x + 1$$ $$\therefore 2y + x = 7$$ (b) This line cuts the curve at the point B. $$\therefore$$ 2 ($t^3 - 4t$) + (2t + 3) = 7 gives the values of t at A and B. i.e. $$2t^3 - 6t - 4 = 0$$ At $$A$$, $t = -1$ \therefore (t+1) is a root of this equation $$2t^{3} - 6t - 4 = \left(t + 1\right) \left(2t^{2} - 2t - 4\right) = \left(t + 1\right) \left(t + 1\right) \left(t + 1\right) \left(t + 1\right)$$ $$2t - 4 = 2(t + 1)^{2} \left(t - 2\right)$$ So when the line meets the curve, t = -1 (repeated root because the line touches the curve) or t = 2. \therefore at the point B, t = 2. **Differentiation** Exercise F, Question 6 ### **Question:** A Pancho car has value $\pounds V$ at time t years. A model for V assumes that the rate of decrease of V at time t is proportional to V. Form an appropriate differential equation for V. ### **Solution:** $$\frac{dV}{dt}$$ is the rate of change of V. $$\frac{\mathrm{d}V}{\mathrm{d}t} \propto -V$$, as a decrease indicates a negative quantity. $$\frac{dV}{dt} = -kV$$, where k is a positive constant of proportionality. ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 7 ## **Question:** The curve shown has parametric equations $x = 5 \cos \theta$, $y = 4 \sin \theta$, $0 \le \theta < 2\pi$ - (a) Find the gradient of the curve at the point P at which $\theta = \frac{\pi}{4}$. - (b) Find an equation of the tangent to the curve at the point P. - (c) Find the coordinates of the point R where this tangent meets the x-axis. ## **Solution:** (a) $$x = 5 \cos \theta$$, $y = 4 \sin \theta$ $$\frac{dx}{d\theta} = -5 \sin \theta$$ and $\frac{dy}{d\theta} = 4 \cos \theta$ $$\therefore \frac{dy}{dx} = \frac{-4\cos\theta}{5\sin\theta}$$ At the point P, where $\theta = \frac{\pi}{4}$, $\frac{dy}{dx} = \frac{-4}{5}$. (b) At the point $$P$$, $x = \frac{5}{\sqrt{2}}$ and $y = \frac{4}{\sqrt{2}}$. \therefore the equation of the tangent at P is $$y - \frac{4}{\sqrt{2}} = \frac{-4}{5} \left(x - \frac{5}{\sqrt{2}} \right)$$ i.e. $$y - \frac{4}{\sqrt{2}} = \frac{-4}{5}x + \frac{4}{\sqrt{2}}$$ $$\therefore y = \frac{-4}{5}x + \frac{8}{\sqrt{2}}$$ Multiply equation by 5 and rationalise the denominator of the surd: $5y + 4x = 20 \sqrt{2}$ - (c) The tangent meets the *x*-axis when y = 0. - $\therefore x = 5 \sqrt{2}$ and R has coordinates $(5 \sqrt{2}, 0)$. ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 8 ## **Question:** The curve C has parametric equations $$x = 4\cos 2t, y = 3\sin t, -\frac{\pi}{2} < t < \frac{\pi}{2}$$ A is the point $\left(2, 1\frac{1}{2}\right)$, and lies on C. - (a) Find the value of t at the point A. - (b) Find $\frac{dy}{dx}$ in terms of t. - (c) Show that an equation of the normal to C at A is 6y 16x + 23 = 0. The normal at A cuts C again at the point B. - (d) Find the y-coordinate of the point B. ## **Solution:** (a) $x = 4 \cos 2t$ and $y = 3 \sin t$ A is the point $$\left(2, 1\frac{1}{2}\right)$$ and so $$4\cos 2t = 2 \text{ and } 3\sin t = 1\frac{1}{2}$$ $$\therefore \cos 2t = \frac{1}{2} \text{ and } \sin t = \frac{1}{2}$$ As $$-\frac{\pi}{2} < t < \frac{\pi}{2}$$, $t = \frac{\pi}{6}$ at the point A. (b) $\frac{dx}{dt} = -8 \sin 2t$ and $\frac{dy}{dt} = 3 \cos t$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\cos t}{-8\sin 2t}$$ $$=\frac{-3\cos t}{16\sin t\cos t}$$ $= \frac{-3\cos t}{16\sin t\cos t}$ (using the double angle formula) $$= \frac{-3}{16 \sin t}$$ $$= \frac{-3}{16} \operatorname{cosec} t$$ (c) When $$t = \frac{\pi}{6}, \frac{dy}{dx} = \frac{-3}{8}$$ \therefore the gradient of the normal at the point A is $\frac{8}{3}$. : the equation of the normal is $$y-1\frac{1}{2}=\frac{8}{3}(x-2)$$ Multiply equation by 6: $$6y - 9 = 16x - 32$$ $$\therefore 6y - 16x + 23 = 0$$ (d) The normal cuts the curve when $$6(3\sin t) - 16(4\cos 2t) + 23 = 0$$ $$\therefore$$ 18 sin $t - 64 \cos 2t + 23 = 0$. $\therefore 18 \sin t - 64 (1 - 2 \sin^2 t) + 23 = 0$ (using the double angle formula) $$\therefore 128\sin^2 t + 18\sin t - 41 = 0$$ But $\sin t = \frac{1}{2}$ is one solution of this equation, as point *A* lies on the line and on the curve. $$\therefore 128\sin^2 t + 18\sin t - 41 = (2\sin t - 1) (64\sin t + 41)$$ $$\therefore$$ (2 sin t - 1) (64 sin t + 41) = 0 $$\therefore$$ at point B , $\sin t = \frac{-41}{64}$ $$\therefore$$ the y coordinate of point B is $\frac{-123}{64}$. ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 9 ## **Question:** The diagram shows the curve C with parametric equations $$x = a \sin^2 t, y = a \cos t, 0 \le t \le \frac{1}{2}\pi$$ where a is a positive constant. The point P lies on C and has coordinates $$\frac{3}{4}a$$, $\frac{1}{2}a$. - (a) Find $\frac{dy}{dx}$, giving your answer in terms of t. - (b) Find an equation of the tangent at P to C. ## **Solution:** (a) $$x = a \sin^2 t$$, $y = a \cos t$ $$\frac{\mathrm{d}x}{\mathrm{d}t} = 2a \sin t \cos t$$ and $\frac{\mathrm{d}y}{\mathrm{d}t} = -a \sin t$ $$\therefore \frac{dy}{dx} = \frac{-a \sin t}{2a \sin t \cos t} = \frac{-1}{2 \cos t} = \frac{-1}{2} \sec t$$ (b) *P* is the point $\left(\frac{3}{4}a, \frac{1}{2}a\right)$ and lies on the curve. $$\therefore a \sin^2 t = \frac{3}{4}a \text{ and } a \cos t = \frac{1}{2}a$$ $$\therefore \sin t = \pm \frac{\sqrt{3}}{2} \text{ and } \cos t = \frac{1}{2} \text{ and } 0 \le t \le \frac{1}{2} \pi$$ $$\therefore t = \frac{\pi}{3}$$ \therefore the gradient of the curve at point P is $-\frac{1}{2}\sec\frac{\pi}{3}=-1$. The equation of the tangent at P is $$y - \frac{1}{2}a = -1 \left(x - \frac{3}{4}a \right)$$ $$\therefore y + x = \frac{1}{2}a + \frac{3}{4}a$$ Multiply equation by 4 to give 4y + 4x = 5a #### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 10 #### **Question:** This graph shows part of the curve C with parametric equations $$x = (t+1)^{2}, y = \frac{1}{2}t^{3} + 3, t \ge -1$$ P is the point on the curve where t = 2. The line l is the normal to C at P. Find the equation of l. #### **Solution:** $$x = (t+1)^{2}, y = \frac{1}{2}t^{3} + 3$$ $$\frac{dx}{dt} = 2 \left(t + 1 \right) \text{ and } \frac{dy}{dt} = \frac{3}{2}t^2$$ $$\therefore \frac{dy}{dx} = \frac{(\frac{3}{2}t^2)}{2(t+1)} = \frac{3t^2}{4(t+1)}$$ When $$t = 2$$, $\frac{dy}{dx} = \frac{3 \times 4}{4 \times 3} = 1$ The gradient of the normal at the point P where t = 2, is -1. The coordinates of P are (9, 7). : the equation of the normal is $$y - 7 = -1(x - 9)$$ i.e. $$y - 7 = -x + 9$$ $$\therefore y + x = 16$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 11 ## **Question:** The diagram shows part of the curve C with parametric equations $x = t^2$, $y = \sin 2t$, $t \ge 0$ The point *A* is an intersection of *C* with the *x*-axis. (a) Find, in terms of π , the x-coordinate of A. (b) Find $\frac{dy}{dx}$ in terms of t, t > 0. (c) Show that an equation of the tangent to C at A is $4x + 2\pi y = \pi^2$. # **Solution:** (a) $x = t^2$ and $y = \sin 2t$ At the point A, y = 0. $$\therefore \sin 2t = 0$$ $$\therefore 2t = \pi$$ $$\therefore t = \frac{\pi}{2}$$ The point A is $\left(\begin{array}{c} \frac{\pi^2}{4} \\ \end{array}, 0 \right)$ (b) $$\frac{dx}{dt} = 2t$$ and $\frac{dy}{dt} = 2\cos 2t$ $\therefore \frac{dy}{dx} = \frac{\cos 2t}{t}$ (c) At point $$A$$, $\frac{dy}{dx} = \frac{-1}{(\frac{\pi}{2})} = \frac{-2}{\pi}$ - \therefore the gradient of the tangent at A is $\frac{-2}{\pi}$. - \therefore the equation of the tangent at A is $$y - 0 = \frac{-2}{\pi} \left(x - \frac{\pi^2}{4} \right)$$ i.e. $$y = \frac{-2x}{\pi} + \frac{\pi}{2}$$ Multiply equation by 2π to give $$2\pi y + 4x = \pi^2$$ # **Solutionbank**Edexcel AS and A Level Modular Mathematics **Differentiation** Exercise F, Question 12 #### **Question:** Find the gradient of the curve with equation $5x^2 + 5y^2 - 6xy = 13$ at the point (1, 2). #### **Solution:** $$5x^2 + 5y^2 - 6xy = 13$$ Differentiate implicitly with respect to x: $$10x + 10y \frac{dy}{dx} - \left(6x \frac{dy}{dx} + 6y \right) = 0$$ $$\therefore \frac{dy}{dx} \left(10y - 6x \right) + 10x - 6y = 0$$ At the point (1, 2) $$\frac{\mathrm{d}y}{\mathrm{d}x} \left(14 \right) + 10 - 12 = 0$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{14} = \frac{1}{7}$$ # **Solutionbank**Edexcel AS and A Level Modular Mathematics **Differentiation** Exercise F, Question 13 #### **Question:** Given that $e^{2x} + e^{2y} = xy$, find $\frac{dy}{dx}$ in terms of x and y. #### **Solution:** $$e^{2x} + e^{2y} = xy$$ Differentiate with respect to *x*: $$2e^{2x} + 2e^{2y} \frac{dy}{dx} = x \frac{dy}{dx} + y \times 1$$ $$\therefore 2e^{2y} \frac{dy}{dx} - x \frac{dy}{dx} = y - 2e^{2x}$$ $$\therefore \frac{dy}{dx} \left(2e^{2y} - x \right) = y - 2e^{2x}$$ $$\therefore \frac{dy}{dx} = \frac{y - 2e^{2x}}{2e^{2y} - x}$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 14 ## **Question:** Find the coordinates of the turning points on the curve $y^3 + 3xy^2 - x^3 = 3$. #### **Solution:** $$y^3 + 3xy^2 - x^3 = 3$$ Differentiate with respect to
x: $$3y^2 \frac{dy}{dx} + \left(3x \times 2y \frac{dy}{dx} + y^2 \times 3\right) - 3x^2 = 0$$ $$\therefore \frac{dy}{dx} \left(3y^2 + 6xy \right) = 3x^2 - 3y^2$$ $$\therefore \frac{dy}{dx} = \frac{3(x^2 - y^2)}{3y(y + 2x)} = \frac{x^2 - y^2}{y(y + 2x)}$$ When $$\frac{dy}{dx} = 0$$, $x^2 = y^2$, i.e. $x = \pm y$ When $$x = +y$$, $y^3 + 3y^3 - y^3 = 3 \Rightarrow 3y^3 = 3 \Rightarrow y = 1$ and $x = 1$ When $x = -y$, $y^3 - 3y^3 + y^3 = 3 \Rightarrow -y^3 = 3 \Rightarrow y = \sqrt[3]{(-3)}$ and $x = -\sqrt[3]{(-3)}$ $$\therefore$$ the coordinates are $(1, 1)$ and $(-3\sqrt{(-3)}, 3\sqrt{(-3)})$. # **Solutionbank Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 15 ## **Question:** Given that y(x + y) = 3, evaluate $\frac{dy}{dx}$ when y = 1. #### **Solution:** $$y(x+y) = 3$$ $$\therefore yx + y^2 = 3$$ Differentiate with respect to *x*: $$\left(y + x \frac{dy}{dx}\right) + 2y \frac{dy}{dx} = 0 \qquad \boxed{1}$$ When y = 1, 1 (x + 1) = 3 (from original equation) $$\therefore x = 2$$ Substitute into ①: $$1 + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$ $$\therefore 4 \frac{dy}{dx} = -1$$ i.e. $$\frac{dy}{dx} = \frac{-1}{4}$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 16 #### **Question:** - (a) If $(1 + x) (2 + y) = x^2 + y^2$, find $\frac{dy}{dx}$ in terms of x and y. - (b) Find the gradient of the curve $(1+x)(2+y) = x^2 + y^2$ at each of the two points where the curve meets the y-axis. - (c) Show also that there are two points at which the tangents to this curve are parallel to the y-axis. #### **Solution:** (a) $$(1+x)(2+y) = x^2 + y^2$$ Differentiate with respect to *x*: $$\begin{pmatrix} 1+x \end{pmatrix} \begin{pmatrix} \frac{dy}{dx} \end{pmatrix} + \begin{pmatrix} 2+y \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} = 2x + 2y \frac{dy}{dx}$$ $$\therefore \begin{pmatrix} 1+x-2y \end{pmatrix} \frac{dy}{dx} = 2x - y - 2$$ $$\therefore \frac{dy}{dx} = \frac{2x-y-2}{1+x-2y}$$ (b) When the curve meets the y-axis, x = 0. Put x = 0 in original equation $(1 + x) (2 + y) = x^2 + y^2$. Then $$2 + y = y^2$$ i.e. $$y^2 - y - 2 = 0$$ $$\Rightarrow$$ $(y-2)(y+1)=0$ $$\therefore$$ $y = 2$ or $y = -1$ when $x = 0$ At $$(0, 2)$$, $\frac{dy}{dx} = \frac{-4}{-3} = \frac{4}{3}$ At $$(0, -1)$$, $\frac{dy}{dx} = \frac{-1}{3}$ (c) When the tangent is parallel to the y-axis it has infinite gradient and as $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - y - 2}{1 + x - 2y}$$ So $$1 + x - 2y = 0$$ Substitute 1 + x = 2y into the equation of the curve: $$2y(2+y) = (2y-1)^2 + y^2$$ $$2y^2 + 4y = 4y^2 - 4y + 1 + y^2$$ $$3y^2 - 8y + 1 = 0$$ $$y = \frac{8 \pm \sqrt{64 - 12}}{6} = \frac{4 \pm \sqrt{13}}{3}$$ When $$y = \frac{4 + \sqrt{13}}{3}$$, $x = \frac{5 + 2\sqrt{13}}{3}$ When $$y = \frac{4 - \sqrt{13}}{3}$$, $x = \frac{5 - 2\sqrt{13}}{3}$ \therefore there are two points at which the tangents are parallel to the y-axis. They are $$\left(\frac{5+2\sqrt{13}}{3}, \frac{4+\sqrt{13}}{3}\right)$$ and $\left(\frac{5-2\sqrt{13}}{3}, \frac{4-\sqrt{13}}{3}\right)$. #### **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 17 #### **Question:** A curve has equation $7x^2 + 48xy - 7y^2 + 75 = 0$. A and B are two distinct points on the curve and at each of these points the gradient of the curve is equal to $\frac{2}{11}$. Use implicit differentiation to show that x + 2y = 0 at the points A and B. #### **Solution:** $$7x^2 + 48xy - 7y^2 + 75 = 0$$ Differentiate with respect to x (implicit differentiation): $$14x + \left(48x \frac{dy}{dx} + 48y\right) - 14y \frac{dy}{dx} = 0$$ Given that $$\frac{dy}{dx} = \frac{2}{11}$$ $$\therefore 14x + 48x \times \frac{2}{11} + 48y - 14y \times \frac{2}{11} = 0$$ Multiply equation by 11, then $$154x + 96x + 528y - 28y = 0$$ $$\therefore 250x + 500y = 0$$ i.e. x + 2y = 0, after division by 250. # **Solutionbank Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 18 #### **Question:** Given that $y = x^x$, x > 0, y > 0, by taking logarithms show that $\frac{dy}{dx} = x^x \left(1 + \ln x \right)$ #### **Solution:** $$y = x^x$$ Take natural logs of both sides: $$\ln y = \ln x^x$$ $$\therefore$$ ln $y = x \ln x$ Property of lns Differentiate with respect to *x*: $$\frac{1}{v}\frac{dy}{dx} = x \times \frac{1}{x} + \ln x \times 1$$ $$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \ln x$$ $$\therefore \frac{dy}{dx} = y \left(1 + \ln x \right)$$ But $$y = x^x$$ $$\therefore \frac{dy}{dx} = x^x \left(1 + \ln x \right)$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 19 ## **Question:** (a) Given that $x = 2^t$, by using logarithms prove that $$\frac{\mathrm{d}x}{\mathrm{d}t} = 2^t \ln 2$$ A curve C has parametric equations $x = 2^t$, $y = 3t^2$. The tangent to C at the point with coordinates (2, 3) cuts the x-axis at the point P. - (b) Find $\frac{dy}{dx}$ in terms of t. - (c) Calculate the *x*-coordinate of *P*, giving your answer to 3 decimal places. ## **Solution:** (a) Given $x = 2^t$ Take natural logs of both sides: $$\ln x = \ln 2^t = t \ln 2$$ Differentiate with respect to *t*: $$\frac{1}{x}\frac{\mathrm{d}x}{\mathrm{d}t} = \ln 2$$ $$\therefore \frac{\mathrm{d}x}{\mathrm{d}t} = x \ln 2 = 2^t \ln 2$$ (b) $x = 2^t$, $y = 3t^2$ $$\frac{\mathrm{d}x}{\mathrm{d}t} = 2^t \ln 2, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6t}{2^t \ln 2}$$ (c) At the point (2, 3), t = 1. The gradient of the curve at (2, 3) is $\frac{6}{2 \ln 2}$. : the equation of the tangent is $$y - 3 = \frac{6}{2 \ln 2} \left(x - 2 \right)$$ i.e. $$y = \frac{3}{\ln 2}x - \frac{6}{\ln 2} + 3$$ The tangent meets the *x*-axis when y = 0. $$\therefore \frac{3}{\ln 2}x = \frac{6}{\ln 2} - 3$$ $$\therefore x = 2 - \ln 2 = 1.307 \text{ (3 decimal places)}$$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 20 ## **Question:** - (a) Given that $a^x \equiv e^{kx}$, where a and k are constants, a > 0 and $x \in \mathbb{R}$, prove that $k = \ln a$. - (b) Hence, using the derivative of e^{kx} , prove that when $y = 2^x$ $\frac{dy}{dx} = 2^x \ln 2$. - (c) Hence deduce that the gradient of the curve with equation $y = 2^x$ at the point (2, 4) is $\ln 16$. #### **Solution:** (a) $a^x = e^{kx}$ Take lns of both sides: $$\ln a^x = \ln e^{kx}$$ i.e. $$x \ln a = kx$$ As this is true for all values of x, $k = \ln a$. - (b) Therefore, $2^x = e^{\ln 2 \times x}$ When $y = 2^x = e^{\ln 2 \times x}$ $\frac{dy}{dx} = \ln 2 e^{\ln 2 \times x} = \ln 2 \times 2^x$ - (c) At the point (2, 4), x = 2. : the gradient of the curve is $$2^{2} \ln 2$$ $$= 4 \ln 2$$ $$= \ln 2^{4} \qquad \text{(property)}$$ $$= \ln 2^4$$ (property of logs) = $\ln 16$ ## **Edexcel AS and A Level Modular Mathematics** **Differentiation** Exercise F, Question 21 ## **Question:** A population P is growing at the rate of 9% each year and at time t years may be approximated by the formula $$P = P_0 (1.09)^t, t \ge 0$$ where P is regarded as a continuous function of t and P_0 is the starting population at time t = 0. - (a) Find an expression for t in terms of P and P_0 . - (b) Find the time T years when the population has doubled from its value at t = 0, giving your answer to 3 significant figures. - (c) Find, as a multiple of P_0 , the rate of change of population $\frac{dP}{dt}$ at time t = T. ## **Solution:** (a) $$P = P_0 (1.09)^{-t}$$ Take natural logs of both sides: $$\ln P = \ln [P_0 (1.09)^t] = \ln P_0 + t \ln 1.09$$ $\therefore t \ln 1.09 = \ln P - \ln P_0$ $$\Rightarrow t = \frac{\ln P - \ln P_0}{\ln 1.09} \quad \text{or} \quad \frac{\ln \left(\frac{P}{P_0}\right)}{\ln 1.09}$$ (b) When $$P = 2P_0$$, $t = T$. $$\therefore T = \frac{\ln 2}{\ln 1.09} = 8.04 \text{ (to 3 significant figures)}$$ (c) $$\frac{dP}{dt} = P_0 (1.09)^{-t} \ln 1.09$$ When $$t = T$$, $P = 2P_0$ so (1.09) $^T = 2$ and $$\frac{dP}{dt} = P_0 \times 2 \times \ln 1.09$$ = $\ln (1.09^2) \times P_0 = \ln (1.1881) \times P_0$ = $0.172P_0$ (to 3 significant figures) ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise A, Question 1 ## **Question:** The diagram shows the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} . Draw a diagram to illustrate the vector addition $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}$. ## **Solution:** $$a + b + c + d = PQ$$ (Vector goes from the start of **a** to the finish of **d**). The vectors could be added in a different order, e.g. $$b + c + a + d$$: Here $$b + c + a + d = RS$$ $$(RS = PQ)$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise A, Question 2 #### **Question:** The vector **a** is directed due north and |a| = 24. The vector **b** is directed due west and |b| = 7. Find |a + b|. #### **Solution:** $$|a| = 24$$ $|b| = 7$ $|a+b|^2 = 24^2 + 7^2 = 625$ $\therefore |a+b| = 25$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise A, Question 3 #### **Question:** The vector **a** is directed north-east and $|\mathbf{a}| = 20$. The vector **b** is directed south-east and $|\mathbf{b}| = 13$. Find $|\mathbf{a} + \mathbf{b}|$. #### **Solution:** $$\begin{vmatrix} a \end{vmatrix} = 20$$ $\begin{vmatrix} b \end{vmatrix} = 13$ $\begin{vmatrix} a + b \end{vmatrix}^2 = 20^2 + 13^2 = 569$ $\begin{vmatrix} a + b \end{vmatrix} = \sqrt{569} = 23.9 \text{ (3 s.f.)}$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise A, Question 4 ## **Question:** In the diagram, PQ = a, QS = b, SR = c and PT = d. Find in terms of **a**, **b**, **c** and **d**: - (a) QT - (b) PR - (c) TS - (d) TR ## **Solution:** (a) $$QT = QP + PT = -a + d$$ (b) $$PR = PQ + QS + SR = a + b + c$$ (c) $$TS = TP + PQ + QS = -d + a + b = a + b - d$$ (d) $$TR = TP + PR = -d + (a + b + c) = a + b + c - d$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise A, Question 5 ## **Question:** In the
diagram, WX = a, WY = b and WZ = c. It is given that XY = YZ. Prove that a + c = 2b. (2b is equivalent to b + b). ## **Solution:** $$XY = XW + WY = -a + b$$ $YZ = YW + WZ = -b + c$ Since $XY = YZ$, $-a + b = -b + c$ $b + b = a + c$ $a + c = 2b$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise B, Question 1 ## **Question:** In the triangle PQR, PQ = 2a and QR = 2b. The mid-point of PR is M. Find, in terms of **a** and **b**: - (a) PR - (b) PM - (c) QM. ## **Solution:** (a) $$PR = PQ + QR = 2a + 2b$$ (b) $$PM = \frac{1}{2}PR = \frac{1}{2}\left(2a + 2b\right) = a + b$$ (c) $$QM = QP + PM = -2a + a + b = -a + b$$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise B, Question 2 #### **Question:** ABCD is a trapezium with AB parallel to DC and DC = 3AB. M is the mid-point of DC, AB = a and BC = b. Find, in terms of **a** and **b**: - (a) AM - (b) BD - (c) MB - (d) DA. #### **Solution:** Since DC = 3AB, DC = 3a Since *M* is the mid-point of *DC*, DM = MC = $\frac{3}{2}$ a (a) $$AM = AB + BC + CM = a + b - \frac{3}{2}a = -\frac{1}{2}a + b$$ (b) $$BD = BC + CD = b - 3a$$ (c) MB = MC + CB = $$\frac{3}{2}a - b$$ (d) $$DA = DC + CB + BA = 3a - b - a = 2a - b$$ # **Solutionbank 4**Edexcel AS and A Level Modular Mathematics Vectors Exercise B, Question 3 ## **Question:** In each part, find whether the given vector is parallel to a - 3b: - (a) 2a 6b - (b) 4a 12b - (c) a + 3b - (d) 3b a - (e) 9b 3a - (f) $\frac{1}{2}a \frac{2}{3}b$ #### **Solution:** - (a) 2a 6b = 2 (a 3b)Yes, parallel to a - 3b. - (b) 4a 12b = 4 (a 3b)Yes, parallel to a - 3b. - (c) a + 3b is not parallel to a 3b - (d) 3b a = -1 (a 3b)Yes, parallel to a - 3b. - (e) 9b 3a = -3 (a 3b)Yes, parallel to a - 3b. - (f) $\frac{1}{2}a \frac{2}{3}b = \frac{1}{2}\left(a \frac{4}{3}b\right)$ No, not parallel to a - 3b. ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise B, Question 4 #### **Question:** The non-zero vectors ${\bf a}$ and ${\bf b}$ are not parallel. In each part, find the value of λ and the value of μ : (a) $$a + 3b = 2 \lambda a - \mu b$$ (b) $$(\lambda + 2) a + (\mu - 1) b = 0$$ (c) $$4 \lambda a - 5b - a + \mu b = 0$$ (d) $$(1 + \lambda) a + 2 \lambda b = \mu a + 4 \mu b$$ (e) $$(3 \lambda + 5) a + b = 2 \mu a + (\lambda - 3) b$$ #### **Solution:** (a) $$a + 3b = 2 \lambda a - \mu b$$ $1 = 2 \lambda$ and $3 = -\mu$ $\lambda = \frac{1}{2}$ and $\mu = -3$ (b) $$(\lambda + 2) a + (\mu - 1) b = 0$$ $\lambda + 2 = 0$ and $\mu - 1 = 0$ $\lambda = -2$ and $\mu = 1$ (c) $$4 \lambda a - 5b - a + \mu b = 0$$ $4 \lambda - 1 = 0$ and $-5 + \mu = 0$ $\lambda = \frac{1}{4}$ and $\mu = 5$ (d) $$(1 + \lambda) a + 2 \lambda b = \mu a + 4 \mu b$$ $1 + \lambda = \mu \quad \text{and} \quad 2 \lambda = 4 \mu$ Since $2 \lambda = 4 \mu$, $\lambda = 2 \mu$ $1 + 2 \mu = \mu$ $\mu = -1 \quad \text{and} \quad \lambda = -2$ (e) $$(3 \lambda + 5) a + b = 2 \mu a + (\lambda - 3) b$$ $3 \lambda + 5 = 2 \mu$ and $1 = \lambda - 3$ $\lambda = 4$ and $2 \mu = 12 + 5$ $$\lambda = 4$$ and $\mu = 8\frac{1}{2}$ # **Solutionbank 4**Edexcel AS and A Level Modular Mathematics Vectors Exercise B, Question 5 #### **Question:** In the diagram, OA = a, OB = b and C divides AB in the ratio 5:1. - (a) Write down, in terms of **a** and **b**, expressions for AB, AC and OC. Given that $OE = \lambda$ b, where λ is a scalar: - (b) Write down, in terms of **a**, **b** and λ , an expression for CE. Given that OD = μ (b a), where μ is a scalar: - (c) Write down, in terms of **a**, **b**, λ and μ , an expression for ED. Given also that *E* is the mid-point of *CD*: - (d) Deduce the values of λ and μ . ## **Solution:** (a) $$AB = AO + OB = -a + b$$ $AC = \frac{5}{6}AB = \frac{5}{6}(-a + b)$ $OC = OA + AC = a + \frac{5}{6}(-a + b) = \frac{1}{6}a + \frac{5}{6}b$ (b) $OE = \lambda b$: $$CE = CO + OE = - \left(\frac{1}{6}a + \frac{5}{6}b \right) + \lambda b = - \frac{1}{6}a + \left(\lambda - \frac{5}{6} \right)b$$ (c) $$OD = \mu \ (b-a)$$: $ED = EO + OD = -\lambda b + \mu \ (b-a) = -\mu a + (\mu - \lambda) b$ (d) If E is the mid-point of CD, CE = ED: $$-\frac{1}{6}a + \left(\begin{array}{cc}\lambda & -\frac{5}{6}\end{array}\right)b = -\mu a + \left(\begin{array}{cc}\mu & -\lambda\end{array}\right)b$$ Since **a** and **b** are not parallel $$-\frac{1}{6} = -\mu \quad \Rightarrow \quad \mu = \frac{1}{6}$$ and $$\left(\begin{array}{c}\lambda - \frac{5}{6}\end{array}\right) = \left(\begin{array}{c}\mu - \lambda\end{array}\right)$$ $$\Rightarrow$$ $2 \lambda = \mu + \frac{5}{6}$ $$\Rightarrow$$ 2 λ = 1 $$\Rightarrow \lambda = \frac{1}{2}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise B, Question 6 #### **Question:** In the diagram OA = a, OB = b, 3OC = 2OA and 4OD = 7OB. The line DC meets the line AB at E. - (a) Write down, in terms of **a** and **b**, expressions for - (i) AB - (ii) DC Given that $DE = \lambda DC$ and $EB = \mu AB$ where λ and μ are constants: - (b) Use \triangle EBD to form an equation relating to ${\boldsymbol a}, {\boldsymbol b}, \lambda$ and μ . Hence: - (c) Show that $\lambda = \frac{9}{13}$. - (d) Find the exact value of μ . - (e) Express OE in terms of **a** and **b**. The line OE produced meets the line AD at F. Given that OF = kOE where k is a constant and that AF = $\frac{1}{10} \left(7b - 4a \right)$: (f) Find the value of k. ## **Solution:** (a) OC = $$\frac{2}{3}$$ OA = $\frac{2}{3}$ a, OD = $\frac{7}{4}$ OB = $\frac{7}{4}$ b (i) $$AB = AO + OB = -a + b$$ (ii) DC = DO + OC = $$\frac{2}{3}a - \frac{7}{4}b$$ (b) $$DE = \lambda DC$$ and $EB = \mu AB$. From $\triangle EBD$, $DE = DB + BE$ Since OD = $$\frac{7}{4}$$ b, BD = OD - OB = $\frac{7}{4}$ b - b = $\frac{3}{4}$ b $$\therefore DB = -\frac{3}{4}b$$ So $$\lambda$$ DC = DB - μ AB $$\lambda \left(\frac{2}{3}a - \frac{7}{4}b \right) = -\frac{3}{4}b - \mu \left(-a + b \right)$$ $$\left(\begin{array}{c} \frac{2}{3} \lambda - \mu \end{array}\right) a + \left(\begin{array}{c} \frac{3}{4} + \mu - \frac{7}{4} \lambda \end{array}\right) b = 0$$ (c) So $$\frac{2}{3} \lambda - \mu = 0 \implies \mu = \frac{2}{3} \lambda$$ and $$\frac{3}{4} + \mu - \frac{7}{4}\lambda = 0$$ $$\Rightarrow \quad \frac{3}{4} + \frac{2}{3} \lambda - \frac{7}{4} \lambda = 0$$ $$\Rightarrow \frac{13}{12} \lambda = \frac{3}{4}$$ $$\Rightarrow \lambda = \frac{3}{4} \times \frac{12}{13} = \frac{9}{13}$$ (d) $$\mu = \frac{2}{3} \lambda = \frac{2}{3} \times \frac{9}{13} = \frac{6}{13}$$ (e) OE = OB + BE = OB - $$\mu$$ AB = b - $\frac{6}{13}$ (- a + b) = $\frac{6}{13}$ a + $\frac{7}{13}$ b (f) OF = kOE and AF = $$\frac{7}{10}$$ b - $\frac{4}{10}$ a. $$OF = \frac{6k}{13}a + \frac{7k}{13}b$$ From $$\triangle$$ OFA, OF = OA + AF $$\frac{6k}{13}a + \frac{7k}{13}b = a + \left(\frac{7}{10}b - \frac{4}{10}a\right) = \frac{6}{10}a + \frac{7}{10}b$$ So $$\frac{6k}{13} = \frac{6}{10}$$ (and $\frac{7k}{13} = \frac{7}{10}$) $$\Rightarrow k = \frac{13}{10}$$ # **Edexcel AS and A Level Modular Mathematics** Vectors Exercise B, Question 7 #### **Question:** In \triangle OAB, *P* is the mid-point of *AB* and *Q* is the point on *OP* such that OQ = $\frac{3}{4}$ OP. Given that OA = a and OB = b, find, in terms of **a** and **b**: - (a) AB - (b) OP - (c) OQ - (d) AQ The point R on OB is such that OR = kOB, where 0 < k < 1. - (e) Find, in terms of **a**, **b** and *k*, the vector AR. Given that *AQR* is a straight line: - (f) Find the ratio in which Q divides AR and the value of k. ## **Solution:** $$BP = PA \text{ and } OQ = \frac{3}{4}OP$$ (a) $$AB = AO + OB = -a + b$$ (b) OP = OA + AP = OA + $$\frac{1}{2}$$ AB = a + $\frac{1}{2}$ $\left(-a + b \right) = \frac{1}{2}a + \frac{1}{2}b$ (c) OQ = $$\frac{3}{4}$$ OP = $\frac{3}{4} \left(\frac{1}{2}a + \frac{1}{2}b \right) = \frac{3}{8}a + \frac{3}{8}b$ (d) $$AQ = AO + OQ = -a + \left(\frac{3}{8}a + \frac{3}{8}b\right) = -\frac{5}{8}a + \frac{3}{8}b$$ (e) Given OR = $$k$$ OB ($0 < k < 1$) In \triangle OAR, AR = AO + OR = $-a + kb$ (f) Since AQR is a straight line, AR and AQ are parallel vectors. Suppose AQ = $$\lambda$$ AR $$-\frac{5}{8}a + \frac{3}{8}b = \lambda \quad \left(-a + kb \right)$$ So $-\frac{5}{8} = -\lambda \quad \Rightarrow \quad \lambda = \frac{5}{8}$ and $\frac{3}{8} = \lambda k$ $$\Rightarrow \quad k = \frac{3}{8\lambda}$$ $$\Rightarrow \quad k = \frac{3}{5}$$ Since $AQ = \frac{5}{8}AR, RQ = \frac{3}{8}AR$ So Q divides AR in the ratio 5:3. ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise B, Question 8 ## **Question:** In the figure OE : EA = 1 : 2, AF : FB = 3 : 1 and OG : OB = 3 : 1. The vector OA = a and the vector OB = b. Find, in terms of **a**, **b** or **a** and **b**, expressions for: - (a) OE - (b) OF - (c) EF - (d) BG - (e) FB - (f) FG - (g) Use your results in (c) and (f) to show that the points E, F and G are collinear and find the ratio EF: FG. - (h) Find EB and AG and hence prove that EB is parallel to AG. ## **Solution:** (a) OE = $$\frac{1}{3}$$ OA = $\frac{1}{3}$ a (b) OF = OA + AF = OA + $$\frac{3}{4}$$ AB = $a + \frac{3}{4} \left(b - a \right)$ = $a + \frac{3}{4}b - \frac{3}{4}a$ = $\frac{1}{4}a + \frac{3}{4}b$ (c) EF = EA + AF = $$\frac{2}{3}$$ OA + $\frac{3}{4}$ AB = $\frac{2}{3}$ a + $\frac{3}{4}$ (b - a) = $\frac{2}{3}$ a + $\frac{3}{4}$ b - $\frac{3}{4}$ a = $-\frac{1}{12}$ a + $\frac{3}{4}$ b (d) $$BG = 2OB = 2b$$ (e) $$FB = \frac{1}{4}AB = \frac{1}{4}\left(b-a\right) = -\frac{1}{4}a + \frac{1}{4}b$$ (f) $$FG = FB + BG = -\frac{1}{4}a + \frac{1}{4}b + 2b = -\frac{1}{4}a + \frac{9}{4}b$$ (g) FG = $$-\frac{1}{4}a + \frac{9}{4}b = 3\left(-\frac{1}{12}a + \frac{3}{4}b\right) = 3EF$$ So EF and FG are parallel vectors. So E, F and G are collinear. $$EF : FG = 1 : 3$$ (h) EB = EO + OB = $$-\frac{1}{3}a + b$$ AG = AO + OG = $-a + 3b = 3\left(-\frac{1}{3}a + b\right) = 3EB$ So EB is parallel to AG. ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise C, Question 1 #### **Question:** The points A
and B have position vectors \mathbf{a} and \mathbf{b} respectively (referred to the origin O). The point *P* divides *AB* in the ratio 1:5. Find, in terms of \mathbf{a} and \mathbf{b} , the position vector of P. #### **Solution:** AP: PB = 1:5 So AP = $$\frac{1}{6}$$ AB = $\frac{1}{6}$ (b - a) OP = OA + AP = a + $\frac{1}{6}$ (b - a) = a + $\frac{1}{6}$ b - $\frac{1}{6}$ a = $\frac{5}{6}$ a + $\frac{1}{6}$ b #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise C, Question 2 #### **Question:** The points A, B and C have position vectors \mathbf{a} , \mathbf{b} and \mathbf{c} respectively (referred to the origin O). The point P is the mid-point of AB. Find, in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} , the vector PC. #### **Solution:** $$\begin{split} & PC = PO + OC = -OP + OC \\ & But \ OP = OA + AP = OA + \frac{1}{2}AB = a + \frac{1}{2}\left(b - a \right) = \frac{1}{2}a + \frac{1}{2}b \\ & So \ PC = -\left(\frac{1}{2}a + \frac{1}{2}b \right) + c = -\frac{1}{2}a - \frac{1}{2}b + c \end{split}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise C, Question 3 ## **Question:** *OABCDE* is a regular hexagon. The points *A* and *B* have position vectors **a** and **b** respectively, referred to the origin *O*. Find, in terms of \mathbf{a} and \mathbf{b} , the position vectors of C, D and E. #### **Solution:** $$OC = 2AB = 2 (b - a) = -2a + 2b$$ $OD = OC + CD = OC + AO = (-2a + 2b) - a = -3a + 2b$ $OE = OD + DE = OD + BA = (-3a + 2b) + (a - b) = -2a + b$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise D, Question 1 #### **Question:** Given that a = 9i + 7j, b = 11i - 3j and c = -8i - j, find: - (a) a + b + c - (b) 2a b + c - (c) 2b + 2c 3a (Use column matrix notation in your working.) #### **Solution:** (a) $$a + b + c = \begin{pmatrix} 9 \\ 7 \end{pmatrix} + \begin{pmatrix} 11 \\ -3 \end{pmatrix} + \begin{pmatrix} -8 \\ -1 \end{pmatrix} = \begin{pmatrix} 12 \\ 3 \end{pmatrix}$$ (b) $$2a - b + c = 2 \begin{pmatrix} 9 \\ 7 \end{pmatrix} + \begin{pmatrix} -11 \\ 3 \end{pmatrix} + \begin{pmatrix} -8 \\ -1 \end{pmatrix}$$ $$= \begin{pmatrix} 18 \\ 14 \end{pmatrix} + \begin{pmatrix} -11 \\ 3 \end{pmatrix} + \begin{pmatrix} -8 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 16 \end{pmatrix}$$ $$(c) 2b + 2c - 3a = 2 \begin{pmatrix} 11 \\ -3 \end{pmatrix} + 2 \begin{pmatrix} -8 \\ -1 \end{pmatrix} - 3 \begin{pmatrix} 9 \\ 7 \end{pmatrix}$$ $$= \begin{pmatrix} 22 \\ -6 \end{pmatrix} + \begin{pmatrix} -16 \\ -2 \end{pmatrix} + \begin{pmatrix} -27 \\ -21 \end{pmatrix} = \begin{pmatrix} -21 \\ -29 \end{pmatrix}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise D, Question 2 #### **Question:** The points A, B and C have coordinates (3, -1), (4, 5) and (-2, 6) respectively, and O is the origin. Find, in terms of i and j: - (a) the position vectors of A, B and C - (b) AB - (c) AC Find, in surd form: - (d) | OC | - (e) | AB | - (f) | AC | #### **Solution:** (a) $$a = 3i - j$$, $b = 4i + 5j$, $c = -2i + 6j$ (b) $$AB = b - a = (4i + 5j) - (3i - j)$$ = $4i + 5j - 3i + j$ = $i + 6j$ (c) $$AC = c - a = (-2i + 6j) - (3i - j)$$ = $-2i + 6j - 3i + j$ = $-5i + 7j$ (d) $$|OC| = |-2i + 6j| = \sqrt{(-2)^2 + 6^2} = \sqrt{40} = \sqrt{4\sqrt{10}} = 2\sqrt{10}$$ (e) $$|AB| = |i + 6j| = \sqrt{1^2 + 6^2} = \sqrt{37}$$ (f) $$|AC| = |-5i + 7j| = \sqrt{(-5)^2 + 7^2} = \sqrt{74}$$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise D, Question 3 #### **Question:** Given that a = 4i + 3j, b = 5i - 12j, c = -7i + 24j and d = i - 3j, find a unit vector in the direction of **a**, **b**, **c** and **d**. #### **Solution:** $$|a| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$ Unit vector $= \frac{a}{|a|} = \frac{1}{5} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ $$|b| = \sqrt{5^2 + (-12)^2} = \sqrt{169} = 13$$ Unit vector $= \frac{b}{|b|} = \frac{1}{13} \begin{pmatrix} 5 \\ -12 \end{pmatrix}$ $$|c| = \sqrt{(-7)^2 + 24^2} = \sqrt{625} = 25$$ Unit vector $= \frac{c}{|c|} = \frac{1}{25} \begin{pmatrix} -7 \\ 24 \end{pmatrix}$ $$|d| = \sqrt{1^2 + (-3)^2} = \sqrt{10}$$ Unit vector $= \frac{d}{|d|} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise D, Question 4 #### **Question:** Given that a = 5i + j and $b = \lambda i + 3j$, and that |3a + b| = 10, find the possible values of λ . #### **Solution:** $$3a + b = 3 \begin{pmatrix} 5 \\ 1 \end{pmatrix} + \begin{pmatrix} \lambda \\ 3 \end{pmatrix} = \begin{pmatrix} 15 \\ 3 \end{pmatrix} + \begin{pmatrix} \lambda \\ 3 \end{pmatrix} = \begin{pmatrix} 15 + \lambda \\ 6 \end{pmatrix}$$ $$\frac{|3a + b| = 10, \text{ so}}{(15 + \lambda)^2 + 6^2 = 10}$$ $$(15 + \lambda)^2 + 6^2 = 100$$ $$225 + 30 \lambda + \lambda^2 + 36 = 100$$ $$\lambda^2 + 30 \lambda + 161 = 0$$ $$(\lambda + 7) (\lambda + 23) = 0$$ $$\lambda = -7, \lambda = -23$$ # **Solutionbank 4**Edexcel AS and A Level Modular Mathematics Vectors Exercise E, Question 1 ## **Question:** Find the distance from the origin to the point P(2, 8, -4). #### **Solution:** Distance = $$\sqrt{2^2 + 8^2 + (-4)^2} = \sqrt{4 + 64 + 16} = \sqrt{84} \approx 9.17$$ (3 s.f.) # **Solutionbank 4**Edexcel AS and A Level Modular Mathematics **Vectors** Exercise E, Question 2 #### **Question:** Find the distance from the origin to the point P(7, 7, 7). #### **Solution:** Distance = $$\sqrt{7^2 + 7^2 + 7^2} = \sqrt{49 + 49 + 49} = \sqrt{147} = 7\sqrt{3} \approx 12.1 \text{ (3 s.f.)}$$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise E, Question 3 #### **Question:** Find the distance between A and B when they have the following coordinates: (a) $$A(3, 0, 5)$$ and $B(1, -1, 8)$ (b) $$A$$ (8, 11, 8) and B (-3, 1, 6) (c) $$A(3, 5, -2)$$ and $B(3, 10, 3)$ (d) $$A(-1, -2, 5)$$ and $B(4, -1, 3)$ #### **Solution:** (a) AB = $$\sqrt{\frac{(3-1)^2 + [0-(-1)]^2 + (5-8)^2}{(-1)^2 + (5-8)^2}}$$ = $\sqrt{\frac{2^2 + 1^2 + (-3)^2}{14 \approx 3.74}}$ (b) AB = $$\sqrt{[8 - (-3)]^2 + (11 - 1)^2 + (8 - 6)^2}$$ = $\sqrt{\frac{11^2 + 10^2 + 2^2}{225 = 15}}$ (c) AB = $$\sqrt{\frac{(3-3)^2 + (5-10)^2 + [(-2)-3]^2}{(50-5)^2 + (-5)^2}}$$ = $\sqrt{\frac{0^2 + (-5)^2 + (-5)^2}{50 = 5\sqrt{2}}}$ (d) AB = $$\sqrt{[(-1)-4]^2 + [(-2)-(-1)]^2 + (5-3)^2}$$ = $\sqrt{(-5)^2 + (-1)^2 + 2^2}$ = $\sqrt{30} \approx 5.48$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise E, Question 4 #### **Question:** The coordinates of A and B are (7, -1, 2) and (k, 0, 4) respectively. Given that the distance from A to B is 3 units, find the possible values of k. #### **Solution:** $$AB = \sqrt{(7-k)^2 + (-1-0)^2 + (2-4)^2} = 3$$ $$\sqrt{(49-14k+k^2) + 1 + 4} = 3$$ $$49-14k+k^2+1+4=9$$ $$k^2-14k+45=0$$ $$(k-5)(k-9)=0$$ $$k=5 \text{ or } k=9$$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise E, Question 5 #### **Question:** The coordinates of A and B are (5, 3, -8) and (1, k, -3) respectively. Given that the distance from A to B is $3\sqrt{10}$ units, find the possible values of k. #### **Solution:** $$AB = \sqrt{(5-1)^2 + (3-k)^2 + [-8-(-3)]^2} = 3\sqrt{10}$$ $$\sqrt{16 + (9-6k+k^2) + 25} = 3\sqrt{10}$$ $$16 + 9 - 6k + k^2 + 25 = 9 \times 10$$ $$k^2 - 6k - 40 = 0$$ $$(k+4)(k-10) = 0$$ $$k = -4 \text{ or } k = 10$$ # **Solutionbank 4**Edexcel AS and A Level Modular Mathematics Vectors Exercise F, Question 1 #### **Question:** Find the modulus of: - (a) 3i + 5j + k - (b) 4i 2k - (c) i + j k - (d) 5i 9j 8k - (e) i + 5j 7k #### **Solution:** (a) $$|3i + 5j + k| = \sqrt{3^2 + 5^2 + 1^2} = \sqrt{9 + 25 + 1} = \sqrt{35}$$ (b) $$|4i - 2k| = \sqrt{4^2 + 0^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = \sqrt{4}\sqrt{5} = 2\sqrt{5}$$ (c) $$|i+j-k| = \sqrt{1^2+1^2+(-1)^2} = \sqrt{1+1+1} = \sqrt{3}$$ (d) $$|5i - 9j - 8k| = \sqrt{5^2 + (-9)^2 + (-8)^2} = \sqrt{25 + 81 + 64} = \sqrt{170}$$ (e) $$|i + 5j - 7k| = \sqrt{1^2 + 5^2 + (-7)^2} = \sqrt{1 + 25 + 49} = \sqrt{75} = \sqrt{25}\sqrt{3} = 5\sqrt{3}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise F, Question 2 #### **Question:** Given that $$a = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}$$, $b = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$ and $c = \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix}$, find in column matrix form: $$(a) a + b$$ (b) $$b - c$$ (c) $$a + b + c$$ (d) $$3a - c$$ (e) $$a - 2b + c$$ (f) $$|a-2b+c|$$ #### **Solution:** (a) $$a + b = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ -1 \end{pmatrix}$$ (b) $$b - c = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} - \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 5 \\ -5 \end{pmatrix}$$ (c) $$a + b + c = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 14 \\ -3 \\ 1 \end{pmatrix}$$ $$(d) 3a - c = 3 \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 15 \\ 0 \\ 6 \end{pmatrix} - \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 4 \end{pmatrix}$$ (e) $$a - 2b + c = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix}$$ $$= \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix} + \begin{pmatrix} 7 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ -6 \\ 10 \end{pmatrix}$$ (f) $$|a-2b+c| = \sqrt{8^2 + (-6)^2 + 10^2}$$ = $\sqrt{64 + 36 + 100}$ = $\sqrt{200} = \sqrt{100}\sqrt{2} = 10\sqrt{2}$ [©] Pearson Education Ltd 2009 #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise F, Question 3 #### **Question:** The position vector of the point A is 2i - 7j + 3k and AB = 5i + 4j - k. Find the position of the point B. #### **Solution:** $$AB = b - a, \text{ so } b = AB + a$$ $$b = \begin{pmatrix} 5 \\ 4 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \\ 2 \end{pmatrix}$$
Position vector of B is 7i - 3j + 2k ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise F, Question 4 ## **Question:** Given that a = ti + 2j + 3k, and that |a| = 7, find the possible values of t. #### **Solution:** $$\begin{vmatrix} a & = \sqrt{t^2 + 2^2 + 3^2} = 7 \\ \sqrt{t^2 + 4 + 9} = 7 \\ t^2 + 4 + 9 = 49 \\ t^2 = 36 \\ t = 6 \text{ or } t = -6 \end{vmatrix}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise F, Question 5 ## **Question:** Given that a = 5ti + 2tj + tk, and that $|a| = 3\sqrt{10}$, find the possible values of t. #### **Solution:** $$\begin{vmatrix} a & = \sqrt{(5t)}^2 + (2t)^2 + t^2 = 3\sqrt{10} \\ \sqrt{25t^2 + 4t^2 + t^2} = 3\sqrt{10} \\ \sqrt{30t^2 = 3\sqrt{10}} \\ 30t^2 = 9 \times 10 \\ t^2 = 3 \\ t = \sqrt{3} \text{ or } t = -\sqrt{3}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise F, Question 6 #### **Question:** The points *A* and *B* have position vectors $\begin{pmatrix} 2 \\ 9 \\ t \end{pmatrix}$ and $\begin{pmatrix} 2t \\ 5 \\ 3t \end{pmatrix}$ respectively. - (a) Find AB. - (b) Find, in terms of t, |AB|. - (c) Find the value of t that makes |AB| a minimum. - (d) Find the minimum value of | AB | . #### **Solution:** (a) $$AB = b - a = \begin{pmatrix} 2t \\ 5 \\ 3t \end{pmatrix} - \begin{pmatrix} 2 \\ 9 \\ t \end{pmatrix} = \begin{pmatrix} 2t - 2 \\ -4 \\ 2t \end{pmatrix}$$ (b) $$|AB| = \sqrt{(2t-2)^2 + (-4)^2 + (2t)^2}$$ = $\sqrt{4t^2 - 8t + 4 + 16 + 4t^2}$ = $\sqrt{8t^2 - 8t + 20}$ (c) Let $$|AB|^2 = p$$, then $p = 8t^2 - 8t + 20$ $\frac{dp}{dt} = 16t - 8$ For a minimum, $$\frac{dp}{dt} = 0$$, so $16t - 8 = 0$, i.e. $t = \frac{1}{2}$ $$\frac{d^2P}{dt^2}$$ = 16, positive, : minimum (d) When $$t = \frac{1}{2}$$, $|AB| = \sqrt{8t^2 - 8t + 20} = \sqrt{2 - 4 + 20} = \sqrt{18} = \sqrt{9}\sqrt{2} = 3\sqrt{2}$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise F, Question 7 #### **Ouestion:** The points *A* and *B* have position vectors $\begin{pmatrix} 2t+1 \\ t+1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} t+1 \\ 5 \\ 2 \end{pmatrix}$ respectively. - (a) Find AB. - (b) Find, in terms of t, |AB|. - (c) Find the value of t that makes |AB| a minimum. - (d) Find the minimum value of | AB | . #### **Solution:** (a) $$AB = b - a = \begin{pmatrix} t+1 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} 2t+1 \\ t+1 \\ 3 \end{pmatrix} = \begin{pmatrix} -t \\ 4-t \\ -1 \end{pmatrix}$$ (b) $$|AB| = \sqrt{(-t)^2 + (4-t)^2 + (-1)^2}$$ = $\sqrt{t^2 + 16 - 8t + t^2 + 1}$ = $\sqrt{2t^2 - 8t + 17}$ (c) Let $$|AB|^2 = P$$, then $P = 2t^2 - 8t + 17$ $\frac{dP}{dt} = 4t - 8$ For a minimum, $$\frac{dP}{dt} = 0$$, so $4t - 8 = 0$, i.e. $t = 2$ $$\frac{d^2P}{dt^2}$$ = 4, positive, : minimum (d) When $$t = 2$$, $|AB| = \sqrt{2t^2 - 8t + 17} = \sqrt{8 - 16 + 17} = \sqrt{9} = 3$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 1 ## **Question:** The vectors $\bf a$ and $\bf b$ each have magnitude 3 units, and the angle between $\bf a$ and $\bf b$ is 60 °. Find $\bf a.b$. #### **Solution:** a. b = |a| |b| $$\cos \theta = 3 \times 3 \times \cos 60^{\circ} = 3 \times 3 \times \frac{1}{2} = \frac{9}{2}$$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 2 #### **Question:** In each part, find **a.b**: (a) $$a = 5i + 2j + 3k$$, $b = 2i - j - 2k$ (b) $$a = 10i - 7j + 4k$$, $b = 3i - 5j - 12k$ (c) $$a = i + j - k$$, $b = -i - j + 4k$ (d) $$a = 2i - k$$, $b = 6i - 5j - 8k$ (e) $$a = 3j + 9k$$, $b = i + 12j - 4k$ #### **Solution:** (a) a . b = $$\begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}$$. $\begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ = $10 - 2 - 6 = 2$ (b) a. b = $$\begin{pmatrix} 10 \\ -7 \\ 4 \end{pmatrix}$$. $\begin{pmatrix} 3 \\ -5 \\ -12 \end{pmatrix} = 30 + 35 - 48 = 17$ (c) a. b = $$\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$. $\begin{pmatrix} -1 \\ -1 \\ 4 \end{pmatrix} = -1 - 1 - 4 = -6$ (d) a. b = $$\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$. $\begin{pmatrix} 6 \\ -5 \\ -8 \end{pmatrix}$ = 12 + 0 + 8 = 20 (e) a . b = $$\begin{pmatrix} 0 \\ 3 \\ 9 \end{pmatrix}$$. $\begin{pmatrix} 1 \\ 12 \\ -4 \end{pmatrix}$ = 0 + 36 - 36 = 0 ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 3 #### **Question:** In each part, find the angle between **a** and **b**, giving your answer in degrees to 1 decimal place: (a) $$a = 3i + 7j$$, $b = 5i + j$ (b) $$a = 2i - 5j$$, $b = 6i + 3j$ (c) $$a = i - 7j + 8k$$, $b = 12i + 2j + k$ (d) $$a = -i - j + 5k$$, $b = 11i - 3j + 4k$ (e) $$a = 6i - 7j + 12k$$, $b = -2i + j + k$ (f) $$a = 4i + 5k$$, $b = 6i - 2j$ (g) $$a = -5i + 2j - 3k$$, $b = 2i - 2j + 11k$ (h) $$a = i + j + k$$, $b = i - j + k$ #### **Solution:** (a) a . b = $$\begin{pmatrix} 3 \\ 7 \end{pmatrix}$$. $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$ = 15 + 7 = 22 $\begin{vmatrix} a \end{vmatrix} = \sqrt{3^2 + 7^2} = \sqrt{58}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{5^2 + 1^2} = \sqrt{26}$ $\sqrt{58}\sqrt{26}\cos\theta = 22$ $\cos\theta = \frac{22}{\sqrt{58}\sqrt{26}}$ $\theta = 55.5$ ° (1 d.p.) (b) a. b = $$\begin{pmatrix} 2 \\ -5 \end{pmatrix}$$. $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$ = 12 - 15 = -3 $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{2^2 + (-5)^2}{6^2 + 3^2}} = \sqrt{29}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{6^2 + 3^2} = \sqrt{45}$ $\sqrt{29}\sqrt{45}\cos\theta = -3$ $\cos\theta = \frac{-3}{\sqrt{29}\sqrt{45}}$ $$\theta = 94.8$$ ° (1 d.p.) (c) a . b = $$\begin{pmatrix} 1 \\ -7 \\ 8 \end{pmatrix}$$. $\begin{pmatrix} 12 \\ 2 \\ 1 \end{pmatrix}$ = 12 - 14 + 8 = 6 $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{1^2 + (-7)}{12^2 + 8^2}} = \sqrt{114}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{12^2 + 2^2 + 1^2} = \sqrt{149}$ $\sqrt{114}\sqrt{149}\cos\theta = 6$ $\cos\theta = \frac{6}{\sqrt{114}\sqrt{149}}$ $\theta = 87.4$ ° (1 d.p.) (d) a . b = $$\begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix}$$. $\begin{pmatrix} 11 \\ -3 \\ 4 \end{pmatrix}$ = $-11 + 3 + 20 = 12$ $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{(-1)^2 + (-1)}{2 + 5^2}} = \sqrt{27}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{11^2 + (-3)^2 + 4^2} = \sqrt{146}$ $\sqrt{27}\sqrt{146}\cos\theta = 12$ $\cos\theta = \frac{12}{\sqrt{27}\sqrt{146}}$ $\theta = 79.0^{\circ}$ (1 d.p.) (e) a . b = $$\begin{pmatrix} 6 \\ -7 \\ 12 \end{pmatrix}$$. $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ = $-12 - 7 + 12 = -7$ $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{6^2 + (-7)^2 + 12^2}{(-2)^2 + 1^2 + 1^2}} = \sqrt{229}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{(-2)^2 + 1^2 + 1^2} = \sqrt{6}$ $\sqrt{229}\sqrt{6\cos\theta} = -7$ $\cos\theta = \frac{-7}{\sqrt{229}\sqrt{6}}$ $\theta = 100.9^{\circ}$ (1 d.p.) (f) a . b = $$\begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix}$$. $\begin{pmatrix} 6 \\ -2 \\ 0 \end{pmatrix}$ = 24 + 0 + 0 = 24 $\begin{vmatrix} a \end{vmatrix} = \sqrt{4^2 + 5^2} = \sqrt{41}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{6^2 + (-2)^2} = \sqrt{40}$ $\sqrt{41}\sqrt{40}\cos\theta = 24$ $\cos\theta = \frac{24}{\sqrt{41}\sqrt{40}}$ $\theta = 53.7^{\circ}$ (1 d.p.) (g) a . b = $$\begin{pmatrix} -5 \\ 2 \\ -3 \end{pmatrix}$$. $\begin{pmatrix} 2 \\ -2 \\ 11 \end{pmatrix}$ = $-10-4-33=-47$ $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{(-5)^2 + 2^2 + (-3)^2}{2^2 + (-2)^2 + 11^2}} = \sqrt{38}$ $\begin{vmatrix} b \\ 38 \sqrt{129}\cos\theta = -47 \end{vmatrix}$ $\cos\theta = \frac{-47}{\sqrt{38}\sqrt{129}}$ $\theta = 132.2^{\circ}$ (1 d.p.) (h) a . b = $$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$. $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ = 1 - 1 + 1 = 1 $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{1^2 + 1^2 + 1^2}{1^2 + 1^2}} = \sqrt{3}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$ $\sqrt{3}\sqrt{3}\cos\theta = 1$ $\cos\theta = \frac{1}{\sqrt{3}\sqrt{3}} = \frac{1}{3}$ $\theta = 70.5$ ° (1 d.p.) ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 4 ## **Question:** Find the value, or values, of λ for which the given vectors are perpendicular: (a) $$3i + 5j$$ and $\lambda i + 6j$ (b) $$2i + 6j - k$$ and $\lambda i - 4j - 14k$ (c) $$3i + \lambda j - 8k$$ and $7i - 5j + k$ (d) $$9i - 3j + 5k$$ and $\lambda i + \lambda j + 3k$ (e) $$\lambda i + 3j - 2k$$ and $\lambda i + \lambda j + 5k$ #### **Solution:** (a) $$\begin{pmatrix} 3 \\ 5 \end{pmatrix}$$. $\begin{pmatrix} \lambda \\ 6 \end{pmatrix} = 3 \lambda + 30 = 0$ $\Rightarrow 3 \lambda = -30$ $\Rightarrow \lambda = -10$ (b) $$\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ -4 \\ -14 \end{pmatrix} = 2 \lambda - 24 + 14 = 0$$ $$\Rightarrow 2 \lambda = 10$$ $$\Rightarrow \lambda = 5$$ (c) $$\begin{pmatrix} 3 \\ \lambda \\ -8 \end{pmatrix}$$. $\begin{pmatrix} 7 \\ -5 \\ 1 \end{pmatrix} = 21 - 5 \lambda - 8 = 0$ $$\Rightarrow 5 \lambda = 13$$ $$\Rightarrow \lambda = 2\frac{3}{5}$$ (d) $$\begin{pmatrix} 9 \\ -3 \\ 5 \end{pmatrix}$$. $\begin{pmatrix} \lambda \\ \lambda \\ 3 \end{pmatrix} = 9 \lambda - 3 \lambda + 15 = 0$ $$\Rightarrow 6 \lambda = -15$$ $$\Rightarrow \lambda = -2\frac{1}{2}$$ (e) $$\begin{pmatrix} \lambda \\ 3 \\ -2 \end{pmatrix}$$. $\begin{pmatrix} \lambda \\ \lambda \\ 5 \end{pmatrix} = \lambda^2 + 3\lambda - 10 = 0$ $\Rightarrow (\lambda + 5)(\lambda - 2) = 0$ $\Rightarrow \lambda = -5 \text{ or } \lambda = 2$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 5 ## **Question:** Find, to the nearest tenth of a degree, the angle that the vector 9i - 5j + 3k makes with: - (a) the positive *x*-axis - (b) the positive y-axis #### **Solution:** (a) Using $$a = 9i - 5j + 3k$$ and $b = i$, $a \cdot b = \begin{pmatrix} 9 \\ -5 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 9$ $\begin{vmatrix} a \\ b \\ = 1 \\ \sqrt{115}\cos\theta = 9$ $\cos\theta = \frac{9}{\sqrt{115}}$ $\theta = 32.9^{\circ}$ (b) Using $$a = 9i - 5j + 3k$$ and $b = j$, $$a \cdot b = \begin{bmatrix} 9 \\ -5 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = -5$$ $$\begin{vmatrix} a \\ 115\cos\theta = -5 \\ \cos\theta
= \frac{-5}{\sqrt{115}}$$ $$\theta = 117.8^{\circ}$$ ## **Edexcel AS and A Level Modular Mathematics** **Vectors** Exercise G, Question 6 #### **Question:** Find, to the nearest tenth of a degree, the angle that the vector i + 11j - 4k makes with: - (a) the positive y-axis - (b) the positive z-axis #### **Solution:** (a) Using $$a = i + 11j - 4k$$ and $b = j$, $$a \cdot b = \begin{pmatrix} 1 & & & & \\ 11 & & & & \\ & -4 & & & \\ \end{pmatrix} \cdot \begin{pmatrix} 0 & & \\ & 1 & \\ & & 1 \end{pmatrix} = 11$$ $$\begin{vmatrix} a & & & \\ & -4 & \\ \end{pmatrix} \cdot \begin{pmatrix} 1^2 + 11^2 + & & \\ & -4 & \\ \end{pmatrix} \cdot \begin{pmatrix} -4 & & \\ & 2 \end{pmatrix} = \sqrt{138}$$ $$\begin{vmatrix} b & & \\ & 138\cos\theta = 11 \\ & & \\ & \cos\theta = \frac{11}{\sqrt{138}}$$ $$\theta = 20.5^{\circ}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 7 #### **Question:** The angle between the vectors i + j + k and 2i + j + k is θ . Calculate the exact value of $\cos \theta$. #### **Solution:** Using $$a = i + j + k$$ and $b = 2i + j + k$, $$a \cdot b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 2 + 1 + 1 = 4$$ $$\begin{vmatrix} a \\ 1 \end{vmatrix} = \sqrt{\frac{1^2 + 1^2 + 1^2}{1}} = \sqrt{3}$$ $$\begin{vmatrix} b \\ 3 \end{vmatrix} = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$$ $$\sqrt{3}\sqrt{6}\cos\theta = 4$$ $$\cos\theta = \frac{4}{\sqrt{3}\sqrt{6}} = \frac{4}{\sqrt{3}\sqrt{3}\sqrt{2}} = \frac{4}{3\sqrt{2}}$$ $$= \frac{4}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 8 ## **Question:** The angle between the vectors i+3j and $j+\lambda$ k is 60 °. Show that $\lambda=\pm\sqrt{\frac{13}{5}}$. #### **Solution:** Squaring both sides: $$1 + \lambda^2 = \frac{36}{10}$$ $$\lambda^2 = \frac{26}{10} = \frac{13}{5}$$ $$\lambda = \pm \sqrt{\frac{13}{5}}$$ #### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 9 #### **Question:** Simplify as far as possible: - (a) a. (b+c)+b. (a-c), given that **b** is perpendicular to **c**. - (b) (a + b) . (a + b) , given that |a| = 2 and |b| = 3. - (c) (a + b) . (2a b) , given that **a** is perpendicular to **b**. #### **Solution:** (a) $$a \cdot (b + c) + b \cdot (a - c)$$ = $a \cdot b + a \cdot c + b \cdot a - b \cdot c$ = $2a \cdot b + a \cdot c$ (because $b \cdot c = 0$) (b) $$(a + b)$$. $(a + b)$ = a . $(a + b)$ + b . $(a + b)$ = a . a + a . b + b . a + b . b = $|a|^2 + 2a$. b + $|b|^2$ = 4 + 2a . b + 9 = 13 + 2a . b (c) $$(a + b)$$. $(2a - b)$ = a . $(2a - b)$ + b . $(2a - b)$ = 2a . a - a . b + 2b . a - b . b = $2 |a|^2 - |b|^2$ (because a . b = 0) ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 10 ## **Question:** Find a vector which is perpendicular to both **a** and **b**, where: (a) $$a = i + j - 3k$$, $b = 5i - 2j - k$ (b) $$a = 2i + 3j - 4k$$, $b = i - 6j + 3k$ (c) $$a = 4i - 4j - k$$, $b = -2i - 9j + 6k$ #### **Solution:** (a) Let the required vector be xi + yj + zk. Then $$\begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \quad \text{and} \quad \begin{pmatrix} 5 \\ -2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$ $$x + y - 3z = 0$$ $$5x - 2y - z = 0$$ Let z = 1: $$x + y = 3 \qquad (\times 2)$$ $$5x - 2y = 1$$ $$2x + 2y = 6$$ $$5x - 2y = 1$$ Adding, $$7x = 7 \Rightarrow x = 1$$ $$1 + y = 3$$, so $y = 2$ So $$x = 1$$, $y = 2$ and $z = 1$ A possible vector is i + 2j + k. (b) Let the required vector be xi + yj + zk. Then $$\begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \quad \text{and} \quad \begin{pmatrix} 1 \\ -6 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$ $$2x + 3y - 4z = 0$$ $$x - 6y + 3z = 0$$ Let $$z = 1$$: $$2x + 3y = 4$$ $$x - 6y = -3 \qquad (\times 2)$$ $$2x + 3y = 4$$ $$2x - 12y = -6$$ Subtracting, $$15y = 10 \implies y = \frac{2}{3}$$ $$2x + 2 = 4$$, so $x = 1$ So $$x = 1$$, $y = \frac{2}{3}$ and $z = 1$ A possible vector is $i + \frac{2}{3}j + k$. Another possible vector is $3\left(i+\frac{2}{3}j+k\right)=3i+2j+3k$. (c) Let the required vector be xi + yj + zk. Then $$\begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \quad \text{and} \quad \begin{pmatrix} -2 \\ -9 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$ $$4x - 4y - z = 0$$ - 2x - 9y + 6z = 0 Let $$z = 1$$: $$4x - 4y = 1$$ - $2x - 9y = -6$ (× 2) $$4x - 4y = 1 - 4x - 18y = -12$$ Adding, $$-22y = -11 \implies y = \frac{1}{2}$$ $$4x - 2 = 1$$, so $x = \frac{3}{4}$ So $$x = \frac{3}{4}$$, $y = \frac{1}{2}$ and $z = 1$ A possible vector is $\frac{3}{4}i + \frac{1}{2}j + k$ Another possible vector is $4\left(\frac{3}{4}\mathbf{i} + \frac{1}{2}\mathbf{j} + \mathbf{k}\right) = 3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$. ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 11 ### **Question:** The points A and B have position vectors 2i + 5j + k and 6i + j - 2krespectively, and O is the origin. Calculate each of the angles in \triangle OAB, giving your answers in degrees to 1 decimal place. #### **Solution:** Using **a** and **b** to find θ : Using **a** and **b** to find $$\theta$$: a. b = $\begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 6 \\ 1 \\ -2 \end{pmatrix}$ $\begin{vmatrix} a \\ b \\ = \sqrt{6^2 + 5^2 + 1^2} = \sqrt{30} \\ |b| = \sqrt{6^2 + 1^2 + (-2)^2} = \sqrt{41} \\ \sqrt{30}\sqrt{41\cos\theta} = 15$ $\cos\theta = \frac{15}{\sqrt{30}\sqrt{41}}$ $$\theta$$ = 64.7 ° Using AO and AB to find ϕ : $$AO = -a = \begin{pmatrix} -2 \\ -5 \\ -1 \end{pmatrix}$$ $$AB = b - a = \begin{pmatrix} 6 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ -3 \end{pmatrix}$$ [©] Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 12 ### **Question:** The points A, B and C have position vectors i + 3j + k, 2i + 7j - 3k and 4i - 5j + 2k respectively. - (a) Find, as surds, the lengths of AB and BC. - (b) Calculate, in degrees to 1 decimal place, the size of \angle ABC. #### **Solution:** (a) $$AB = b - a = \begin{pmatrix} 2 \\ 7 \\ -3 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -4 \end{pmatrix}$$ Length of $AB = |AB| = \sqrt{1^2 + 4^2 + (-4)^2} = \sqrt{33}$ $$BC = c - b = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 7 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -12 \\ 5 \end{pmatrix}$$ Length of $BC = |BC| = \sqrt{2^2 + (-12)^2 + 5^2} = \sqrt{173}$ θ is the angle between BA and BC. BA . BC = $$\begin{pmatrix} -1 \\ -4 \\ 4 \end{pmatrix}$$. $\begin{pmatrix} 2 \\ -12 \\ 5 \end{pmatrix}$ = $-2 + 48 + 20 = 66$ $\sqrt{33}\sqrt{173}\cos\theta = 66$ $\cos\theta = \frac{66}{\sqrt{33}\sqrt{173}}$ $\theta = 29.1$ ° (1 d.p.) ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 13 ### **Question:** Given that the points A and B have coordinates (7, 4, 4) and (2, -2, -1) respectively, use a vector method to find the value of cos AOB, where O is the origin. Prove that the area of \triangle AOB is $\frac{5\sqrt{29}}{2}$. #### **Solution:** The position vectors of A and B are a = $$\begin{pmatrix} 7 \\ 4 \\ 4 \end{pmatrix}$$ and b = $\begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$ a . b = $\begin{pmatrix} 7 \\ 4 \\ 4 \end{pmatrix}$. $\begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$ = $14 - 8 - 4 = 2$ $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{7^2 + 4^2 + 4^2}{2}} = \sqrt{81} = 9$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{2^2 + (-2)^2 + (-1)^2} = \sqrt{9} = 3$ $9 \times 3 \times \cos \theta = 2$ $\cos \theta = \frac{2}{27}$ $\cos \angle AOB = \frac{2}{27}$ Area of $$\angle AOB = \frac{1}{2} |a| |b| \sin \angle AOB$$ Using $$\sin^2 \theta + \cos^2 \theta = 1$$: $\sin^2 \angle AOB = 1 - \left(\frac{2}{27}\right)^2 = \frac{725}{27^2}$ $\sin \angle AOB = \sqrt{\frac{725}{27^2}} = \frac{\sqrt{25}\sqrt{29}}{27} = \frac{5\sqrt{29}}{27}$ Area of $\triangle AOB = \frac{1}{2} \times 9 \times 3 \times \frac{5\sqrt{29}}{27} = \frac{5\sqrt{29}}{2}$ [©] Pearson Education Ltd 2009 ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 14 ### **Question:** AB is a diameter of a circle centred at the origin O, and P is any point on the circumference of the circle. Using the position vectors of A, B and P, prove (using a scalar product) that AP is perpendicular to BP (i.e. the angle in the semicircle is a right angle). #### **Solution:** Let the position vectors, referred to origin O, of A, B and P be \mathbf{a} , \mathbf{b} and \mathbf{p} respectively. Since $$|OA| = |OB|$$ and AB is a straight line, $b = -a$ $AP = p - a$ $BP = p - b = p - (-a) = p + a$ $AP \cdot BP = (p - a) \cdot (p + a) = p \cdot (p + a) - a \cdot (p + a)$ $= p \cdot p + p \cdot a - a \cdot p - a \cdot a$ $= p \cdot p - a \cdot a$ $p \cdot p = |p|^2$ and $a \cdot a = |a|^2$ Also |p| = |a|, since the magnitude of each vector equals the radius of the circle. So AP . BP = $$|p|^2 - |a|^2 = 0$$ Since the scalar product is zero, AP is perpendicular to BP. ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise G, Question 15 ### **Question:** Use a vector method to prove that the diagonals of the square *OABC* cross at right angles. #### **Solution:** Let the position vectors, referred to origin O, of A and C be \mathbf{a} and \mathbf{c} respectively. $$AB = OC = c$$ $AC = c - a$ $OB = OA + AB = a + c$ $AC \cdot OB = (c - a) \cdot (a + c) = c \cdot (a + c) - a \cdot (a + c)$ $= c \cdot a + c \cdot c - a \cdot a - a \cdot c$ $= c \cdot c - a \cdot a$ $= |c|^2 - |a|^2$ But |c| = |a|, since the magnitude of each vector equals the length of the side of the square. So AC . OB = $$|c|^2 - |a|^2 = 0$$
Since the scalar product is zero; the diagonals cross at right angles. ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise H, Question 1 ### **Question:** Find a vector equation of the straight line which passes through the point A, with position vector \mathbf{a} , and is parallel to the vector \mathbf{b} : (a) $$a = 6i + 5j - k$$, $b = 2i - 3j - k$ (b) $$a = 2i + 5j$$, $b = i + j + k$ (c) $$a = -7i + 6j + 2k$$, $b = 3i + j + 2k$ (d) $$a = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$$, $b = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$ (e) $$a = \begin{pmatrix} 6 \\ -11 \\ 2 \end{pmatrix}$$, $b = \begin{pmatrix} 0 \\ 5 \\ -2 \end{pmatrix}$ #### **Solution:** (a) $$\mathbf{r} = \begin{pmatrix} 6 \\ 5 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}$$ (b) $$\mathbf{r} = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$ (c) $$\mathbf{r} = \begin{pmatrix} -7 \\ 6 \\ 2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$ (d) $$\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} + t \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}$$ (e) $$\mathbf{r} = \begin{pmatrix} 6 \\ -11 \\ 2 \end{pmatrix} + t \begin{pmatrix} 0 \\ 5 \\ -2 \end{pmatrix}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise H, Question 2 ### **Question:** Calculate, to 1 decimal place, the distance between the point P, where t = 1, and the point Q, where t = 5, on the line with equation: (a) $$r = (2i - j + k) + t (3i - 8j - k)$$ (b) $$r = (i + 4j + k) + t (6i - 2j + 3k)$$ (c) $$r = (2i + 5k) + t(-3i + 4j - k)$$ #### **Solution:** (a) $$t = 1$$: $p = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 3 \\ -8 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -9 \\ 0 \end{pmatrix}$ $$t = 5$$: $q = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + 5 \begin{pmatrix} 3 \\ -8 \\ -1 \end{pmatrix} = \begin{pmatrix} 17 \\ -41 \\ -4 \end{pmatrix}$ $$PQ = q - p = \begin{pmatrix} 17 \\ -41 \\ -4 \end{pmatrix} - \begin{pmatrix} 5 \\ -9 \\ 0 \end{pmatrix} = \begin{pmatrix} 12 \\ -32 \\ -4 \end{pmatrix}$$ Distance $= |PQ| = \sqrt{12^2 + (-32)^2 + (-4)^2} = \sqrt{1184} = 34.4 (1 d.p.)$ (b) $$t = 1$$: $p = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \\ 4 \end{pmatrix}$ $$t = 5$$: $q = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} + 5 \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 31 \\ -6 \\ 16 \end{pmatrix}$ $$PQ = q - p = \begin{pmatrix} 31 \\ -6 \\ 16 \end{pmatrix} - \begin{pmatrix} 7 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 24 \\ -8 \\ 12 \end{pmatrix}$$ Distance $= \begin{vmatrix} PQ \\ -84 \end{vmatrix} = \sqrt{24^2 + (-8)^2 + 12^2}$ $$= \sqrt{784} = 28 \text{ (exact)}$$ (c) $$t = 1$$: $p = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} + 1 \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \\ 4 \end{pmatrix}$ $$t = 5$$: $q = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} + 5 \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -13 \\ 20 \\ 0 \end{pmatrix}$ $$PQ = q - p = \begin{pmatrix} -13 \\ 20 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} -12 \\ 16 \\ -4 \end{pmatrix}$$ Distance $= |PQ| = \sqrt{(-12)^2 + 16^2 + (-4)^2} = \sqrt{416} = 20.4 (1 d.p.)$ [©] Pearson Education Ltd 2009 ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise H, Question 3 ### **Question:** Find a vector equation for the line which is parallel to the z-axis and passes through the point (4, -3, 8). #### **Solution:** Vector $$\mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$ is in the direction of the z-axis. The point (4, -3, 8) has position vector $\begin{bmatrix} 4 \\ -3 \\ 8 \end{bmatrix}$. The equation of the line is $$\mathbf{r} = \begin{pmatrix} 4 \\ -3 \\ 8 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise H, Question 4 ## **Question:** Find a vector equation for the line which passes through the points: - (a) (2, 1, 9) and (4, -1, 8) - (b) (-3, 5, 0) and (7, 2, 2) - (c) (1, 11, -4) and (5, 9, 2) - (d) (-2, -3, -7) and (12, 4, -3) #### **Solution:** (a) $$a = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix}$$, $b = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix}$ $$b - a = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$$ Equation is $$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + t \begin{pmatrix} 2 \\ -2 \\ -1 \end{pmatrix}$$ (b) $$a = \begin{pmatrix} -3 \\ 5 \\ 0 \end{pmatrix}$$, $b = \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix}$ $b - a = \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix} - \begin{pmatrix} -3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 10 \\ -3 \\ 2 \end{pmatrix}$ Equation is $$\mathbf{r} = \left(\begin{array}{c} -3 \\ 5 \\ 0 \end{array} \right) + t \left(\begin{array}{c} 10 \\ -3 \\ 2 \end{array} \right)$$ (c) $$a = \begin{pmatrix} 1 \\ 11 \\ -4 \end{pmatrix}$$, $b = \begin{pmatrix} 5 \\ 9 \\ 2 \end{pmatrix}$ $$b - a = \begin{pmatrix} 5 \\ 9 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 11 \\ -4 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$$ Equation is $$\mathbf{r} = \begin{pmatrix} 1 \\ 11 \\ -4 \end{pmatrix} + t \begin{pmatrix} 4 \\ -2 \\ 6 \end{pmatrix}$$ (d) $$a = \begin{pmatrix} -2 \\ -3 \\ -7 \end{pmatrix}$$, $b = \begin{pmatrix} 12 \\ 4 \\ -3 \end{pmatrix}$ $b - a = \begin{pmatrix} 12 \\ 4 \\ -3 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -7 \end{pmatrix} = \begin{pmatrix} 14 \\ 7 \\ 4 \end{pmatrix}$ Equation is $$\mathbf{r} = \begin{pmatrix} -2 \\ -3 \\ -7 \end{pmatrix} + t \begin{pmatrix} 14 \\ 7 \\ 4 \end{pmatrix}$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise H, Question 5 ### **Question:** The point (1, p, q) lies on the line l. Find the values of p and q, given that the equation is l is: (a) $$r = (2i - 3j + k) + t(i - 4j - 9k)$$ (b) $$r = (-4i + 6j - k) + t(2i - 5j - 8k)$$ (c) $$r = (16i - 9j - 10k) + t(3i + 2j + k)$$ #### **Solution:** (a) $$\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -4 \\ -9 \end{pmatrix}$$ $x = 1$: $2 + t = 1 \Rightarrow t = -1$ $\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \\ -9 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 10 \end{pmatrix}$ So p = 1 and q = 10. (b) $$\mathbf{r} = \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -5 \\ -8 \end{pmatrix}$$ $$x = 1: \quad -4 + 2t = 1 \quad \Rightarrow \quad 2t = 5 \quad \Rightarrow \quad t = \frac{5}{2}$$ $$\mathbf{r} = \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 2 \\ -5 \\ -8 \end{pmatrix} = \begin{pmatrix} 1 \\ -6\frac{1}{2} \\ -21 \end{pmatrix}$$ $$\operatorname{So} p = -6\frac{1}{2} \operatorname{and} q = -21.$$ (c) $$\mathbf{r} = \begin{pmatrix} 16 \\ -9 \\ -10 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$ $x = 1$: $16 + 3t = 1 \implies 3t = -15 \implies t = -5$ $$\mathbf{r} = \begin{pmatrix} 16 \\ -9 \\ -10 \end{pmatrix} + \begin{pmatrix} -5 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -19 \\ -15 \end{pmatrix}$$ $$\mathbf{So} \ p = -19 \ \text{and} \ q = -15.$$ ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise I, Question 1 ### **Question:** Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection. $$\mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ -7 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 1 \\ 14 \\ 16 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$$ #### **Solution:** $$\mathbf{r} = \left(\begin{array}{c} 2+2t \\ 4+t \\ -7+3t \end{array}\right), \mathbf{r} = \left(\begin{array}{c} 1+s \\ 14-s \\ 16-2s \end{array}\right).$$ At an intersection point: $\begin{pmatrix} 2+2t \\ 4+t \\ -7+3t \end{pmatrix} = \begin{pmatrix} 1+s \\ 14-s \\ 16-2s \end{pmatrix}$ $$2 + 2t = 1 + s$$ $$4 + t = 14 - s$$ Adding: $6 + 3t = 15$ $$\Rightarrow 3t = 9$$ $$\Rightarrow t = 3$$ $$2 + 6 = 1 + s$$ $$\Rightarrow s = 7$$ If the lines intersect, -7 + 3t = 16 - 2s must be true. $$-7 + 3t = -7 + 9 = 2$$ $$16 - 2s = 16 - 14 = 2$$ The *z* components are equal, so the lines do intersect. Intersection point: $$\begin{pmatrix} 2+2t \\ 4+t \\ -7+3t \end{pmatrix} = \begin{pmatrix} 8 \\ 7 \\ 2 \end{pmatrix}$$ Coordinates (8, 7, 2) ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise I, Question 2 ## **Question:** Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection. $$\mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 9 \\ -2 \\ -1 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$ #### **Solution:** $$\mathbf{r} = \begin{pmatrix} 2+9t \\ 2-2t \\ -3-t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 3+2s \\ -1-s \\ 2+3s \end{pmatrix}$$ At an intersection point: $\begin{pmatrix} 2+9t \\ 2-2t \\ -3-t \end{pmatrix} = \begin{pmatrix} 3+2s \\ -1-s \\ 2+3s \end{pmatrix}$ $$2 - 9 = 3 + 2s$$ $$\Rightarrow 2s = -10$$ $$\Rightarrow s = -5$$ If the lines intersect, -3 - t = 2 + 3s must be true. $$-3 - t = -3 + 1 = -2$$ 2 + 3s = 2 - 15 = -13 The *z* components are not equal, so the lines do not intersect. ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise I, Question 3 ### **Question:** Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection. $$\mathbf{r} = \begin{pmatrix} 12 \\ 4 \\ -6 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 8 \\ -2 \\ 6 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ -5 \end{pmatrix}$$ #### **Solution:** $$\mathbf{r} =
\begin{pmatrix} 12 - 2t \\ 4 + t \\ -6 + 4t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 8 + 2s \\ -2 + s \\ 6 - 5s \end{pmatrix}$$ At an intersection point: $\begin{pmatrix} 12 - 2t \\ 4 + t \\ -6 + 4t \end{pmatrix} = \begin{pmatrix} 8 + 2s \\ -2 + s \\ 6 - 5s \end{pmatrix}$ $$12 - 2t = 8 + 2s$$ $$4 + t = -2 + s (\times 2)$$ $$12 - 2t = 8 + 2s$$ $$8 + 2t = -4 + 2s$$ Adding: 20 = 4 + 4s $$\Rightarrow$$ 4 $s = 16$ $$\Rightarrow$$ $s = 4$ $$12 - 2t = 8 + 8$$ $$\Rightarrow$$ $2t = -4$ $$\Rightarrow t = -2$$ If the lines intersect, -6 + 4t = 6 - 5s must be true. $$-6 + 4t = -6 - 8 = -14$$ $$6 - 5s = 6 - 20 = -14$$ The z components are equal, so the lines do intersect. Intersection point: $$\left(\begin{array}{c} 12-2t \\ 4+t \\ -6+4t \end{array}\right) = \left(\begin{array}{c} 16 \\ 2 \\ -14 \end{array}\right).$$ Coordinates (16, 2, -14) ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise I, Question 4 ### **Question:** Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection. $$\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} + t \begin{pmatrix} 4 \\ 2 \\ 6 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} -2 \\ -9 \\ 12 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$ #### **Solution:** $$\mathbf{r} = \begin{pmatrix} 1+4t \\ 2t \\ 4+6t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} -2+s \\ -9+2s \\ 12-s \end{pmatrix}$$ $$1 + 4t = -2 + s$$ $$2t = -9 + 2s \qquad (\times 2)$$ $$1 + 4t = -2 + s$$ $$4t = -18 + 4s$$ Subtracting: 1 = 16 - 3s $$\Rightarrow$$ 3 $s = 15$ $$\Rightarrow$$ $s = 5$ $$1 + 4t = -2 + 5$$ $$\Rightarrow$$ 4 $t=2$ $$\Rightarrow t = \frac{1}{2}$$ If the lines intersect, 4 + 6t = 12 - s must be true. $$4 + 6t = 4 + 3 = 7$$ $$12 - s = 12 - 5 = 7$$ The z components are equal, so the lines do intersect. Intersection point: $$\left(\begin{array}{cc} 1+4t \\ 2t \\ 4+6t \end{array}\right) = \left(\begin{array}{c} 3 \\ 1 \\ 7 \end{array}\right).$$ Coordinates (3, 1, 7) ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise I, Question 5 ### **Question:** Determine whether the lines with the given equations intersect. If they do intersect, find the coordinates of their point of intersection. $$\mathbf{r} = \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix} \text{ and } \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} + s \begin{pmatrix} 6 \\ -4 \\ 1 \end{pmatrix}$$ ### **Solution:** $$\mathbf{r} = \begin{pmatrix} 3+2t \\ -3+t \\ 1-4t \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 3+6s \\ 4-4s \\ 2+s \end{pmatrix}$$ At an intersection point: $\begin{pmatrix} 3+2t \\ -3+t \\ 1-4t \end{pmatrix} = \begin{pmatrix} 3+6s \\ 4-4s \\ 2+s \end{pmatrix}$ $$3 + 2t = 3 + 6s$$ $-3 + t = 4 - 4s$ (× 2) $3 + 2t = 3 + 6s$ $-6 + 2t = 8 - 8s$ Subtracting: 9 = -5 + 14s $$\Rightarrow$$ 14 $s = 14$ $$\Rightarrow$$ $s = 1$ $$3 + 2t = 3 + 6$$ $$\Rightarrow$$ 2 $t = 6$ $$\Rightarrow t = 3$$ If the lines intersect, 1 - 4t = 2 + s must be true. $$1 - 4t = 1 - 12 = -11$$ $$2 + s = 2 + 1 = 3$$ The z components are not equal, so the lines do not intersect. ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise J, Question 1 ## **Question:** Find, to 1 decimal place, the acute angle between the lines with the given vector equations: $$r = (2i + j + k) + t (3i - 5j - k)$$ and $r = (7i + 4j + k) + s (2i + j - 9k)$ ### **Solution:** Direction vectors are $$a = \begin{pmatrix} 3 \\ -5 \\ -1 \end{pmatrix}$$ and $b = \begin{pmatrix} 2 \\ 1 \\ -9 \end{pmatrix}$ $$\cos \theta = \frac{a \cdot b}{|a| |b|}$$ a. b = $$\begin{pmatrix} 3 \\ -5 \\ -1 \end{pmatrix}$$. $\begin{pmatrix} 2 \\ 1 \\ -9 \end{pmatrix}$ = 6 - 5 + 9 = 10 $\begin{vmatrix} a \end{vmatrix} = \sqrt{\frac{3^2 + (-5)^2 + (-1)^2}{2^2 + 1^2 + (-9)^2}} = \sqrt{35}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{2^2 + 1^2 + (-9)^2} = \sqrt{86}$ $$\cos\theta = \frac{10}{\sqrt{35\sqrt{86}}}$$ $$\theta = 79.5$$ ° (1 d.p.) The acute angle between the lines is 79.5 $^{\circ}$ (1 d.p.) [©] Pearson Education Ltd 2009 ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise J, Question 2 ## **Question:** Find, to 1 decimal place, the acute angle between the lines with the given vector equations: $$r = (i - j + 7k) + t (-2i - j + 3k)$$ and $r = (8i + 5j - k) + s (-4i - 2j + k)$ ### **Solution:** Direction vectors are $$a = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}$$ and $b = \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}$ $$\cos\theta = \frac{a \cdot b}{|a| |b|}$$ a.b = $$\begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}$$. $\begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}$ = 8 + 2 + 3 = 13 | a | = $\sqrt{(-2)^2 + (-1)^2 + 3^2}$ = $\sqrt{14}$ | b | = $\sqrt{(-4)^2 + (-2)^2 + 1^2}$ = $\sqrt{21}$ $$\begin{vmatrix} a \end{vmatrix} = \sqrt{(-2)^2 + (-1)^2 + 3^2} = \sqrt{14}$$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{(-4)^2 + (-2)^2 + 1^2} = \sqrt{21}$ $$\cos\theta = \frac{13}{\sqrt{14\sqrt{21}}}$$ $$\theta = 40.7$$ ° (1 d.p.) The acute angle between the lines is 40.7° (1 d.p.) [©] Pearson Education Ltd 2009 ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise J, Question 3 ## **Question:** Find, to 1 decimal place, the acute angle between the lines with the given vector equations: $$r = (3i + 5j - k) + t(i + j + k)$$ and $r = (-i + 11j + 5k) + s(2i - 7j + 3k)$ #### **Solution:** Direction vectors are $$a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$ and $b = \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}$ $$\cos \theta = \frac{a \cdot b}{|a| |b|}$$ a.b = $$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$. $\begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}$ = 2 - 7 + 3 = -2 $\begin{vmatrix} a \\ b \end{vmatrix}$ = $\sqrt{\frac{1^2 + 1^2 + 1^2}{2^2 + (-7)^2 + 3^2}} = \sqrt{62}$ $$\begin{vmatrix} a \end{vmatrix} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{2^2 + (-7)^2 + 3^2} = \sqrt{62}$ $$\cos \theta = \frac{-2}{\sqrt{3\sqrt{62}}}$$ $$\theta$$ = 98.4 ° (1 d.p.) This is the angle between the two vectors. The acute angle between the lines is 180 $^{\circ}$ – 98.4 $^{\circ}$ = 81.6 $^{\circ}$ (1 d.p.). ### **Edexcel AS and A Level Modular Mathematics** Vectors **Exercise J, Question 4** ## **Question:** Find, to 1 decimal place, the acute angle between the lines with the given vector equations: $$r = (i + 6j - k) + t (8i - j - 2k)$$ and $r = (6i + 9j) + s (i + 3j - 7k)$ ### **Solution:** Direction vectors are $$a = \begin{pmatrix} 8 \\ -1 \\ -2 \end{pmatrix}$$ and $b = \begin{pmatrix} 1 \\ 3 \\ -7 \end{pmatrix}$ $$\cos\theta = \frac{a \cdot b}{|a| |b|}$$ a. b = $$\begin{pmatrix} 8 \\ -1 \\ -2 \end{pmatrix}$$. $\begin{pmatrix} 1 \\ 3 \\ -7 \end{pmatrix}$ = $8 - 3 + 14 = 19$ $\begin{vmatrix} a \\ b \end{vmatrix}$ = $\sqrt{\frac{8^2 + (-1)^2 + (-2)^2}{1^2 + 3^2 + (-7)^2}} = \sqrt{69}$ $$\begin{vmatrix} a \end{vmatrix} = \sqrt{8^2 + (-1)^2 + (-2)^2} = \sqrt{69}$$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{1^2 + 3^2 + (-7)^2} = \sqrt{59}$ $$\cos\theta = \frac{19}{\sqrt{69}\sqrt{59}}$$ $$\theta = 72.7$$ ° (1 d.p.) The acute angle between the lines is 72.7° (1 d.p.) [©] Pearson Education Ltd 2009 ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise J, Question 5 ### **Question:** Find, to 1 decimal place, the acute angle between the lines with the given vector equations: $$r = (2i + k) + t (11i + 5j - 3k)$$ and $r = (i + j) + s (-3i + 5j + 4k)$ ### **Solution:** Direction vectors are $$a = \begin{pmatrix} 11 \\ 5 \\ -3 \end{pmatrix}$$ and $b = \begin{pmatrix} -3 \\ 5 \\ 4 \end{pmatrix}$ $$\cos \theta = \frac{a \cdot b}{|a| |b|}$$ a. b = $$\begin{pmatrix} 11 \\ 5 \\ -3 \end{pmatrix}$$. $\begin{pmatrix} -3 \\ 5 \\ 4 \end{pmatrix}$ = $-33 + 25 - 12 = -20$ $\begin{vmatrix} a \end{vmatrix} = \sqrt{11^2 + 5^2 + (-3)^2} = \sqrt{155}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{(-3)^2 + 5^2 + 4^2} = \sqrt{50}$ $$\cos\theta = \frac{-20}{\sqrt{155}\sqrt{50}}$$ $$\theta = 103.1$$ ° (1 d.p.) This is the angle between the two vectors. The acute angle between the lines is $180^{\circ} - 103.1^{\circ} = 76.9^{\circ}$ (1 d.p.). ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise J, Question 6 ## **Question:** The straight lines l_1 and l_2 have vector equations $$r = (i + 4j + 2k) + t(8i + 5j + k)$$ and $r = (i + 4j + 2k) + s(3i + j)$ respectively, and P is the point with coordinates $(1, 4, 2)$. - (a) Show that the point Q (9, 9, 3) lies on l_1 . - (b) Find the cosine of the acute angle between l_1 and l_2 . - (c) Find the possible coordinates of the point R, such that R lies on l_2 and PQ = PR. #### **Solution:** (a) Line $$l_1$$: $\mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} + t \begin{pmatrix} 8 \\ 5 \\ 1 \end{pmatrix}$ When $t = 1$, $\mathbf{r} = \begin{pmatrix} 9 \\ 9 \\ 3 \end{pmatrix}$ So the point (9, 9, 3) lies on l_1 . (b) Direction vectors are $$a = \begin{pmatrix} 8 \\ 5 \\ 1 \end{pmatrix}$$ and $b = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ a. b = $$\begin{pmatrix} 8 \\ 5 \\ 1 \end{pmatrix}$$. $\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ = 24 + 5 + 0 = 29 $\begin{vmatrix} a \end{vmatrix} = \sqrt{8^2 + 5^2 + 1^2} = \sqrt{90}$ $\begin{vmatrix} b \end{vmatrix} = \sqrt{3^2 + 1^2 + 0^2} = \sqrt{10}$ $\cos \theta = \frac{29}{\sqrt{90}\sqrt{10}} = \frac{29}{\sqrt{900}} = \frac{29}{30}$ (c) PQ = $$\sqrt{\frac{(9-1)^2 + (9-4)^2 + (3-2)^2}{8^2 + 5^2 + 1^2}} = \sqrt{90}$$ Line $$l_2$$: $\mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} + s \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1+3s \\ 4+s \\ 2 \end{pmatrix}$ Let the coordinates of R be $(1+3s, 4+s, 2)$ $PR = \sqrt{(1+3s-1)^2 + (4+s-4)^2 + (2-2)^2}$ $= \sqrt{9s^2 + s^2} = \sqrt{10s^2}$ $PQ^2 = PR^2$: $90 = 10s^2$ $\Rightarrow s^2 = 9$ $\Rightarrow s = \pm 3$ When $s = 3$, $\mathbf{r} = \begin{pmatrix} 10 \\ 7 \\ 2 \end{pmatrix}$ R : $\begin{pmatrix} 10, 7, 2 \\ 2 \end{pmatrix}$ When $s = -3$, $\mathbf{r} = \begin{pmatrix} -8 \\ 1 \\ 2 \end{pmatrix}$ ##
Edexcel AS and A Level Modular Mathematics Vectors Exercise K, Question 1 ### **Question:** With respect to an origin O, the position vectors of the points L, M and N are (4i + 7j + 7k), (i + 3j + 2k) and (2i + 4j + 6k) respectively. - (a) Find the vectors ML and MN. - (b) Prove that $\cos \angle LMN = \frac{9}{10}$. #### **Solution:** $$1 = \begin{pmatrix} 4 \\ 7 \\ 7 \end{pmatrix}, m = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, n = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$$ (a) $$ML = 1 - m = \begin{pmatrix} 4 \\ 7 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$$ $$MN = n - m = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$ (b) $$L$$ $M \in \Theta$ $$\cos \theta = \frac{\text{ML . MN}}{\mid \text{ML} \mid \mid \text{MN} \mid}$$ ML . MN = $$\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} . \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = 3 + 4 + 20 = 27$$ $$| ML | = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} | MN | = \sqrt{1^2 + 1^2 + 4^2} = \sqrt{18} \cos \theta = \frac{27}{\sqrt{50}\sqrt{18}} = \frac{27}{\sqrt{25}\sqrt{2}\sqrt{9}\sqrt{2}} = \frac{27}{5 \times 3 \times 2} = \frac{9}{10}.$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 2 ### **Question:** The position vectors of the points A and B relative to an origin O are 5i + 4j + k, -i + j - 2k respectively. Find the position vector of the point P which lies on AB produced such that AP = 2BP. #### **Solution:** $$a = \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix} \text{ and } b = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$$ $$OP = OA + AP = OA + 2AB$$ $$p = a + 2 (b - a) = 2b - a$$ $$p = 2 \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 5 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -7 \\ -2 \\ -5 \end{pmatrix}$$ The position vector of P is -7i - 2j - 5k. ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 3 ### **Question:** Points A, B, C, D in a plane have position vectors a = 6i + 8j, $b = \frac{3}{2}a$, c = 6i + 3j, $d = \frac{5}{3}c$ respectively. Write down vector equations of the lines AD and BC and find the position vector of their point of intersection. #### **Solution:** $$a = \begin{pmatrix} 6 \\ 8 \end{pmatrix}, b = \frac{3}{2}a = \begin{pmatrix} 9 \\ 12 \end{pmatrix}$$ $$c = \begin{pmatrix} 6 \\ 3 \end{pmatrix}, d = \frac{5}{3}c = \begin{pmatrix} 10 \\ 5 \end{pmatrix}$$ $$Line AD: \quad AD = d - a = \begin{pmatrix} 10 \\ 5 \end{pmatrix} - \begin{pmatrix} 6 \\ 8 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$ $$r = \begin{pmatrix} 6 \\ 8 \end{pmatrix} + t \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$ $$Line BC: \quad BC = c - b = \begin{pmatrix} 6 \\ 3 \end{pmatrix} - \begin{pmatrix} 9 \\ 12 \end{pmatrix} = \begin{pmatrix} -3 \\ -9 \end{pmatrix}$$ $$r = \begin{pmatrix} 9 \\ 12 \end{pmatrix} + s \begin{pmatrix} -3 \\ -9 \end{pmatrix}$$ $$or$$ $$r = \begin{pmatrix} 9 \\ 12 \end{pmatrix} + s \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$ Where AD and BC intersect, $\begin{pmatrix} 6+4t \\ 8-3t \end{pmatrix} = \begin{pmatrix} 9+s \\ 12+3s \end{pmatrix}$ (Using the last version of BC) 6 + 4t = 9 + s ($\times 3$) 8 - 3t = 12 + 3s 18 + 12t = 27 + 3s 8 - 3t = 12 + 3sSubtracting: 10 + 15t = 15 $$\Rightarrow$$ 15 $t = 5$ $$\Rightarrow t = \frac{1}{3}$$ Intersection: $$\mathbf{r} = \begin{pmatrix} 6+4t \\ 8-3t \end{pmatrix} = \begin{pmatrix} \frac{22}{3} \\ 7 \end{pmatrix}$$ $$r = \frac{22}{3}i + 7j$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 4 ### **Question:** Find the point of intersection of the line through the points (2, 0, 1) and (-1, 3, 4) and the line through the points (-1, 3, 0) and (4, -2, 5). Calculate the acute angle between the two lines. #### **Solution:** Line through (2, 0, 1) and (-1, 3, 4). Let $$a = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$ and $b = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$ $$\mathbf{b} - \mathbf{a} = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}$$ Equation: $$\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}$$ or $$\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$ Line through (-1,3,0) and (4,-2,5). Let $$c = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}$$ and $d = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix}$ $$d-c = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ -5 \\ 5 \end{pmatrix}$$ Equation: $$r = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} + s \begin{pmatrix} 5 \\ -5 \\ 5 \end{pmatrix}$$ or $$\mathbf{r} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$ At the intersection point: $\begin{pmatrix} 2-t \\ t \\ 1+t \end{pmatrix} = \begin{pmatrix} -1+s \\ 3-s \\ s \end{pmatrix}$ $$2 - t = -1 + s$$ $$t = 3 - s$$ $$1 + t = s$$ Adding the second and third equations: $$1 + 2t = 3$$ $$2t = 2$$ $$t=1$$ $$s = 2$$ Intersection point: $$\mathbf{r} = \begin{pmatrix} 2-t \\ t \\ 1+t \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$ Coordinates (1, 1, 2) Direction vectors of the lines are $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ Calling these **m** and **n**: $$\cos \theta = \frac{\text{m.n}}{|\text{m}| |\text{n}|}$$ $$m \cdot n = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = -1 - 1 + 1 = -1$$ $$|m| = \sqrt{\frac{(-1)^2 + 1^2 + 1^2}{1}} = \sqrt{3}$$ $$|n| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$$ $$\cos \theta = \frac{-1}{\sqrt{3}\sqrt{3}} = \frac{-1}{3}$$ $$\theta = 109.5$$ ° (1 d.p.) This is the angle between the two vectors. The acute angle between the lines is $180^{\circ} - 109.5^{\circ} = 70.5^{\circ}$ (1 d.p.). ### **Edexcel AS and A Level Modular Mathematics** **Vectors** Exercise K, Question 5 ### **Question:** Show that the lines $$\begin{array}{l} r = \; (\; -2i + 5j - 11k \;) \; + \; \lambda \; (\; 3i + j + 3k \;) \\ r = 8i + 9j + \; \mu \; (\; 4i + 2j + 5k \;) \end{array}$$ intersect. Find the position vector of their common point. #### **Solution:** $$r = \left(\begin{array}{c} -2+3\,\lambda \\ 5+\lambda \\ -11+3\,\lambda \end{array} \right), r = \left(\begin{array}{c} 8+4\,\mu \\ 9+2\,\mu \\ 5\,\mu \end{array} \right)$$ At an intersection point: $\begin{pmatrix} -2+3 \lambda \\ 5+\lambda \\ -11+3 \lambda \end{pmatrix} = \begin{pmatrix} 8+4 \mu \\ 9+2 \mu \\ 5 \mu \end{pmatrix}$ $$\begin{array}{l} -2 + 3 \; \lambda \; = 8 + 4 \; \mu \\ 5 + \; \lambda \; = 9 + 2 \; \mu \qquad (\; \times 2 \;) \\ -2 + 3 \; \lambda \; = 8 + 4 \; \mu \\ 10 + 2 \; \lambda \; = 18 + 4 \; \mu \end{array}$$ Subtracting: $-1\dot{2} + \lambda = -10$ $$\Rightarrow$$ $\lambda = 12 - 10$ $$\Rightarrow \lambda = 2$$ $$-2+6=8+4 \mu$$ $$\Rightarrow$$ 4 μ = -4 $$\Rightarrow \lambda = -1$$ If the lines intersect, $-11 + 3 \lambda = 5 \mu$: $$-11 + 3 \lambda = -11 + 6 = -5$$ $$5~\mu~=~-~5$$ The z components are equal, so the lines do intersect. Intersection point: $$r = \begin{pmatrix} -2 + 3 \lambda \\ 5 + \lambda \\ -11 + 3 \lambda \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \\ -5 \end{pmatrix} = 4i + 7j - 5k.$$ ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 6 ### **Question:** Find a vector that is perpendicular to both 2i + j - k and i + j - 2k. #### **Solution:** Let the required vector be xi + yj + zk. $$\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \quad \text{and} \quad \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$ $$2x + y - z = 0$$ $$x + y - 2z = 0$$ Let $$z = 1$$: $$2x + y = 1$$ $$x + y = 2$$ Subtracting: x = -1, y = 3 So $$x = -1$$, $y = 3$ and $z = 1$ A possible vector is -i + 3j + k. ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 7 ### **Question:** State a vector equation of the line passing through the points A and B whose position vectors are i - j + 3k and i + 2j + 2k respectively. Determine the position vector of the point C which divides the line segment AB internally such that AC = 2CB. #### **Solution:** $$\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$ Equation of line: $$\mathbf{r} = \mathbf{a} + t \; (\; \mathbf{b} - \mathbf{a} \;)$$ $$\mathbf{r} = \left(\begin{array}{c} 1 \\ -1 \\ 3 \end{array}\right) + t \left(\begin{array}{c} 0 \\ 3 \\ -1 \end{array}\right)$$ but AC = 2CB Position vector of *C*: $$c = a + \frac{2}{3} \begin{pmatrix} b - a \end{pmatrix}$$ $$= \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \frac{7}{3} \end{pmatrix}$$ $$= i + j + \frac{7}{3}k$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 8 ### **Question:** Vectors \mathbf{r} and \mathbf{s} are given by $\mathbf{r} = \lambda \mathbf{i} + (2\lambda - 1)\mathbf{j} - \mathbf{k}$ $\mathbf{s} = (1 - \lambda)\mathbf{i} + 3\lambda\mathbf{j} + (4\lambda - 1)\mathbf{k}$ where λ is a scalar. - (a) Find the values of λ for which **r** and **s** are perpendicular. When $\lambda = 2$, **r** and **s** are the position vectors of the points *A* and *B* respectively, referred to an origin θ . - (b) Find AB. - (c) Use a scalar product to find the size of \angle BAO, giving your answer to the nearest degree. ## **Solution:** $$r = \left(\begin{array}{c} \lambda \\ 2 \, \lambda - 1 \\ -1 \end{array}\right) \quad \text{, and} \quad s = \left(\begin{array}{c} 1 - \lambda \\ 3 \, \lambda \\ 4 \, \lambda - 1 \end{array}\right)$$ (a) If ${\bf r}$ and ${\bf s}$ are perpendicular, r . s=0 $$r \cdot s = \begin{pmatrix} \lambda \\ 2\lambda - 1 \\ -1 \end{pmatrix} \cdot
\begin{pmatrix} 1 - \lambda \\ 3\lambda \\ 4\lambda - 1 \end{pmatrix}$$ $$= \lambda (1 - \lambda) + 3\lambda (2\lambda - 1) - 1(4\lambda - 1)$$ $$= \lambda - \lambda^2 + 6\lambda^2 - 3\lambda - 4\lambda + 1$$ $$= 5\lambda^2 - 6\lambda + 1$$ $$\therefore 5\lambda^2 - 6\lambda + 1 = 0$$ $$(5\lambda - 1) (\lambda - 1) = 0$$ $$\lambda = \frac{1}{5} \text{ or } \lambda = 1$$ (b) $$\lambda = 2$$: $a = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$, $b = \begin{pmatrix} -1 \\ 6 \\ 7 \end{pmatrix}$ $$AB = b - a = \begin{pmatrix} -1 \\ 6 \\ 7 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 8 \end{pmatrix}$$ $$= -3i + 3j + 8k$$ (c) Using vectors AB and AO: AB = $$\begin{pmatrix} -3 \\ 8 \end{pmatrix}$$, AO = $-a = \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$ $\cos \angle BAO = \frac{AB \cdot AO}{|AB| |AO|}$ AB \cdot AO = $\begin{pmatrix} -3 \\ 3 \\ 8 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix} = 6 - 9 + 8 = 5$ $|AB| = \sqrt{\begin{pmatrix} -3 \\ 2 \end{pmatrix}^2 + 3^2 + 8^2} = \sqrt{82}$ $|AO| = \sqrt{\begin{pmatrix} -2 \\ -3 \end{pmatrix}^2 + (-3)^2 + 1^2} = \sqrt{14}$ $\cos \angle BAO = \frac{5}{\sqrt{82}\sqrt{14}}$ $\angle BAO = 82$ ° (nearest degree) ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 9 ### **Question:** With respect to an origin O, the position vectors of the points L and M are 2i - 3j + 3k and 5i + j + ck respectively, where c is a constant. The point N is such that OLMN is a rectangle. - (a) Find the value of c. - (b) Write down the position vector of N. - (c) Find, in the form r = p + tq, an equation of the line MN. #### **Solution:** (a) $$1 = \begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix}$$ and $m = \begin{pmatrix} 5 \\ 1 \\ c \end{pmatrix}$ $$LM = m - 1 = \begin{pmatrix} 5 \\ 1 \\ c \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ c - 3 \end{pmatrix}$$ Since OL and LM are perpendicular, OL . LM = O $$\begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \\ c-3 \end{pmatrix} = 0$$ $$6 - 12 + 3(c-3) = 0$$ $$6 - 12 + 3c - 9 = 0$$ $$3c = 15$$ $$c = 5$$ (b) $$n = ON = LM = \begin{pmatrix} 3 \\ 4 \\ c-3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$$ $n = 3i + 4j + 2k$ (c) The line *MN* is parallel to *OL*. Using the point *M* and the direction vector **l**: $$\mathbf{r} = \left(\begin{array}{c} 5\\1\\5 \end{array}\right) + t \left(\begin{array}{c} 2\\-3\\3 \end{array}\right)$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 10 ### **Question:** The point *A* has coordinates (7, -1, 3) and the point *B* has coordinates (10, -2, 2). The line *l* has vector equation $r = i + j + k + \lambda$ (3i - j + k), where λ is a real parameter. - (a) Show that the point A lies on the line l. - (b) Find the length of *AB*. - (c) Find the size of the acute angle between the line l and the line segment AB, giving your answer to the nearest degree. - (d) Hence, or otherwise, calculate the perpendicular distance from B to the line l, giving your answer to two significant figures. #### **Solution:** (a) Line $$l$$: $\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$ Point *A* is (7, -1, 3) Using $$\lambda = 2$$, $r = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \\ 3 \end{pmatrix}$ So *A* lies on the line *l*. (b) $$AB = \sqrt{(10-7)^2 + [-2-(-1)]^2 + (2-3)^2}$$ = $\sqrt{3^2 + (-1)^2 + (-1)^2} = \sqrt{11}$ (c) $$AB = b - a = \begin{pmatrix} 10 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} 7 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$$ Angle between the vectors $$\begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}$$ and $\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$: $$\left(\begin{array}{c}3\\-1\\-1\end{array}\right) \quad \left(\begin{array}{c}3\\-1\\1\end{array}\right) = 9 + 1 - 1 = 9$$ The magnitude of each of the vectors is $\sqrt{11}$ So $$\cos \theta = \frac{9}{\sqrt{11}\sqrt{11}} = \frac{9}{11}$$ $$\Rightarrow$$ $\theta = 35$ ° (nearest degree) (d) $$\sin 35^{\circ} = \frac{d}{\sqrt{11}}$$ $d = \sqrt{11} \sin 35^{\circ} = 1.9 (2 \text{ s.f.})$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 11 ### **Question:** Referred to a fixed origin O, the points A and B have position vectors (5i - j - k) and (i - 5j + 7k) respectively. - (a) Find an equation of the line AB. - (b) Show that the point C with position vector 4i 2j + k lies on AB. - (c) Show that OC is perpendicular to AB. - (d) Find the position vector of the point D, where $D \not\equiv A$, on AB such that |OD| = |OA|. #### **Solution:** (a) $$a = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix}$$, $b = \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix}$ $$b - a = \begin{pmatrix} 1 \\ -5 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}$$ Equation of *AB*: $$\mathbf{r} = \left(\begin{array}{c} 5 \\ -1 \\ -1 \end{array}\right) + t \left(\begin{array}{c} -4 \\ -4 \\ 8 \end{array}\right)$$ or $$\mathbf{r} = \left(\begin{array}{c} 5 \\ -1 \\ -1 \end{array}\right) + t \left(\begin{array}{c} -1 \\ -1 \\ 2 \end{array}\right)$$ (b) Using $$t = 1$$: $\mathbf{r} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} + 1 \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$ So the point with position vector $4\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ lies on AB. (c) OC . AB = $$\begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$. $\begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}$ = $-16 + 8 + 8 = 0$ Since the scalar product is zero, OC is perpendicular to AB. Since OD = OA, DC = CA, so DC = CA. $$CA = a - c = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$ $$DC = c - d = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$ So $$d = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 3 \end{pmatrix}$$ $d = 3i - 3j + 3k$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 12 ### **Question:** Referred to a fixed origin O, the points A, B and C have position vectors (9i - 2j + k), (6i + 2j + 6k) and (3i + pj + qk) respectively, where p and q are constants. - (a) Find, in vector form, an equation of the line *l* which passes through *A* and *B*. Given that *C* lies on *l*: - (b) Find the value of p and the value of q. - (c) Calculate, in degrees, the acute angle between OC and AB, The point D lies on AB and is such that OD is perpendicular to AB. - (d) Find the position vector of *D*. #### **Solution:** $$\mathbf{a} = \left(\begin{array}{c} 9 \\ -2 \\ 1 \end{array}\right), \mathbf{b} = \left(\begin{array}{c} 6 \\ 2 \\ 6 \end{array}\right), \mathbf{c} = \left(\begin{array}{c} 3 \\ p \\ q \end{array}\right)$$ (a) $$b - a = \begin{pmatrix} 6 \\ 2 \\ 6 \end{pmatrix} - \begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$$ Equation of l: $$\mathbf{r} = \left(\begin{array}{c} 9 \\ -2 \\ 1 \end{array}\right) + t \left(\begin{array}{c} -3 \\ 4 \\ 5 \end{array}\right)$$ (b) Since *C* lies on *l*, $$\begin{pmatrix} 3 \\ p \\ q \end{pmatrix} = \begin{pmatrix} 9 \\ -2 \\ 1 \end{pmatrix} + t \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix}$$ $$3 = 9 - 3t$$ $$3t = 6$$ $$t = 2$$ So $$p = -2 + 4t = 6$$ and $q = 1 + 5t = 11$ (c) $$\cos \theta = \frac{\text{OC . AB}}{|\text{OC}| |\text{AB}|}$$ OC . $AB = \begin{pmatrix} 3 \\ 6 \\ 11 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix} = -9 + 24 + 55 = 70$ $|\text{OC}| = \sqrt{3^2 + 6^2 + 11^2} = \sqrt{166}$ $|\text{AB}| = \sqrt{(-3)^2 + 4^2 + 5^2} = \sqrt{50}$ $\cos \theta = \frac{70}{\sqrt{166}\sqrt{50}}$ $\theta = 39.8 \, ^{\circ} \, (1 \, \text{d.p.})$ (d) If OD and AB are perpendicular, d. (b – a) = 0 Since **d** lies on $$AB$$, use $d = \begin{pmatrix} 9-3t \\ -2+4t \\ 1+5t \end{pmatrix}$ $$\begin{pmatrix} 9-3t \\ -2+4t \\ 1+5t \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \\ 5 \end{pmatrix} = 0$$ $$-3(9-3t) + 4(-2+4t) + 5(1+5t) = 0$$ $$-27+9t-8+16t+5+25t=0$$ $$50t = 30$$ $$t = \frac{3}{5}$$ $$d = \begin{pmatrix} 9 - \frac{9}{5} \\ -2 + \frac{12}{5} \end{pmatrix} = \frac{36}{5}i + \frac{2}{5}j + 4k$$ $$1 + 3$$ ## **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 13 ### **Question:** Referred to a fixed origin O, the points A and B have position vectors (i + 2j - 3k) and (5i - 3j) respectively. - (a) Find, in vector form, an equation of the line l_1 which passes through A and B. The line l_2 has equation $\mathbf{r}=(4\mathbf{i}-4\mathbf{j}+3\mathbf{k})+\lambda(\mathbf{i}-2\mathbf{j}+2\mathbf{k})$, where λ is a scalar parameter. - (b) Show that A lies on l_2 . - (c) Find, in degrees, the acute angle between the lines l_1 and l_2 . The point C with position vector ($2\mathbf{i} \mathbf{k}$) lies on l_2 . - (d) Find the shortest distance from C to the line l_1 . ## **Solution:** (a) $$a = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$, $b = \begin{pmatrix} 5 \\ -3 \\ 0 \end{pmatrix}$ $$b - a = \begin{pmatrix} 5 \\ -3 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$$ Equation of l_1 : $$\mathbf{r} = \left(\begin{array}{c} 1 \\ 2 \\ -3 \end{array}\right) + t \left(\begin{array}{c} 4 \\ -5 \\ 3 \end{array}\right)$$ (b) Equation of l_2 : $$\mathbf{r} = \left(\begin{array}{c} 4 \\ -4 \\ 3 \end{array}\right) + \lambda \left(\begin{array}{c} 1 \\ -2 \\ 2 \end{array}\right)$$ Using $$\lambda = -3$$, $r = \begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ So A lies on the line l_2 . (c) Direction vectors of l_1 and l_2 are $\begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ 2
\end{pmatrix}$. Calling these **m** and **n**: The angle between l_1 and l_2 is 19.5 ° (1 d.p.). (d) $$c = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$$ $$d = AC\sin\theta = 3 \times \frac{1}{3} = 1$$ The shortest distance from C to l_1 is 1 unit. ### **Edexcel AS and A Level Modular Mathematics** Vectors Exercise K, Question 14 ## **Question:** Two submarines are travelling in straight lines through the ocean. Relative to a fixed origin, the vector equations of the two lines, l_1 and l_2 , along which they travel are $$r=3i+4j-5k+\lambda\ (\ i-2j+2k\)$$ and $$r=9i+j-2k+\mu\ (\ 4i+j-k\)$$ where λ and μ are scalars. - (a) Show that the submarines are moving in perpendicular directions. - (b) Given that l_1 and l_2 intersect at the point A, find the position vector of A. The point B has position vector 10j 11k. - (c) Show that only one of the submarines passes through the point B. - (d) Given that 1 unit on each coordinate axis represents 100 m, find, in km, the distance AB. ### **Solution:** (a) Line $$l_1$$: $\mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ Line l_2 : $\mathbf{r} = \begin{pmatrix} 9 \\ 1 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix}$ Using the direction vectors: $$\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix} = 4 - 2 - 2 = 0$$ Since the scalar product is zero, the directions are perpendicular. (b) At an intersection point: $$\begin{pmatrix} 3 + \lambda \\ 4 - 2\lambda \\ -5 + 2\lambda \end{pmatrix} = \begin{pmatrix} 9 + 4\mu \\ 1 + \mu \\ -2 - \mu \end{pmatrix}$$ $$3 + \lambda = 9 + 4 \mu$$ (× 2) $4 - 2 \lambda = 1 + \mu$ $6 + 2 \lambda = 18 + 8 \mu$ $4 - 2 \lambda = 1 + \mu$ Adding: $10 = 19 + 9 \mu$ $\Rightarrow 9 \mu = -9$ $\Rightarrow \mu = -1$ $3 + \lambda = 9 - 4$ $\Rightarrow \lambda = 2$ Intersection point: $$\begin{pmatrix} 3 + \lambda \\ 4 - 2\lambda \\ -5 + 2\lambda \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ -1 \end{pmatrix}$$ Position vector of *A* is a = 5i - k. (c) Position vector of *B*: $$b = 10j - 11k = \begin{pmatrix} 0 \\ 10 \\ -11 \end{pmatrix}$$ For l_1 , to give zero as the x component, $\lambda = -3$. $$\mathbf{r} = \left(\begin{array}{c} 3 \\ 4 \\ -5 \end{array}\right) - 3 \left(\begin{array}{c} 1 \\ -2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 10 \\ -11 \end{array}\right)$$ So B lies on l_1 . For l_2 , to give -11 as the z component, $\mu = 9$. $$\mathbf{r} = \left(\begin{array}{c} 9 \\ 1 \\ -2 \end{array}\right) + 9 \left(\begin{array}{c} 4 \\ 1 \\ -1 \end{array}\right) = \left(\begin{array}{c} 45 \\ 10 \\ -11 \end{array}\right)$$ So B does not lie on l_2 . So only one of the submarines passes through B. (d) $$|AB| = \sqrt{(0-5)^2 + (10-0)^2 + [-11-(-1)]^2}$$ = $\sqrt{(-5)^2 + 10^2 + (-10)^2}$ = $\sqrt{225} = 15$ Since 1 unit represents 100 m, the distance AB is $15 \times 100 = 1500 \,\text{m} = 1.5 \,\text{km}$. [©] Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise A, Question 1 ## **Question:** Integrate the following with respect to *x*: (a) $$3 \sec^2 x + \frac{5}{x} + \frac{2}{x^2}$$ (b) $$5e^x - 4\sin x + 2x^3$$ (c) 2 ($$\sin x - \cos x + x$$) (d) $$3 \sec x \tan x - \frac{2}{x}$$ (e) $$5e^x + 4\cos x - \frac{2}{x^2}$$ (f) $$\frac{1}{2x} + 2\csc^2 x$$ (g) $$\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$$ (h) $$e^x + \sin x + \cos x$$ (i) $$2\csc x \cot x - \sec^2 x$$ $$(j) e^x + \frac{1}{x} - \csc^2 x$$ (a) $$\int \left(3 \sec^2 x + \frac{5}{x} + \frac{2}{x^2} \right) dx$$ = $\int \left(3 \sec^2 x + \frac{5}{x} + 2x^{-2} \right) dx$ = $3 \tan x + 5 \ln|x| - \frac{2}{x} + C$ (b) $$\int (5e^x - 4\sin x + 2x^3) dx$$ = $5e^x + 4\cos x + \frac{2x^4}{4} + C$ = $5e^x + 4\cos x + \frac{x^4}{2} + C$ (c) $$\int 2 (\sin x - \cos x + x) dx$$ = $\int (2\sin x - 2\cos x + 2x) dx$ = $-2\cos x - 2\sin x + x^2 + C$ (d) $$\int \left(3 \sec x \tan x - \frac{2}{x} \right) dx$$ $$= 3 \sec x - 2 \ln|x| + C$$ (e) $$\int \left(5e^x + 4\cos x - \frac{2}{x^2} \right) dx$$ = $\int \left(5e^x + 4\cos x - 2x^{-2} \right) dx$ = $5e^x + 4\sin x + \frac{2}{x} + C$ (f) $$\int \left(\frac{1}{2x} + 2\csc^2 x\right) dx$$ $$= \int \left(\frac{1}{2} \times \frac{1}{x} + 2\csc^2 x\right) dx$$ $$= \frac{1}{2} \ln|x| - 2\cot x + C$$ (g) $$\int \left(\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}\right) dx$$ $$= \int \left(\frac{1}{x} + x^{-2} + x^{-3}\right) dx$$ $$= \ln|x| + \frac{x^{-1}}{-1} + \frac{x^{-2}}{-2} + C$$ $$= \ln|x| - \frac{1}{x} - \frac{1}{2x^2} + C$$ (h) $$\int (e^x + \sin x + \cos x) dx$$ $$= e^x - \cos x + \sin x + C$$ (i) $\int (2\csc x \cot x - \sec^2 x) dx$ $= -2\csc x - \tan x + C$ (j) $$\int \left(e^x + \frac{1}{x} - \csc^2 x \right) dx$$ $$= e^x + \ln|x| + \cot x + C$$ ## **Edexcel AS and A Level Modular Mathematics** Integration Exercise A, Question 2 ### **Question:** Find the following integrals: (a) $$\int \left(\frac{1}{\cos^2 x} + \frac{1}{x^2} \right) dx$$ (b) $$\int \left(\frac{\sin x}{\cos^2 x} + 2e^x \right) dx$$ (c) $$\int \left(\frac{1 + \cos x}{\sin^2 x} + \frac{1 + x}{x^2} \right) dx$$ (d) $$\int \left(\frac{1}{\sin^2 x} + \frac{1}{x} \right) dx$$ (e) $$\int \sin x \left(1 + \sec^2 x \right) dx$$ (f) $$\int \cos x \left(1 + \csc^2 x \right) dx$$ (g) $$\int \csc^2 x \left(1 + \tan^2 x\right) dx$$ (h) $$\int \sec^2 x \left(1 - \cot^2 x\right) dx$$ (i) $$\int \sec^2 x \left(1 + e^x \cos^2 x\right) dx$$ (j) $$\int \left(\frac{1 + \sin x}{\cos^2 x} + \cos^2 x \sec x \right) dx$$ (a) $$\int \left(\frac{1}{\cos^2 x} + \frac{1}{x^2}\right) dx$$ $$= \int \left(\sec^2 x + x^{-2}\right) dx$$ $$= \tan x - \frac{1}{x} + C$$ (b) $$\int \left(\frac{\sin x}{\cos^2 x} + 2e^x\right) dx$$ $$= \int (\tan x \sec x + 2e^x) dx$$ $$= \sec x + 2e^x + C$$ (c) $$\int \left(\frac{1 + \cos x}{\sin^2 x} + \frac{1 + x}{x^2} \right) dx$$ $$= \int \left(\csc^2 x + \cot x \csc x + x^{-2} + x^{-1} \right) dx$$ $$= -\cot x - \csc x - \frac{1}{x} + \ln|x| + C$$ (d) $$\int \left(\frac{1}{\sin^2 x} + \frac{1}{x}\right) dx$$ $$= \int \left(\csc^2 x + \frac{1}{x}\right) dx$$ $$= -\cot x + \ln|x| + C$$ (e) $$\int \sin x (1 + \sec^2 x) dx$$ $$= \int (\sin x + \sin x \sec^2 x) dx$$ $$= \int (\sin x + \tan x \sec x) dx$$ $$= -\cos x + \sec x + C$$ (f) $$\int \cos x (1 + \csc^2 x) dx$$ = $\int (\cos x + \cos x \csc^2 x) dx$ = $\int (\cos x + \cot x \csc x) dx$ = $\sin x - \csc x + C$ (g) $$\int \csc^2 x \left(1 + \tan^2 x \right) dx$$ $$= \int \left(\csc^2 x + \csc^2 x \tan^2 x \right) dx$$ $$= \int \left(\csc^2 x + \sec^2 x \right) dx$$ $$= -\cot x + \tan x + C$$ (h) $$\int \sec^2 x (1 - \cot^2 x) dx$$ $$= \int (\sec^2 x - \sec^2 x \cot^2 x) dx$$ $$= \int (\sec^2 x - \csc^2 x) dx$$ $$= \tan x + \cot x + C$$ (i) $$\int \sec^2 x \left(1 + e^x \cos^2 x \right) dx$$ $$= \int \left(\sec^2 x + e^x \cos^2 x \sec^2 x \right) dx$$ $$= \int \left(\sec^2 x + e^x \right) dx$$ $$= \tan x + e^x + C$$ (j) $$\int \left(\frac{1 + \sin x}{\cos^2 x} + \cos^2 x \sec x \right) dx$$ $$= \int \left(\sec^2 x + \tan x \sec x + \cos x \right) dx$$ $$= \tan x + \sec x + \sin x + C$$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise B, Question 1 ## **Question:** Integrate the following: - (a) $\sin (2x + 1)$ - (b) $3e^{2x}$ - (c) $4e^{x+5}$ - (d) $\cos (1 2x)$ - (e) $\csc^2 3x$ - (f) $\sec 4x \tan 4x$ - (g) $3 \sin \left(\frac{1}{2}x + 1 \right)$ - (h) $\sec^2 (2 x)$ - (i) $\csc 2x \cot 2x$ - (j) $\cos 3x \sin 3x$ (a) $$\int \sin \left(2x+1\right) dx = -\frac{1}{2}\cos \left(2x+1\right) + C$$ (b) $$\int 3e^{2x} dx = \frac{3}{2}e^{2x} + C$$ (c) $$\int 4e^{x+5} dx = 4e^{x+5} + C$$ (d) $$\int \cos \left(1 - 2x\right) dx = -\frac{1}{2} \sin \left(1 - 2x\right) + C$$ **OR** Let $y = \sin \left(1 - 2x\right)$ then $$\frac{dy}{dx} = \cos \left(1 - 2x \right) \times \left(-2 \right)$$ (by chain rule) $\therefore \int \cos \left(1 - 2x \right) dx = -\frac{1}{2} \sin \left(1 - 2x \right) + C$ (e) $$\int \csc^2 3x \, dx = -\frac{1}{3} \cot 3x + C$$ (f) $$\int \sec 4x \tan 4x \, dx = \frac{1}{4} \sec 4x + C$$ (g) $$\int 3\sin\left(\frac{1}{2}x+1\right) dx = -6\cos\left(\frac{1}{2}x+1\right) + C$$ (h) $$\int \sec^2(2-x) dx = -\tan(2-x) + C$$ **OR** Let $y = \tan(2-x)$ then $\frac{dy}{dx} = \sec^2(2-x) \times (-1)$ (by chain rule) $\therefore \int \sec^2(2-x) dx = -\tan(2-x) + C$ (i) $$\int \csc 2x \cot 2x \, dx = -\frac{1}{2} \csc 2x + C$$ (j) $$\int (\cos 3x - \sin 3x) dx$$ $$= \frac{1}{3}\sin 3x + \frac{1}{3}\cos 3x + C$$ $$= \frac{1}{3}\left(\sin 3x + \cos 3x\right) + C$$ $\ensuremath{\mathbb{C}}$ Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise B, Question 2 ### **Question:** Find the following integrals: (a) $$\int \left(e^{2x} - \frac{1}{2} \sin \left(2x - 1 \right) \right) dx$$ (b) $$\int (e^x + 1)^2 dx$$ (c) $$\int \sec^2 2x \left(1 + \sin 2x \right) dx$$ (d) $$\int \left(\frac{3 - 2\cos\left(\frac{1}{2}x\right)}{\sin^2\left(\frac{1}{2}x\right)} \right) dx$$ (e) $$\int [e^{3-x} + \sin(3-x) + \cos(3-x)] dx$$ (a) $$\int \left[e^{2x} - \frac{1}{2} \sin \left(2x - 1 \right) \right] dx = \frac{1}{2} e^{2x} + \frac{1}{4} \cos \left(2x - 1 \right) + C$$ (b) $$\int (e^x + 1)^2 dx$$ = $\int (e^{2x} + 2e^x + 1) dx$ = $\frac{1}{2}e^{2x} + 2e^x + x + C$ (c) $$\int \sec^2 2x (1 + \sin 2x) dx$$ = $\int (\sec^2 2x + \sec^2 2x \sin 2x) dx$ = $\int (\sec^2 2x + \sec 2x \tan 2x) dx$ = $\frac{1}{2} \tan 2x + \frac{1}{2} \sec 2x + C$ (d) $$\int \left[\frac{3 - 2\cos\left(\frac{1}{2}x\right)}{\sin^2\left(\frac{1}{2}x\right)} \right] dx$$ $$= \int \left(3\csc^2\frac{1}{2}x - 2\csc\frac{1}{2}x\cot\frac{1}{2}x \right) dx$$ $$= -6\cot\left(\frac{1}{2}x\right) + 4\csc\left(\frac{1}{2}x\right) + C$$ (e) $$\int [e^{3-x} + \sin(3-x) + \cos(3-x)] dx$$ = $-e^{3-x} + \cos(3-x) - \sin(3-x) + C$ **Note:** extra minus signs from -x terms and chain rule. [©] Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular
Mathematics** **Integration** Exercise B, Question 3 ## **Question:** Integrate the following: (a) $$\frac{1}{2x+1}$$ (b) $$\frac{1}{(2x+1)^2}$$ (c) $$(2x+1)^2$$ (d) $$\frac{3}{4x-1}$$ (e) $$\frac{3}{1-4x}$$ (f) $$\frac{3}{(1-4x)^2}$$ (g) $$(3x+2)^{-5}$$ (h) $$\frac{3}{(1-2x)^3}$$ (i) $$\frac{6}{(3-2x)^4}$$ (j) $$\frac{5}{3-2x}$$ (a) $$\int \frac{1}{2x+1} dx = \frac{1}{2} \ln |2x+1| + C$$ (b) $$\int \frac{1}{(2x+1)^2} dx$$ $$= \int (2x+1)^{-2} dx$$ $$= \frac{(2x+1)^{-1}}{-1} \times \frac{1}{2} + C$$ $$= -\frac{1}{2(2x+1)} + C$$ (c) $$\int (2x+1)^2 dx$$ = $\frac{(2x+1)^3}{3} \times \frac{1}{2} + C$ = $\frac{(2x+1)^3}{6} + C$ (d) $$\int \frac{3}{4x-1} dx = \frac{3}{4} \ln |4x-1| + C$$ (e) $$\int \frac{3}{1-4x} dx$$ = $-\int \frac{3}{4x-1} dx$ = $-\frac{3}{4} \ln|4x-1| + C$ OR Let $y = \ln |1 - 4x|$ then $\frac{dy}{dx} = \frac{1}{1 - 4x} \times (-4)$ (by chain rule) $$\therefore \int \frac{3}{1-4x} dx = -\frac{3}{4} \ln |1-4x| + C$$ **Note:** $\ln |1 - 4x| = \ln |4x - 1|$ because of | | sign. (f) $$\int \frac{3}{(1-4x)^2} dx$$ $$= \int 3 (1-4x)^{-2} dx$$ $$= \frac{3}{-4} \times \frac{(1-4x)^{-1}}{-1}$$ $$= \frac{3}{4(1-4x)} + C$$ (g) $$\int (3x+2)^{-5} dx = \frac{(3x+2)^{-6}}{18} + C$$ (h) $$\int \frac{3}{(1-2x)^3} dx = \frac{3}{-2} \times \frac{(1-2x)^{-2}}{-2} + C = \frac{3}{4(1-2x)^2} + C$$ **OR** Let $y = (1-2x)^{-2}$ then $\frac{dy}{dx} = -2(1-2x)^{-3} \times (-2)$ (by chain rule) $$\therefore \int \frac{3}{(1-2x)^3} dx = \frac{3}{4}(1-2x)^{-2} + C$$ (i) $$\int \frac{6}{(3-2x)^4} dx = \frac{6}{-2} \times \frac{(3-2x)^{-3}}{-3} + C = \frac{1}{(3-2x)^3} + C$$ **OR** Let $y = (3-2x)^{-3}$ then $\frac{dy}{dx} = -3(3-2x)^{-4} \times (-2)$ $$\therefore \int \frac{6}{(3-2x)^4} dx = \frac{1}{(3-2x)^3} + C$$ (j) $$\int \frac{5}{(3-2x)} dx = -\frac{5}{2} \ln|3-2x| + C$$ **OR** Let $y = \ln|3-2x|$ then $\frac{dy}{dx} = \frac{1}{3-2x} \times \left(-2\right)$ (by chain rule) $$\therefore \int \frac{5}{3-2x} dx = -\frac{5}{2} \ln|3-2x| + C$$ ## **Edexcel AS and A Level Modular Mathematics** Integration Exercise B, Question 4 ### **Question:** Find the following integrals (a) $$\int \left(3\sin\left(2x+1\right) + \frac{4}{2x+1}\right) dx$$ (b) $$\int [e^{5x} + (1-x)^5] dx$$ (c) $$\int \left(\frac{1}{\sin^2 2x} + \frac{1}{1+2x} + \frac{1}{(1+2x)^2} \right) dx$$ (d) $$\int \left[(3x+2)^2 + \frac{1}{(3x+2)^2} \right] dx$$ (a) $$\int \left[3 \sin \left(2x + 1 \right) + \frac{4}{2x + 1} \right] dx$$ $$= -\frac{3}{2} \cos \left(2x + 1 \right) + \frac{4}{2} \ln|2x + 1| + C$$ $$= -\frac{3}{2} \cos \left(2x + 1 \right) + 2 \ln|2x + 1| + C$$ (b) $$\int [e^{5x} + (1-x)^5] dx$$ = $\int e^{5x} dx + \int (1-x)^5 dx$ = $\frac{1}{5}e^{5x} - \frac{1}{6}(1-x)^6 + C$ (from ① and ①) OR Let $$y = (1 - x)^{-6}$$ then $\frac{dy}{dx} = 6(1 - x)^{-5} \times \left(-1\right)$ (by chain rule) $$\therefore \int (1 - x)^{-5} dx = -\frac{1}{6}(1 - x)^{-6} + C$$ (c) $$\int \left[\frac{1}{\sin^2 2x} + \frac{1}{1+2x} + \frac{1}{(1+2x)^2} \right] dx$$ $$= \int \left[\csc^2 2x + \frac{1}{1+2x} + (1+2x)^{-2} \right] dx$$ $$= -\frac{1}{2} \cot 2x + \frac{1}{2} \ln|1+2x| + \frac{(1+2x)^{-1}}{-1} \times \frac{1}{2} + C$$ $$= -\frac{1}{2} \cot 2x + \frac{1}{2} \ln|1+2x| - \frac{1}{2(1+2x)} + C$$ (d) $$\int \left[(3x+2)^2 + \frac{1}{(3x+2)^2} \right] dx$$ $$= \int \left[(3x+2)^2 + (3x+2)^{-2} \right] dx$$ $$= \frac{(3x+2)^3}{9} - \frac{(3x+2)^{-1}}{3} + C$$ $$= \frac{(3x+2)^3}{9} - \frac{1}{3(3x+2)} + C$$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise C, Question 1 ## **Question:** Integrate the following: - (a) $\cot^2 x$ - (b) $\cos^2 x$ - (c) $\sin 2x \cos 2x$ - (d) $(1 + \sin x)^2$ - (e) $\tan^2 3x$ - (f) $(\cot x \csc x)^2$ - (g) $(\sin x + \cos x)^2$ - (h) $\sin^2 x \cos^2 x$ - (i) $\frac{1}{\sin^2 x \cos^2 x}$ - (j) $(\cos 2x 1)^2$ - (a) $\int \cot^2 x \, dx = \int (\csc^2 x 1) \, dx$ $= -\cot x x + C$ - (b) $\int \cos^2 x \, dx = \int \frac{1}{2} \left(1 + \cos 2x \right) \, dx$ $= \frac{1}{2}x + \frac{1}{4}\sin 2x + C$ - (c) $\int \sin 2x \cos 2x \, dx = \int \frac{1}{2} \sin 4x \, dx$ $$= -\frac{1}{8}\cos 4x + C$$ - (d) $\int (1 + \sin x)^2 dx = \int (1 + 2\sin x + \sin^2 x) dx$ But $\cos 2x = 1 - 2\sin^2 x$ $\therefore \sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$ $\therefore \int (1 + \sin x)^2 dx = \int \left(\frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\right) dx$ $= \frac{3}{2}x - 2\cos x - \frac{1}{4}\sin 2x + C$ - (e) $\int \tan^2 3x \, dx = \int (\sec^2 3x 1) \, dx$ = $\frac{1}{3} \tan 3x - x + C$ - (f) $\int (\cot x \csc x)^2 dx = \int (\cot^2 x 2\cot x \csc x + \csc^2 x) dx$ $= \int (2\csc^2 x 1 2\cot x \csc x) dx$ $= -2\cot x x + 2\csc x + C$ - (g) $\int (\sin x + \cos x)^2 dx = \int (\sin^2 x + 2\sin x \cos x + \cos^2 x) dx$ = $\int (1 + \sin 2x) dx$ = $x - \frac{1}{2}\cos 2x + C$ - (h) $\int \sin^2 x \cos^2 x \, dx = \int \left(\frac{1}{2} \sin 2x \right)^2 \, dx$ $= \int \frac{1}{4} \sin^2 2x \, dx$ $= \int \frac{1}{4} \left(\frac{1}{2} \frac{1}{2} \cos 4x \right) \, dx$ $= \int \left(\frac{1}{8} \frac{1}{8} \cos 4x \right) \, dx$ $= \frac{1}{8} x \frac{1}{32} \sin 4x + C$ - (i) $\frac{1}{\sin^2 x \cos^2 x} = \frac{1}{(\frac{1}{2}\sin 2x)^2} = 4\csc^2 2x$ $$\therefore \int \frac{1}{\sin^2 x \cos^2 x} dx = \int 4 \csc^2 2x dx$$ $$= -2 \cot 2x + C$$ (j) $$\int (\cos 2x - 1)^2 dx = \int (\cos^2 2x - 2\cos 2x + 1) dx$$ $= \int \left(\frac{1}{2}\cos 4x + \frac{1}{2} - 2\cos 2x + 1\right) dx$ $= \int \left(\frac{1}{2}\cos 4x + \frac{3}{2} - 2\cos 2x\right) dx$ $= \frac{1}{8}\sin 4x + \frac{3}{2}x - \sin 2x + C$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise C, Question 2 ## **Question:** Find the following integrals: (a) $$\int \left(\frac{1 - \sin x}{\cos^2 x} \right) dx$$ (b) $$\int \left(\frac{1 + \cos x}{\sin^2 x} \right) dx$$ (c) $$\int \frac{\cos 2x}{\cos^2 x} dx$$ (d) $$\int \frac{\cos^2 x}{\sin^2 x} dx$$ (e) $$\int \frac{(1+\cos x)^2}{\sin^2 x} dx$$ (f) $$\int \frac{(1+\sin x)^2}{\cos^2 x} dx$$ (g) $$\int (\cot x - \tan x)^2 dx$$ (h) $$\int (\cos x - \sin x)^2 dx$$ (i) $$\int (\cos x - \sec x)^2 dx$$ (j) $$\int \frac{\cos 2x}{1 - \cos^2 2x} dx$$ (a) $$\int \left(\frac{1-\sin x}{\cos^2 x}\right) dx = \int \left(\sec^2 x - \tan x \sec x\right) dx$$ $$= \tan x - \sec x + C$$ (b) $$\int \left(\frac{1+\cos x}{\sin^2 x}\right) dx = \int \left(\csc^2 x + \cot x \csc x\right) dx$$ $$= -\cot x - \csc x + C$$ (c) $$\int \frac{\cos 2x}{\cos^2 x} dx = \int \frac{2\cos^2 x - 1}{\cos^2 x} dx$$ $$= \int (2 - \sec^2 x) dx$$ $$= 2x - \tan x + C$$ (d) $$\int \frac{\cos^2 x}{\sin^2 x} dx = \int \cot^2 x dx$$ $$= \int (\csc^2 x - 1) dx$$ $$= -\cot x - x + C$$ (e) $$I = \int \frac{(1+\cos x)^2}{\sin^2 x} dx = \int \frac{1+2\cos x + \cos^2 x}{\sin^2 x} dx$$ $$= \int (\csc^2 x + 2\cot x \csc x + \cot^2 x) dx$$ But $\csc^2 x = 1 + \cot^2 x \implies \cot^2 x = \csc^2 x - 1$ $$\therefore I = \int (2\csc^2 x - 1 + 2\cot x \csc x) dx$$ $$= -2\cot x - x - 2\csc x + C$$ (f) $$I = \int \frac{(1+\sin x)^2}{\cos^2 x} dx = \int \frac{1+2\sin x + \sin^2 x}{\cos^2 x} dx$$ $$= \int (\sec^2 x + 2\tan x \sec x + \tan^2 x) dx$$ But $\sec^2 x = 1 + \tan^2 x \implies \tan^2 x = \sec^2 x - 1$ $$\therefore I = \int (2\sec^2 x - 1 + 2\tan x \sec x) dx$$ $$= 2\tan x - x + 2\sec x + C$$ (g) $$\int (\cot x - \tan x)^2 dx = \int (\cot^2 x - 2\cot x \tan x + \tan^2 x) dx$$ = $\int (\csc^2 x - 1 - 2 + \sec^2 x - 1) dx$ = $\int (\csc^2 x - 4 + \sec^2 x) dx$ = $-\cot x - 4x + \tan x + C$ (h) $$\int (\cos x - \sin x)^2 dx = \int (\cos^2 x - 2\cos x \sin x + \sin^2 x) dx$$ = $\int (1 - \sin 2x) dx$ = $x + \frac{1}{2}\cos 2x + C$ (i) $$\int (\cos x - \sec x)^{2} dx = \int (\cos^{2} x - 2\cos x \sec x + \sec^{2} x) dx$$ $$= \int \left(\frac{1}{2}\cos 2x + \frac{1}{2} - 2 + \sec^{2} x\right) dx$$ $$= \int \left(\frac{1}{2}\cos 2x - \frac{3}{2} + \sec^{2} x\right) dx$$ $$= \frac{1}{4}\sin 2x - \frac{3}{2}x + \tan x + C$$ (j) $$\int \frac{\cos 2x}{1 - \cos^2 2x} dx = \int \frac{\cos 2x}{\sin^2 2x} dx$$ $$= \int \cot 2x \csc 2x dx$$ $$= -\frac{1}{2} \csc 2x + C$$ [©] Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise C, Question 3 ### **Question:** Find the following integrals: - (a) $\int \cos 2x \cos x \, dx$ - (b) $\int 2\sin 5x \cos 3x \, dx$ - (c) $\int 2\sin 3x \cos 5x dx$ - (d) $\int 2\sin 2x \sin 5x dx$ - (e) $4 \int \cos 3x \cos 7x \, dx$ - (f) $\int 2\cos 4x \cos 4x \, dx$ - (g) $\int 2\cos 4x \sin 4x \, dx$ - (h) $\int 2\sin 4x \sin 4x \, dx$ (a) $$\cos 3x + \cos x = 2\cos \frac{3x + x}{2}\cos \frac{3x - x}{2} = 2\cos 2x\cos x$$ $$\therefore \int \cos 2x \cos x \, dx = \frac{1}{2} \int \left(\cos 3x + \cos x\right) \, dx$$ $$= \frac{1}{2} \left(\frac{1}{3}\sin 3x + \sin x\right) + C$$ $$= \frac{1}{6}\sin 3x + \frac{1}{2}\sin x + C$$ (b) $$\sin 8x + \sin 2x = 2 \sin 5x \cos 3x$$ $$\therefore \int 2 \sin 5x \cos 3x \, dx = \int (\sin 8x + \sin 2x) \, dx$$ $$= -\frac{1}{8} \cos 8x - \frac{1}{2} \cos 2x + C$$ (c) $$\sin 8x - \sin 2x = 2 \sin 3x \cos 5x$$ $\therefore \int 2 \sin 3x \cos 5x \, dx = \int (\sin 8x - \sin 2x) \, dx$ $$= -\frac{1}{8}\cos 8x + \frac{1}{2}\cos 2x + C$$ - (d) $\cos 7x \cos 3x = -2\sin 5x\sin 2x$ $\therefore \int 2\sin 2x\sin 5x \, dx = \int (\cos 3x - \cos 7x) \, dx$ $= \frac{1}{3}\sin 3x - \frac{1}{7}\sin 7x + C$ - (e) $\cos 10x + \cos 4x = 2\cos 7x\cos 3x$ $\therefore \int 4\cos 3x\cos 7x \, dx = 2 \int (\cos 10x + \cos 4x) \, dx$ $= 2 \left(\frac{1}{10} \sin 10x + \frac{1}{4} \sin 4x \right) + C$ $= \frac{1}{5} \sin 10x + \frac{1}{2} \sin 4x + C$ - (f) $\cos 8x + \cos 0x = 2\cos 4x \cos 4x$ i.e. $\cos 8x + 1 = 2\cos 4x \cos 4x$ $\therefore \int 2\cos 4x \cos 4x \, dx = \int (1 + \cos 8x) \, dx$ $= x + \frac{1}{8}\sin 8x + C$ - (g) $\sin 8x + \sin 0x = 2 \sin 4x \cos 4x$ $\therefore \int 2 \cos 4x \sin 4x \, dx = \int \sin 8x \, dx$ $= -\frac{1}{8} \cos 8x + C$ - (h) $\cos 8x \cos 0x = -2\sin 4x \sin 4x$ i.e. $\cos 8x - 1 = -2\sin 4x \sin 4x$ $\therefore \int 2\sin 4x \sin 4x dx = \int (1 - \cos 8x) dx$ $= x - \frac{1}{8}\sin 8x + C$ ##
Edexcel AS and A Level Modular Mathematics **Integration** Exercise D, Question 1 ## **Question:** Use partial fractions to integrate the following: (a) $$\frac{3x+5}{(x+1)(x+2)}$$ (b) $$\frac{3x-1}{(2x+1)(x-2)}$$ (c) $$\frac{2x-6}{(x+3)(x-1)}$$ (d) $$\frac{3}{(2+x)(1-x)}$$ (e) $$\frac{4}{(2x+1)(1-2x)}$$ (f) $$\frac{3(x+1)}{9x^2-1}$$ (g) $$\frac{3-5x}{(1-x)(2-3x)}$$ (h) $$\frac{x^2-3}{(2+x)(1+x)^2}$$ (i) $$\frac{5+3x}{(x+2)(x+1)^2}$$ (j) $$\frac{17-5x}{(3+2x)(2-x)^2}$$ (a) $$\frac{3x+5}{(x+1)(x+2)} \equiv \frac{A}{x+1} + \frac{B}{x+2}$$ $$\Rightarrow 3x + 5 \equiv A (x + 2) + B (x + 1)$$ $$x = -1 \Rightarrow 2 = A$$ $$x = -2 \Rightarrow -1 = -B \Rightarrow B = 1$$ $$\therefore \int \frac{3x + 5}{(x + 1)(x + 2)} dx = \int \left(\frac{2}{x + 1} + \frac{1}{x + 2}\right) dx$$ $$= 2\ln|x + 1| + \ln|x + 2| + C$$ $$= \ln|(x + 1)^{2}| + \ln|x + 2| + C$$ $$= \ln|(x + 1)^{2}(x + 2)| + C$$ (b) $$\frac{3x-1}{(2x+1)(x-2)} \equiv \frac{A}{2x+1} + \frac{B}{x-2}$$ $\Rightarrow 3x-1 \equiv A(x-2) + B(2x+1)$ $x = 2 \Rightarrow 5 = 5B \Rightarrow B = 1$ $x = -\frac{1}{2} \Rightarrow -\frac{5}{2} = -\frac{5}{2}A \Rightarrow A = 1$ $\therefore \int \frac{3x-1}{(2x+1)(x-2)} dx = \int \left(\frac{1}{2x+1} + \frac{1}{x-2}\right) dx$ $= \frac{1}{2} \ln|2x+1| + \ln|x-2| + C$ $= \ln|(x-2)\sqrt{2x+1}| + C$ (c) $$\frac{2x-6}{(x+3)(x-1)} \equiv \frac{A}{x+3} + \frac{B}{x-1}$$ $$\Rightarrow 2x-6 \equiv A(x-1) + B(x+3)$$ $$x = 1 \Rightarrow -4 = 4B \Rightarrow B = -1$$ $$x = -3 \Rightarrow -12 = -4A \Rightarrow A = 3$$ $$\therefore \int \frac{2x-6}{(x+3)(x-1)} dx = \int \left(\frac{3}{x+3} - \frac{1}{x-1}\right) dx$$ $$= 3\ln|x+3| - \ln|x-1| + C$$ $$= \ln\left|\frac{(x+3)^3}{x-1}\right| + C$$ (d) $$\frac{3}{(2+x)(1-x)} \equiv \frac{A}{(2+x)} + \frac{B}{1-x}$$ $$\Rightarrow 3 \equiv A(1-x) + B(2+x)$$ $$x = 1 \Rightarrow 3 = 3B \Rightarrow B = 1$$ $$x = -2 \Rightarrow 3 = 3A \Rightarrow A = 1$$ $$\therefore \int \frac{3}{(2+x)(1-x)} dx = \int \left(\frac{1}{2+x} + \frac{1}{1-x}\right) dx.$$ $$= \ln |2+x| - \ln |1-x| + C$$ $$= \ln \left|\frac{2+x}{1-x}\right| + C$$ (e) $$\frac{4}{(2x+1)(1-2x)} \equiv \frac{A}{2x+1} + \frac{B}{1-2x}$$ $\Rightarrow 4 \equiv A(1-2x) + B(2x+1)$ $x = \frac{1}{2} \Rightarrow 4 = 2B \Rightarrow B = 2$ $x = -\frac{1}{2} \Rightarrow 4 = 2A \Rightarrow A = 2$ $\therefore \int \frac{4}{(2x+1)(1-2x)} dx = \int \left(\frac{2}{2x+1} + \frac{2}{1-2x}\right) dx$ $= \ln|2x+1| - \ln|1-2x| + C$ $= \ln\left|\frac{2x+1}{1-2x}\right| + C$ (f) $$\frac{3(x+1)}{9x^2 - 1} \equiv \frac{3(x+1)}{(3x-1)(3x+1)} \equiv \frac{A}{3x-1} + \frac{B}{3x+1}$$ $$\Rightarrow 3x + 3 \equiv A(3x+1) + B(3x-1)$$ $$x = -\frac{1}{3} \Rightarrow 2 = -2B \Rightarrow B = -1$$ $$x = \frac{1}{3} \Rightarrow 4 = 2A \Rightarrow A = 2$$ $$\therefore \int \frac{3(x+1)}{9x^2 - 1} dx = \int \left(\frac{2}{3x-1} - \frac{1}{3x+1}\right) dx$$ $$= \frac{2}{3} \ln|3x - 1| - \frac{1}{3} \ln|3x+1| + C$$ $$= \frac{1}{3} \ln\left|\frac{(3x-1)^2}{3x+1}\right| + C$$ (g) $$\frac{3-5x}{(1-x)(2-3x)} \equiv \frac{A}{1-x} + \frac{B}{2-3x}$$ $\Rightarrow 3-5x \equiv A(2-3x) + B(1-x)$ $x = \frac{2}{3} \Rightarrow -\frac{1}{3} = \frac{1}{3}B \Rightarrow B = -1$ $$x = 1 \implies -2 = -A \implies A = 2$$ $$\therefore \int \frac{3 - 5x}{(1 - x)(2 - 3x)} dx = \int \left(\frac{2}{1 - x} - \frac{1}{2 - 3x}\right) dx$$ $$= -2\ln|1 - x| + \frac{1}{3}\ln|2 - 3x| + C$$ $$= \ln\left|\frac{(2 - 3x)^{\frac{1}{3}}}{(1 - x)^2}\right| + C$$ (h) $$\frac{x^2 - 3}{(2+x)(1+x)^2} \equiv \frac{A}{2+x} + \frac{B}{1+x} + \frac{C}{(1+x)^2}$$ $$\Rightarrow x^2 - 3 \equiv A(1+x)^2 + B(2+x)(1+x) + C(2+x)$$ $$x = -1 \Rightarrow -2 = C \Rightarrow C = -2$$ $$x = -2 \Rightarrow 1 = 1A \Rightarrow A = 1$$ Coefficient of $x^2 \Rightarrow 1 = A + B \Rightarrow B = 0$ $$\therefore \int \frac{x^2 - 3}{(2+x)(1+x)^2} dx = \int \left(\frac{1}{2+x} - \frac{2}{(1+x)^2}\right) dx$$ $$= \ln|2+x| - 2\frac{(1+x)^{-1}}{-1} + C$$ $$= \ln|2+x| + \frac{2}{1+x} + C$$ (i) $$\frac{5+3x}{(x+2)(x+1)^2} \equiv \frac{A}{x+2} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$ $$\Rightarrow 5+3x \equiv A(x+1)^2 + B(x+2)(x+1) + C(x+2)$$ $$x = -1 \Rightarrow 2 = C \Rightarrow C = 2$$ $$x = -2 \Rightarrow -1 = A \Rightarrow A = -1$$ Coefficient of $x^2 \Rightarrow 0 = A + B \Rightarrow B = 1$ $$\therefore \int \frac{5+3x}{(x+2)(x+1)^2} dx = \int \left(-\frac{1}{x+2} + \frac{1}{x+1} + \frac{2}{(x+1)^2}\right) dx$$ $$= -\ln|x+2| + \ln|x+1| - \frac{2}{x+1} + C$$ $$= \ln\left|\frac{x+1}{x+2}\right| - \frac{2}{x+1} + C$$ (j) $$\frac{17 - 5x}{(3 + 2x)(2 - x)^2} \equiv \frac{A}{3 + 2x} + \frac{B}{2 - x} + \frac{C}{(2 - x)^2}$$ $$\Rightarrow 17 - 5x \equiv A(2 - x)^2 + B(3 + 2x)(2 - x) + C(3 + 2x)$$ $$x = 2 \Rightarrow 7 = 7C \Rightarrow C = 1$$ $$x = -\frac{3}{2} \Rightarrow \frac{49}{2} = \frac{49}{4}A \Rightarrow A = 2$$ Coefficient of $x^2 \Rightarrow 0 = A - 2B \Rightarrow B = 1$ $$\therefore \int \frac{17 - 5x}{(3 + 2x)(2 - x)^2} dx = \int \left(\frac{2}{3 + 2x} + \frac{1}{2 - x} + \frac{1}{(2 - x)^2}\right) dx$$ $$= \frac{2}{2} \ln|3 + 2x| - \ln|2 - x| + \frac{1}{2 - x} + C$$ $$= \ln\left|\frac{3 + 2x}{2 - x}\right| + \frac{1}{2 - x} + C$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise D, Question 2 #### **Question:** Find the following integrals: (a) $$\int \frac{2(x^2 + 3x - 1)}{(x+1)(2x-1)} dx$$ (b) $$\int \frac{x^3 + 2x^2 + 2}{x(x+1)} dx$$ (c) $$\int \frac{x^2}{x^2 - 4} dx$$ (d) $$\int \frac{x^2 + x + 2}{3 - 2x - x^2} dx$$ (e) $$\int \frac{6+3x-x^2}{x^3+2x^2} dx$$ #### **Solution:** (a) $$\frac{2(x^2 + 3x - 1)}{(x+1)(2x-1)} \equiv 1 + \frac{A}{x+1} + \frac{B}{2x-1}$$ $$\Rightarrow 2x^2 + 6x - 2 \equiv (x+1)(2x-1) + A(2x-1) + B(x+1)$$ $$x = -1 \Rightarrow -6 = -3A \Rightarrow A = 2$$ $$x = \frac{1}{2} \Rightarrow \frac{3}{2} = \frac{3}{2}B \Rightarrow B = 1$$ $$\therefore \int \frac{2(x^2 + 3x - 1)}{(x+1)(2x-1)} dx = \int \left(1 + \frac{2}{x+1} + \frac{1}{2x-1}\right) dx$$ $$= x + 2\ln|x+1| + \frac{1}{2}\ln|2x-1| + C$$ $$= x + \ln|(x+1)|^2 \sqrt{2x-1} + C$$ (b) $\frac{x^3 + 2x^2 + 2}{x(x+1)} \implies$ $$\begin{array}{r} x + 1 \\ x^{2} + x \overline{\smash{\big)}} x^{3} + 2x^{2} + 2 \\ \underline{x^{3} + x^{2}} \\ x^{2} + 2 \\ \underline{x^{2} + x} \\ 2 - x \end{array}$$ $$\frac{x^3 + 2x^2 + 2}{x(x+1)} \equiv x + 1 + \frac{2-x}{x(x+1)}$$ $$\equiv x + 1 + \frac{A}{x} + \frac{B}{x+1}$$ $$\Rightarrow x^3 + 2x^2 + 2 \equiv (x+1)x(x+1) + A(x+1) + Bx$$ $$x = 0 \Rightarrow 2 = A \Rightarrow A = 2$$ $$x = -1 \Rightarrow 3 = -B \Rightarrow B = -3$$ $$\therefore \int \frac{x^3 + 2x^2 + 2}{x(x+1)} dx = \int \left(x + 1 + \frac{2}{x} - \frac{3}{x+1}\right) dx$$ $$= \frac{x^2}{2} + x + 2\ln|x| - 3\ln|x+1| + C$$ $$= \frac{x^2}{2} + x + \ln\left|\frac{x^2}{(x+1)^3}\right| + C$$ (c) $$\frac{x^2}{x^2 - 4} \equiv 1 + \frac{A}{x - 2} + \frac{B}{x + 2}$$ $\Rightarrow x^2 \equiv (x - 2) (x + 2) + A (x + 2) + B (x - 2)$ $x = 2 \Rightarrow 4 = 4A \Rightarrow A = 1$ $x = -2 \Rightarrow 4 = -4B \Rightarrow B = -1$ $\therefore \int \frac{x^2}{x^2 - 4} dx = \int \left(1 + \frac{1}{x - 2} - \frac{1}{x + 2}\right) dx$ $= x + \ln|x - 2| - \ln|x + 2| + C$ $= x + \ln\left|\frac{x - 2}{x + 2}\right| + C$ (d) $$\frac{x^2 + x + 2}{3 - 2x - x^2} \equiv \frac{x^2 + x + 2}{(3 + x)(1 - x)} \equiv -1 + \frac{A}{3 + x} + \frac{B}{1 - x}$$ $$\Rightarrow x^2 + x + 2 \equiv -1(3 + x)(1 - x) + A(1 - x) + B(3 + x)$$ $$x = 1 \Rightarrow 4 = 4B \Rightarrow B = 1$$ $$x = -3 \Rightarrow 8 = 4A \Rightarrow A = 2$$ $$\therefore \int \frac{x^2 + x + 2}{3 - 2x - x^2} dx = \int \left(-1 + \frac{2}{3 + x} + \frac{1}{1 - x}\right) dx$$ $$= -x + 2\ln|3 + x| - \ln|1 - x| + C$$ $$= -x + \ln\left|\frac{(3 + x)^2}{1 - x}\right| + C$$ (e) $$\frac{6+3x-x^2}{x^3+2x^2} \equiv \frac{6+3x-x^2}{x^2(x+2)} \equiv \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2}$$ $\Rightarrow 6+3x-x^2 \equiv Ax(x+2) + B(x+2) + Cx^2$ $x = 0 \Rightarrow 6 = 2B \Rightarrow B = 3$ $x = -2 \Rightarrow -4 = 4C \Rightarrow C = -1$ Coefficient of $x^2 \Rightarrow -1 = A + C \Rightarrow A = 0$ $\therefore \int \frac{6+3x-x^2}{x^3+2x^2} dx = \int \left(\frac{3}{x^2} - \frac{1}{x+2}\right) dx$ $= -\frac{3}{x} - \ln|x+2| + C$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise E, Question 1 ## **Question:** Integrate the following functions: (a) $$\frac{x}{x^2 + 4}$$ (b) $$\frac{e^{2x}}{e^{2x}+1}$$ (c) $$\frac{x}{(x^2+4)^3}$$ (d) $$\frac{e^{2x}}{(e^{2x}+1)^3}$$ (e) $$\frac{\cos 2x}{3 + \sin 2x}$$ $$(f) \frac{\sin 2x}{(3+\cos 2x)^3}$$ (g) $$xe^{x^2}$$ (h) $$\cos 2x (1 + \sin 2x)^{4}$$ (i) $$\sec^2 x \tan^2 x$$ (j) $$\sec^2 x (1 + \tan^2 x)$$ (a) $$y = \ln |x^2 + 4|$$ $$\Rightarrow \frac{dy}{dx} = \frac{1}{x^2 + 4} \times 2x \quad \text{(chain rule)}$$ $$\therefore \int \frac{x}{x^2 + 4} dx = \frac{1}{2} \ln|x^2 + 4| + C$$ (b) $$y = \ln |e^{2x} + 1|$$ $$\Rightarrow \frac{dy}{dx} = \frac{1}{e^{2x} + 1} \times e^{2x} \times 2 \quad \text{(chain rule)}$$ $$\therefore \int \frac{e^{2x}}{e^{2x} + 1} dx = \frac{1}{2} \ln |e^{2x} + 1| + C$$ (c) $$y = (x^2 + 4)^{-2}$$ $\Rightarrow \frac{dy}{dx} = -2(x^2 + 4)^{-3} \times 2x$ (chain rule) $\therefore \int \frac{x}{(x^2 + 4)^3} dx = -\frac{1}{4}(x^2 + 4)^{-2} + C$ or $-\frac{1}{4(x^2 + 4)^2} + C$ (d) $$y = (e^{2x} + 1)^{-2}$$ $$\Rightarrow \frac{dy}{dx} = -2(e^{2x} + 1)^{-3} \times e^{2x} \times 2 \quad \text{(chain rule)}$$ $$\therefore \int \frac{e^{2x}}{(e^{2x} + 1)^3} dx = -\frac{1}{4}(e^{2x} + 1)^{-2} + C$$ or $-\frac{1}{4(e^{2x} + 1)^2} + C$ (e) $$y = \ln |3 + \sin 2x|$$ $$\Rightarrow \frac{dy}{dx} = \frac{1}{3 + \sin 2x} \times \cos 2x \times 2 \quad \text{(chain rule)}$$ $$\therefore \int \frac{\cos 2x}{3 + \sin 2x} dx = \frac{1}{2} \ln |3 + \sin 2x| + C$$ (f) $$y = (3 + \cos 2x)^{-2}$$ $\Rightarrow \frac{dy}{dx} = -2(3 + \cos 2x)^{-3} \times (-\sin 2x) \times 2$ (chain rule) $\therefore \int \frac{\sin 2x}{(3 + \cos 2x)^3} dx = \frac{1}{4}(3 + \cos 2x)^{-2} + C$ or $\frac{1}{4(3 + \cos 2x)^2} + C$ (g) $$y = e^{x^2}$$ $$\Rightarrow \frac{dy}{dx} = e^{x^2} \times 2x \quad \text{(chain rule)}$$ $$\therefore \int xe^{x^2} dx = \frac{1}{2}e^{x^2} + C$$ (h) $$y = (1
+ \sin 2x)^{-5}$$ $\Rightarrow \frac{dy}{dx} = 5 (1 + \sin 2x)^{-4} \times \cos 2x \times 2$ (chain rule) $\therefore \int \cos 2x (1 + \sin 2x)^{-4} dx = \frac{1}{10} (1 + \sin 2x)^{-5} + C$ (i) $$y = \tan^3 x$$ $$\Rightarrow \frac{dy}{dx} = 3\tan^2 x \times \sec^2 x \quad \text{(chain rule)}$$ $$\therefore \int \sec^2 x \tan^2 x \, dx = \frac{1}{3} \tan^3 x + C$$ (j) $$\sec^2 x (1 + \tan^2 x) = \sec^2 x + \sec^2 x \tan^2 x$$ $$\therefore \int \sec^2 x (1 + \tan^2 x) dx = \int (\sec^2 x + \sec^2 x \tan^2 x) dx$$ $$= \tan x + \frac{1}{3} \tan^3 x + C$$ ## **Edexcel AS and A Level Modular Mathematics** Integration Exercise E, Question 2 ### **Question:** Find the following integrals: (a) $$\int (x+1) (x^2 + 2x + 3)^4 dx$$ (b) $$\int \csc^2 2x \cot 2x \, dx$$ (c) $$\int \sin^5 3x \cos 3x \, dx$$ (d) $$\int \cos x e^{\sin x} dx$$ (e) $$\int \frac{e^{2x}}{e^{2x}+3} dx$$ (f) $$\int x (x^2 + 1)^{\frac{3}{2}} dx$$ (g) $$\int (2x+1) \sqrt{x^2+x+5} dx$$ (h) $$\int \frac{2x+1}{\sqrt{x^2+x+5}} dx$$ (i) $$\int \frac{\sin x \cos x}{\sqrt{\cos 2x + 3}} dx$$ (j) $$\int \frac{\sin x \cos x}{\cos 2x + 3} dx$$ (a) $$y = (x^2 + 2x + 3)^5$$ $$\Rightarrow \frac{dy}{dx} = 5(x^2 + 2x + 3)^4 \times (2x + 2)$$ $$= 5(x^2 + 2x + 3)^4 \times 2(x + 1)$$ $$\therefore \int (x + 1)^4 (x^2 + 2x + 3)^4 dx = \frac{1}{10}(x^2 + 2x + 3)^5 + C$$ (b) $$y = \cot^2 2x$$ $$\Rightarrow \frac{dy}{dx} = 2 \cot 2x \times \left(-\csc^2 2x \right) \times 2$$ $$= -4 \csc^2 2x \cot 2x$$ $$\therefore \int \csc^2 2x \cot 2x \, dx = -\frac{1}{4} \cot^2 2x + C$$ (c) $$y = \sin^6 3x$$ $$\Rightarrow \frac{dy}{dx} = 6\sin^5 3x \times \cos 3x \times 3$$ $$\therefore \int \sin^5 3x \cos 3x \, dx = \frac{1}{18}\sin^6 3x + C$$ (d) $$y = e^{\sin x}$$ $$\Rightarrow \frac{dy}{dx} = e^{\sin x} \times \cos x$$ $$\therefore \int \cos x e^{\sin x} dx = e^{\sin x} + C$$ (e) $$y = \ln |e^{2x} + 3|$$ $$\Rightarrow \frac{dy}{dx} = \frac{1}{e^{2x} + 3} \times e^{2x} \times 2$$ $$\therefore \int \frac{e^{2x}}{e^{2x} + 3} dx = \frac{1}{2} \ln |e^{2x} + 3| + C$$ (f) $$y = (x^2 + 1)^{\frac{5}{2}}$$ $$\Rightarrow \frac{dy}{dx} = \frac{5}{2}(x^2 + 1)^{\frac{3}{2}} \times 2x = 5x(x^2 + 1)^{\frac{3}{2}}$$ $$\therefore \int x(x^2 + 1)^{\frac{3}{2}} dx = \frac{1}{5}(x^2 + 1)^{\frac{5}{2}} + C$$ (g) $$y = (x^2 + x + 5)^{\frac{3}{2}}$$ $$\Rightarrow \frac{dy}{dx} = \frac{3}{2}(x^2 + x + 5)^{\frac{1}{2}} \times (2x + 1)$$ $$\therefore \int (2x + 1) \sqrt{x^2 + x + 5} dx = \frac{2}{3}(x^2 + x + 5)^{\frac{3}{2}} + C$$ (h) $$y = (x^2 + x + 5)^{\frac{1}{2}}$$ $$\Rightarrow \frac{dy}{dx} = \frac{1}{2} (x^2 + x + 5) - \frac{1}{2} \times (2x + 1)$$ $$= \frac{1}{2} \frac{(2x + 1)}{\sqrt{x^2 + x + 5}}$$ $$\therefore \int \frac{2x + 1}{\sqrt{x^2 + x + 5}} dx = 2 (x^2 + x + 5) \frac{1}{2} + C$$ (i) $$y = (\cos 2x + 3)^{-\frac{1}{2}}$$ $$\Rightarrow \frac{dy}{dx} = \frac{1}{2} (\cos 2x + 3)^{-\frac{1}{2}} \times (-\sin 2x) \times 2$$ $$= -\frac{\sin 2x}{\sqrt{\cos 2x + 3}}$$ $$= -\frac{2\sin x \cos x}{\sqrt{\cos 2x + 3}}$$ $$\therefore \int \frac{\sin x \cos x}{\sqrt{\cos 2x + 3}} dx = -\frac{1}{2} (\cos 2x + 3)^{-\frac{1}{2}} + C$$ (j) $$y = \ln |\cos 2x + 3|$$ $$\Rightarrow \frac{dy}{dx} = \frac{1}{\cos 2x + 3} \times \left(-\sin 2x \right) \times 2$$ $$= -\frac{2\sin 2x}{\cos 2x + 3}$$ $$= -\frac{4\sin x \cos x}{\cos 2x + 3}$$ $$\therefore \int \frac{\sin x \cos x}{\cos 2x + 3} dx = -\frac{1}{4} \ln |\cos 2x + 3| + C$$ ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise F, Question 1 ### **Question:** Use the given substitution to find the following integrals: (a) $$\int x \sqrt{1+x} \, \mathrm{d}x; \, u = 1+x$$ (b) $$\int \frac{x}{\sqrt{1+x}} dx$$; $u = 1 + x$ (c) $$\int \frac{1+\sin x}{\cos x} dx; u = \sin x$$ (d) $$\int x (3 + 2x)^{-5} dx$$; $u = 3 + 2x$ (e) $$\int \sin^3 x \, dx; \, u = \cos x$$ (a) $$u = 1 + x \implies du = dx$$ and $x = u - 1$ $$\therefore \int x (1 + x)^{\frac{1}{2}} dx = \int (u - 1) u^{\frac{1}{2}} du$$ $$= \int (u^{\frac{3}{2}} - u^{\frac{1}{2}}) du$$ $$= \frac{2}{5} u^{\frac{5}{2}} - \frac{2}{3} u^{\frac{3}{2}} + C$$ $$= \frac{2}{5} (1 + x)^{\frac{5}{2}} - \frac{2}{3} (1 + x)^{\frac{3}{2}} + C$$ $$OR = \frac{2}{15} (1 + x)^{\frac{3}{2}} \left[3 \left(1 + x \right) - 5 \right] + C$$ $$= \frac{2}{15} (1 + x)^{\frac{3}{2}} \left(3x - 2 \right) + C$$ (b) $$u = 1 + x \implies du = dx$$ and $x = u - 1$ $$\therefore \int \frac{x}{\sqrt{1+x}} dx = \int \frac{u-1}{u^{\frac{1}{2}}} du$$ $$= \int (u^{\frac{1}{2}} - u^{-\frac{1}{2}}) du$$ $$= \frac{2}{3}u^{\frac{3}{2}} - 2u^{\frac{1}{2}} + C$$ $$= \frac{2}{3}(1+x)^{\frac{3}{2}} - 2(1+x)^{\frac{1}{2}} + C$$ $$OR = \frac{2}{3}(1+x)^{\frac{1}{2}} \left[1+x-3\right] + C$$ $$= \frac{2}{3}(1+x)^{\frac{1}{2}} \left(x-2\right) + C$$ (c) $$u = \sin x \implies \frac{du}{dx} = \cos x \implies dx = \frac{du}{\cos x}$$ $$\therefore \int \frac{1 + \sin x}{\cos x} dx = \int \frac{1 + u}{\cos x} \frac{du}{\cos x}$$ $$= \int \frac{1 + u}{1 - \sin^2 x} du$$ $$= \int \frac{1 + u}{1 - u^2} du$$ $$= \int \frac{(1 + u)}{(1 - u)(1 + u)} du$$ $$= \int \frac{1}{1 - u} du$$ $$= -\ln|1 - u| + C$$ $$= -\ln|1 - \sin x| + C$$ (d) $$u = 3 + 2x \implies du = 2 dx \text{ and } x = \frac{u-3}{2}$$ $$\therefore \int x (3 + 2x)^{-5} dx = \int \frac{u-3}{2} u^{5} \frac{du}{2}$$ $$= \int \left(\frac{u^{6}}{4} - \frac{3u^{5}}{4}\right) du$$ $$= \frac{u^{7}}{28} - \frac{3u^{6}}{24} + C$$ $$= \frac{u^{7}}{28} - \frac{u^{6}}{8} + C$$ $$= \frac{(3 + 2x)^{-7}}{28} - \frac{(3 + 2x)^{-6}}{8} + C$$ (e) $$u = \cos x \implies du = -\sin x dx$$ $$\therefore \int \sin^3 x dx = \int -(1 - u^2) du$$ $$= \int (u^2 - 1) du$$ $$= \frac{u^3}{3} - u + C$$ $$= \frac{\cos^3 x}{3} - \cos x + C$$ $$OR = \frac{\cos x}{3} \left(\cos^2 x - 3\right) + C$$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise F, Question 2 ### **Question:** Use the given substitution to find the following integrals: (a) $$\int x \sqrt{2 + x} \, dx$$; $u^2 = 2 + x$ (b) $$\int \frac{2}{\sqrt{x(x-4)}} dx; u = \sqrt{x}$$ (c) $$\int \sec^2 x \tan x \sqrt{1 + \tan x} \, dx; u^2 = 1 + \tan x$$ (d) $$\int \frac{\sqrt{x^2+4}}{x} dx$$; $u^2 = x^2 + 4$ (e) $$\int \sec^4 x \, dx$$; $u = \tan x$ (a) $$u^2 = 2 + x \implies 2u \, du = dx \text{ and } x = u^2 - 2$$ $$\therefore \int x \sqrt{2 + x} \, dx = \int (u^2 - 2) \times u \times 2u \, du$$ $$= \int (2u^4 - 4u^2) \, du$$ $$= \frac{2u^5}{5} - \frac{4u^3}{3} + C$$ $$= \frac{2}{5} (2 + x)^{\frac{5}{2}} - \frac{4}{3} (2 + x)^{\frac{3}{2}} + C$$ (b) $$u = x^{\frac{1}{2}} \implies \frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \implies \frac{dx}{\sqrt{x}} = 2 du$$ and $x - 4 = u^2 - 4$ $$\therefore I = \int \frac{2}{\sqrt{x(x-4)}} dx = \int \frac{2}{u^2 - 4} \times 2 du = \int \frac{4}{u^2 - 4} du$$ $$\frac{4}{u^2 - 4} = \frac{A}{u - 2} + \frac{B}{u + 2}$$ $$\implies 4 = A(u + 2) + B(u - 2)$$ $$u = 2 \implies 4 = 4A \implies A = 1$$ $$u = -2 \implies 4 = -4B \implies B = -1$$ $$\therefore I = \int \left(\frac{1}{u-2} - \frac{1}{u+2}\right) du$$ $$= \ln|u-2| - \ln|u+2| + C$$ $$= \ln\left|\frac{\sqrt{x-2}}{\sqrt{x+2}}\right| + C$$ (c) $$u^2 = 1 + \tan x \implies 2u \, du = \sec^2 x \, dx$$ $\therefore \int \sec^2 x \tan x \sqrt{1 + \tan x} \, dx$ $= \int (u^2 - 1) \times u \times 2u \, du$ $= \int (2u^4 - 2u^2) \, du$ $= \frac{2u^5}{5} - \frac{2u^3}{3} + C$ $= \frac{2}{5} (1 + \tan x)^{\frac{5}{2}} - \frac{2}{3} (1 + \tan x)^{\frac{3}{2}} + C$ (d) $$u^2 = x^2 + 4 \implies 2u \, du = 2x \, dx \implies \frac{u \, du}{x} = dx$$ $$\therefore \int \frac{\sqrt{x^2 + 4}}{x} \, dx = \int \frac{u}{x} \times \frac{u \, du}{x}$$ $$= \int \frac{u^2}{x^2} \, du$$ $$= \int \frac{u^2}{u^2 - 4} \, du$$ $$= \int (1 + \frac{4}{u^2 - 4}) du \text{ but } \frac{4}{u^2 - 4} \equiv \frac{A}{u + 2} + \frac{B}{u + 2}$$ $$4 \equiv A(u + 2) + B(u - 2)$$ $$u = 2 : 4 = 4A, A = 1$$ $$u = -2 : 4 = -4B, B = -1$$ $$= \int \left(1 + \frac{1}{u-2} - \frac{1}{u+2} \right) du$$ $$= u + \ln |u-2| - \ln |u+2| + C$$ $$= \sqrt{x^2 + 4} + \ln \left| \frac{\sqrt{x^2 + 4} - 2}{\sqrt{x^2 + 4} + 2} \right| + C$$ (e) $$u = \tan x \implies du = \sec^2 x dx$$ $$\therefore \int \sec^4 x \, dx = \int \sec^2 x \sec^2 x \, dx$$ $$= \int (1 + u^2) \, du$$ $$= u + \frac{u^3}{3} + C$$ $$= \tan x + \frac{\tan^3 x}{3} + C$$ # **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise F, Question 3 ### **Question:** Evaluate the following: (a) $$\int_0^5 x \sqrt{x+4} \, dx$$ (b) $$\int_0^{\frac{\pi}{3}} \sec x \tan x \sqrt{\sec x + 2} \, dx$$ (c) $$\int_{2}^{5} \frac{1}{1 + \sqrt{x - 1}} dx$$; use $u^2 = x - 1$ (d) $$\int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta$$; let $u = 1 + \cos \theta$ (e) $$\int_0^1 x (2 + x)^3 dx$$ (f) $$\int_{1}^{4} \frac{1}{\sqrt{x(4x-1)}} dx$$; let $u = \sqrt{x}$ (a) $$u^2 = x + 4 \implies 2u \, du = dx \text{ and } x = u^2 - 4$$ Also $u = 3 \text{ when } x = 5$ and $u = 2 \text{ when } x = 0$. $$\therefore \int_0^5 x \sqrt{x + 4} \, dx = \int_2^3 (u^2 - 4) \times u \times 2u \, du$$ $$= \int_2^3 (2u^4 - 8u^2) \, du$$ $$= \left[\frac{2}{5}u^5 - \frac{8}{3}u^3 \right]_2^3$$ $$= \left(\frac{2}{5} \times 243 - \frac{8}{3} \times 27 \right) - \left(\frac{64}{5} - \frac{64}{3} \right)$$ $$= 25.2 - 8.53$$ $$= 33.73$$ $$= 33.7 \text{ (3 s.f.)}$$ (b) $$u^2 = \sec x + 2 \implies 2u \, du = \sec x \tan x \, dx$$ (d) $$u = 1 + \cos \theta \implies du = -\sin \theta d\theta$$ or $-du = \sin \theta d\theta$ Also $u = 1$ when $\theta = \frac{\pi}{2}$ and $u = 2$ when $\theta = 0$. $$\therefore I = \int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \int_0^{\frac{\pi}{2}} \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int_2^{1} - \frac{2(u-1)}{u} du$$ Use '-' to reverse limits: $$I = \int_1^{2} \frac{2u-2}{u} du$$ $$= \int_1^{2} \left(2 - \frac{2}{u}\right) du$$ $$= \left[2u - 2\ln |u|\right]_1^{2}$$ $$= (4 - 2 \ln 2) - (2 - 2 \ln 1)$$ = 2 - 2 \ln 2 - (e) $u = 2 + x \implies du = dx$ and x = u 2Also u = 3 when x = 1and u = 2 when x = 0. $\therefore \int_{0}^{1} x (2 + x)^{3} dx = \int_{2}^{3} (u - 2) u^{3}
du$ $= \int_{2}^{3} (u^{4} - 2u^{3}) du$ $= \left[\frac{u^{5}}{5} - \frac{2}{4}u^{4} \right]_{2}^{3}$ $= \left(\frac{243}{5} - \frac{81}{2} \right) - \left(\frac{32}{5} - \frac{16}{2} \right)$ $= \frac{211}{5} - 32.5$ = 42.2 - 32.5 = 9.7 - (f) $u = x^{\frac{1}{2}} \implies du = \frac{1}{2}x^{-\frac{1}{2}}dx \implies \frac{dx}{\sqrt{x}} = 2 du$ and $4x - 1 = 4u^2 - 1$ Also u = 2 when x = 4and u = 1 when x = 1. $\therefore I = \int_{1}^{4} \frac{1}{\sqrt{x(4x - 1)}} dx = \int_{1}^{2} \frac{1}{4u^2 - 1} \times 2 du$ $\frac{2}{4u^2 - 1} = \frac{A}{2u - 1} + \frac{B}{2u + 1}$ $\Rightarrow 2 = A(2u + 1) + B(2u - 1)$ $u = \frac{1}{2} \implies 2 = 2A \implies A = 1$ $u = -\frac{1}{2} \implies 2 = -2B \implies B = -1$ $\therefore I = \int_{1}^{2} \left(\frac{1}{2u - 1} - \frac{1}{2u + 1}\right) du$ $= \left[\frac{1}{2} \ln|2u - 1| - \frac{1}{2} \ln|2u + 1|\right]_{1}^{2}$ $= \left[\frac{1}{2} \ln\left|\frac{2u - 1}{2u + 1}\right|\right]_{1}^{2}$ $$= \left(\frac{1}{2} \ln \left| \frac{3}{5} \right| \right) - \left(\frac{1}{2} \ln \left| \frac{1}{3} \right| \right)$$ $$= \frac{1}{2} \ln \frac{9}{5}$$ # **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise G, Question 1 ### **Question:** Find the following integrals: - (a) $\int x \sin x dx$ - (b) $\int xe^x dx$ - (c) $\int x \sec^2 x dx$ - (d) $\int x \sec x \tan x dx$ - (e) $\int \frac{x}{\sin^2 x} dx$ (a) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \sin x \implies v = -\cos x$$ $$\therefore \int x \sin x \, dx = -x \cos x - \int -\cos x \times 1 \, dx$$ $$= -x \cos x + \int \cos x \, dx$$ $$= -x \cos x + \sin x + C$$ (b) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = e^x \implies v = e^x$$ $$\therefore \int xe^x dx = xe^x - \int e^x \times 1 dx$$ $$= xe^x - e^x + C$$ (c) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \sec^2 x \implies v = \tan x$$ $$\therefore \int x \sec^2 x \, dx = x \tan x - \int \tan x \times 1 \, dx$$ $$= x \tan x - \ln |\sec x| + C$$ (d) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \sec x \tan x \implies v = \sec x$$ $$\therefore \int x \sec x \tan x dx = x \sec x - \int \sec x \times 1 dx$$ $$= x \sec x - \ln|\sec x + \tan x| + C$$ (e) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \csc^2 x \implies v = -\cot x$$ $$\therefore \int \frac{x}{\sin^2 x} dx = \int x \csc^2 x dx$$ $$= -x \cot x - \int -\cot x \times 1 dx$$ $$= -x \cot x + \int \cot x dx$$ $$= -x \cot x + \ln|\sin x| + C$$ [©] Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise G, Question 2 ## **Question:** Find the following integrals: - (a) $\int x^2 \ln x \, dx$ - (b) $\int 3 \ln x \, dx$ - (c) $\int \frac{\ln x}{x^3} dx$ - (d) $\int (\ln x)^2 dx$ - (e) $\int (x^2 + 1) \ln x dx$ (a) $$u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$$ $$\frac{dv}{dx} = x^2 \implies v = \frac{x^3}{3}$$ $$\therefore \int x^2 \ln x \, dx = \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \times \frac{1}{x} \, dx$$ $$= \frac{x^3}{3} \ln x - \int \frac{x^2}{3} \, dx$$ $$= \frac{x^3}{3} \ln x - \frac{x^3}{9} + C$$ (b) $$u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$$ $$\frac{dv}{dx} = 3 \implies v = 3x$$ $$\therefore \int 3 \ln x \, dx = 3x \ln x - \int 3x \times \frac{1}{x} \, dx$$ $$= 3x \ln x - \int 3 \, dx$$ $$= 3x \ln x - 3x + C$$ (c) $$u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$$ $$\frac{dv}{dx} = x^{-3} \implies v = \frac{x^{-2}}{-2}$$ $$\therefore \int \frac{\ln x}{x^3} dx = -\frac{1}{2x^2} \ln x - \int -\frac{1}{2x^2} \times \frac{1}{x} dx$$ $$= -\frac{\ln x}{2x^2} + \int \frac{1}{2}x^{-3} dx$$ $$= -\frac{\ln x}{2x^2} + \frac{x^{-2}}{2 \times (-2)} + C$$ $$= -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + C$$ (d) $$u = (\ln x)^2 \Rightarrow \frac{du}{dx} = 2\ln x \times \frac{1}{x}$$ $$\frac{dv}{dx} = 1 \Rightarrow v = x$$ $$\therefore I = \int (\ln x)^2 dx = x (\ln x)^2 - \int x \times 2\ln x \times \frac{1}{x} dx$$ $$= x (\ln x)^2 - \int 2\ln x dx$$ $$\text{Let } J = \int 2\ln x dx$$ $$u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x}$$ $$\frac{dv}{dx} = 2 \Rightarrow v = 2x$$ $$\therefore J = 2x \ln x - \int 2x \times \frac{1}{x} dx = 2x \ln x - 2x + C$$ $$\therefore I = x (\ln x)^2 - 2x \ln x + 2x + C$$ (e) $$u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$$ $$\frac{dv}{dx} = x^2 + 1 \implies v = \frac{x^3}{3} + x$$ $$\therefore \int \left(x^2 + 1\right) \ln x \, dx = \ln x \left(\frac{x^3}{3} + x\right) - \int \left(\frac{x^3}{3} + x\right) \times \frac{1}{x} \, dx$$ $$= \left(\frac{x^3}{3} + x\right) \ln x - \int \left(\frac{x^2}{3} + 1\right) \, dx$$ $$= \left(\frac{x^3}{3} + x\right) \ln x - \frac{x^3}{9} - x + C$$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise G, Question 3 ### **Question:** Find the following integrals: (a) $$\int x^2 e^{-x} dx$$ (b) $$\int x^2 \cos x \, dx$$ (c) $$\int 12x^2 (3 + 2x)^{-5} dx$$ (d) $$\int 2x^2 \sin 2x \, dx$$ (e) $$\int x^2 2 \sec^2 x \tan x \, dx$$ (a) $$u = x^2$$ $\Rightarrow \frac{du}{dx} = 2x$ $$\frac{dv}{dx} = e^{-x} \Rightarrow v = -e^{-x}$$ $$\therefore I = \int x^2 e^{-x} dx = -x^2 e^{-x} - \int -e^{-x} \times 2x dx$$ $$= -x^2 e^{-x} + \int 2x e^{-x} - 2x e^{-x} + C$$ $$\therefore I = -x^2 e^{-x} - 2x e^{-x} - 2x e^{-x} + C$$ (b) $$u = x^2 \implies \frac{du}{dx} = 2x$$ $$\frac{dv}{dx} = \cos x \implies v = \sin x$$ $$\therefore I = \int x^2 \cos x \, dx = x^2 \sin x - \int 2x \sin x \, dx$$ $$\text{Let } J = \int 2x \sin x \, dx$$ $$u = 2x \quad \Rightarrow \quad \frac{du}{dx} = 2$$ $$\frac{dv}{dx} = \sin x \quad \Rightarrow \quad v = -\cos x$$ $$\therefore J = -2x \cos x - \int (-\cos x) \times 2 \, dx$$ $$= -2x \cos x + \int 2\cos x \, dx$$ $$= -2x \cos x + 2\sin x + C$$ $$\therefore I = x^2 \sin x + 2x \cos x - 2\sin x + C'$$ (c) $$u = 12x^{2} \implies \frac{du}{dx} = 24x$$ $$\frac{dv}{dx} = (3+2x)^{5} \implies v = \frac{(3+2x)^{6}}{12}$$ $$\therefore I = \int 12x^{2} (3+2x)^{5} dx = 12x^{2} \frac{(3+2x)^{6}}{12} - \int 24x \frac{(3+2x)^{6}}{12} dx$$ $$= x^{2} (3+2x)^{6} - \int 2x (3+2x)^{6} dx$$ $$\text{Let } J = \int 2x (3+2x)^{6} dx$$ $$u = 2x \implies \frac{du}{dx} = 2$$ $$v = \frac{(3+2x)^{7}}{14} \implies \frac{dv}{dx} = (3+2x)^{6}$$ $$\therefore J = 2x \frac{(3+2x)^{7}}{14} - \int \frac{(3+2x)^{7}}{14} \times 2 dx$$ $$= x \frac{(3+2x)^{7}}{7} - \int \frac{(3+2x)^{7}}{7} dx$$ $$= x \frac{(3+2x)^{7}}{7} - \frac{(3+2x)^{8}}{7 \times 16} + C$$ $$\therefore I = x^{2} (3+2x)^{6} - x \frac{(3+2x)^{7}}{7} + \frac{(3+2x)^{8}}{112} + C'$$ (d) $$u = 2x^2 \implies \frac{du}{dx} = 4x$$ $$\frac{dv}{dx} = \sin 2x \implies v = -\frac{1}{2}\cos 2x$$ $$\therefore I = \int 2x^2 \sin 2x \, dx = -\frac{2x^2}{2} \cos 2x - \int \left(-\frac{1}{2} \cos 2x \right) \times 4x \, dx$$ $$= -x^2 \cos 2x + \int 2x \cos 2x \, dx$$ $$\text{Let } J = \int 2x \cos 2x \, dx$$ $$u = x \quad \Rightarrow \quad \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = 2 \cos 2x \quad \Rightarrow \quad v = \sin 2x$$ $$\therefore J = x \sin 2x - \int \sin 2x \, dx$$ $$= x \sin 2x + \frac{1}{2} \cos 2x + C$$ $$\therefore I = -x^2 \cos 2x + x \sin 2x + \frac{1}{2} \cos 2x + C'$$ (e) $$u = x^2$$ $\Rightarrow \frac{du}{dx} = 2x$ $$\frac{dv}{dx} = 2\sec x \sec x \tan x \Rightarrow v = \sec^2 x$$ $$\therefore I = \int x^2 \times 2 \sec^2 x \tan x \, dx = x^2 \sec^2 x - \int 2x \sec^2 x \, dx$$ $$\text{Let } J = \int 2x \sec^2 x \, dx$$ $$u = 2x \Rightarrow \frac{du}{dx} = 2$$ $$\frac{dv}{dx} = \sec^2 x \Rightarrow v = \tan x$$ $$\therefore J = 2x \tan x - \int 2 \tan x \, dx$$ $$= 2x \tan x - 2 \ln|\sec x| + C$$ $$\therefore I = x^2 \sec^2 x - 2x \tan x + 2 \ln|\sec x| + C'$$ # **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise G, Question 4 ### **Question:** Evaluate the following: (a) $$\int_0^{\ln 2} x e^{2x} dx$$ (b) $$\int_0^{\frac{\pi}{2}} x \sin x \, dx$$ (c) $$\int_0^{\frac{\pi}{2}} x \cos x \, \mathrm{d}x$$ (d) $$\int_{1}^{2} \frac{\ln x}{x^2} dx$$ (e) $$\int_0^1 4x (1+x)^3 dx$$ (f) $$\int_0^{\pi} x \cos \left(\frac{1}{4} x \right) dx$$ (g) $$\int_0^{\frac{\pi}{3}} \sin x \ln |\sec x| dx$$ (a) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = e^{2x} \implies v = \frac{1}{2}e^{2x}$$ $$\therefore \int_{0}^{\ln 2} x e^{2x} dx = \begin{bmatrix} \frac{1}{2}e^{2x} \times x \end{bmatrix}_{0}^{\ln 2} - \int_{0}^{\ln 2} \frac{1}{2}e^{2x} dx$$ $$= \left(\frac{1}{2}e^{2\ln 2}\ln 2 \right) - \left(0 \right) - \left[\frac{1}{4}e^{2x} \right]_{0}^{\ln 2}$$ $$= \frac{4}{2}\ln 2 - \left[\left(\frac{1}{4}e^{2\ln 2} \right) - \left(\frac{1}{4}e^{0} \right) \right]$$ $$= 2\ln 2 - \frac{4}{4} + \frac{1}{4}$$ $$=2\ln 2 - \frac{3}{4}$$ (b) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \sin x \implies v = -\cos x$$ $$\therefore \int_{0}^{\frac{\pi}{2}} x \sin x \, dx = \begin{bmatrix} -x \cos x \end{bmatrix}_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \left(-\cos x \right) \, dx$$ $$= \left(-\frac{\pi}{2} \cos \frac{\pi}{2} \right) - \left(0 \right) + \int_{0}^{\frac{\pi}{2}} \cos x \, dx$$ $$= 0 + \begin{bmatrix} \sin x \end{bmatrix}_{0}^{\frac{\pi}{2}}$$ $$= \left(\sin \frac{\pi}{2} \right) - \left(\sin 0 \right)$$ $$= 1$$ (c) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \cos x \implies v = \sin x$$ $$\therefore \int_{0}^{\frac{\pi}{2}} x \cos x \, dx = \left[x \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x \, dx$$ $$= \left(\frac{\pi}{2} \sin \frac{\pi}{2} \right) - \left(0 \right) - \left[-\cos x \right]_{0}^{\frac{\pi}{2}}$$ $$= \frac{\pi}{2} + \left(\cos \frac{\pi}{2} \right) - \left(\cos 0 \right)$$ $$= \frac{\pi}{2} - 1$$ $$(d) u = \ln x \quad \Rightarrow \quad \frac{du}{dx} = \frac{1}{x}$$ $$\frac{dv}{dx} = x^{-2} \quad \Rightarrow \quad v = -x^{-1}$$ $$\therefore \int_{1}^{2} \frac{\ln x}{x^{2}} dx = \left[-\frac{\ln x}{x} \right]_{1}^{2} - \int_{1}^{2} \frac{1}{x} \times \left(-x^{-1} \right) dx$$ $$= \left(-\frac{\ln 2}{2} \right) - \left(-\frac{\ln 1}{1} \right) + \int_{1}^{2} \frac{1}{x^{2}} dx$$ $$= -\frac{1}{2} \ln 2 + \left[-x^{-1} \right]_{1}^{2}$$ $$= -\frac{1}{2}\ln 2 +
\left(-\frac{1}{2}\right) - \left(-\frac{1}{1}\right)$$ $$= \frac{1}{2}\left(1 - \ln 2\right)$$ (e) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = 4 (1+x)^{3} \implies v = (1+x)^{4}$$ $$\therefore \int_{0}^{1} 4x (1+x)^{3} dx = [x (1+x)^{4}]_{0}^{1} - \int_{0}^{1} (1+x)^{4} dx$$ $$= \left(1 \times 2^{4}\right) - \left(0\right) - \left[\frac{(1+x)^{5}}{5}\right]_{0}^{1}$$ $$= 16 - \left[\left(\frac{2^{5}}{5}\right) - \left(\frac{1}{5}\right)\right]$$ $$= 16 - \frac{31}{5}$$ $$= 16 - 6.2$$ $$= 9.8$$ (f) $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \cos\left(\frac{1}{4}x\right) \implies v = 4\sin\left(\frac{1}{4}x\right)$$ $$\therefore \int_{0}^{\pi} x \cos\left(\frac{1}{4}x\right) dx = \left[4x\sin\frac{x}{4}\right]_{0}^{\pi} - \int_{0}^{\pi} 4\sin\left(\frac{1}{4}x\right) dx$$ $$= \left(4\pi\sin\frac{\pi}{4}\right) - \left(0\right) + \left[16\cos\frac{1}{4}x\right]_{0}^{\pi}$$ $$= \frac{4\pi}{\sqrt{2}} + \left(16\cos\frac{\pi}{4}\right) - \left(16\cos0\right)$$ $$= \frac{4\pi}{\sqrt{2}} + \frac{16}{\sqrt{2}} - 16$$ $$OR = \frac{4\pi\sqrt{2}}{2} + \frac{16\sqrt{2}}{2} - 16$$ $$= 2\pi\sqrt{2} + 8\sqrt{2} - 16$$ (g) $$u = \ln |\sec x| \Rightarrow \frac{du}{dx} = \tan x$$ $$\frac{dv}{dx} = \sin x \Rightarrow v = -\cos x$$ $$\therefore \int_0^{\frac{\pi}{3}} \sin x \ln |\sec x| \, dx = \int_0^{\frac{\pi}{3}} -\cos x \ln |\sec x| \, dx = \int_0^{\frac{\pi}{3}} + \int_0^{\frac{$$ $\frac{\pi}{3}\cos x \tan x \, \mathrm{d}x$ $$= \left(-\cos\frac{\pi}{3}\ln \left| \sec\frac{\pi}{3} \right| \right) - \left(-\cos 0\ln \left| \sec 0 \right| \right) + \int_{0}^{\pi} \left(-\cos 0\ln \left| \sec 0 \right| \right) \right)$$ $\frac{\pi}{3}\sin x \, \mathrm{d}x$ $$= -\frac{1}{2}\ln 2 + 0 + \left[-\cos x \right]_0^{\frac{\pi}{3}}$$ $$= -\frac{1}{2}\ln 2 + \left(-\frac{1}{2} \right) - \left(-1 \right)$$ $$= \frac{1}{2} \left(1 - \ln 2 \right)$$ ## **Edexcel AS and A Level Modular Mathematics** Integration Exercise H, Question 1 ### **Question:** Use the trapezium rule with n strips to estimate the following: (a) $$\int_0^3 \ln(1+x^2) dx$$; $n=6$ (b) $$\int_{0}^{\frac{\pi}{3}} \sqrt{(1 + \tan x)} dx$$; $n = 4$ (c) $$\int_0^2 \frac{1}{\sqrt{(e^x + 1)}} dx$$; $n = 4$ (d) $$\int_{-1}^{1} \csc^2(x^2 + 1) dx$$; $n = 4$ (e) $$\int_{0.1}^{1.1} \sqrt{\cot x} \, dx$$; $n = 5$ (a) $$\frac{x}{\ln(1+x^2)} = 0.0.5 + 1 = 1.5 + 2 = 2.5 + 3$$ $\ln(1+x^2) = 0.0.223 + 0.693 + 1.179 + 1.609 + 1.981 + 2.303$ $$I = \int_0^3 \ln (1 + x^2) dx$$ $\therefore I \approx \frac{1}{2} \times 0.5 \left[0 + 2.303 + 2 \right]$ $$0.223 + 0.693 + 1.179 + 1.609 + 1.981$$ $$= \frac{1}{4} \left(13.673 \right)$$ $$= 3.41825$$ $$= 3.42 (3 s.f.)$$ (b) $$\frac{x}{\sqrt{1 + \tan x}} = 0 \frac{\pi}{12} = \frac{2\pi}{12} = \frac{3\pi}{12} = \frac{\pi}{3}$$ $$I = \int_{0}^{\pi} \sqrt{1 + \tan x} \, \mathrm{d}x$$ $$\therefore I - \frac{1}{2} \times \frac{\pi}{12} \left[1 + 1.653 + 2 \left(1.126 + 1.256 + 1.414 \right) \right]$$ $$= \frac{\pi}{24} \left(10.245 \right)$$ $$= 1.3410...$$ $$= 1.34 (3 s.f.)$$ (c) $$\frac{1}{\sqrt{e^x + 1}}$$ 0.707 0.614 0.519 0.427 0.345 $$I = \int_{0}^{2} \frac{1}{\sqrt{e^{x} + 1}} dx$$ $$\therefore I \approx \frac{1}{2} \times 0.5 \left[0.707 + 0.345 + 2 \left(0.614 + 0.519 + 0.427 \right) \right]$$ $$= \frac{1}{4} \left(4.172 \right)$$ $$= 1.043$$ $$= 1.04 (3 s.f.)$$ (d) $$\frac{x}{\csc^2(x^2+1)} \frac{-1 - 0.50}{1.209} \frac{0.5}{1.110} \frac{1}{1.412} \frac{1}{1.110} \frac{1}{1.209}$$ $$I = \int_{-1}^{1} \csc^{2}(x^{2} + 1) dx$$ $$\therefore I \approx \frac{1}{2} \times 0.5 \left[1.209 \times 2 + 2 \left(1.110 + 1.412 + 1.110 \right) \right]$$ $$= \frac{1}{4} \left(9.682 \right)$$ $$= 2.42 (3 s.f.)$$ (e) $$\frac{x}{\sqrt{\cot x}} = \frac{0.1}{3.157} = \frac{0.3}{1.798} = \frac{0.5}{1.353} = \frac{0.7}{1.090} = \frac{0.9}{0.891} = \frac{1.1}{0.713}$$ $$I = \int_{0.1}^{1.1} \sqrt{\cot x} \, dx$$ $$\therefore I \simeq \frac{1}{2} \times 0.2 \left[3.157 + 0.713 + 2 \left(1.798 + 1.353 + 1.090 + 0.891 \right) \right]$$ $$= \frac{1}{10} \left(14.134 \right)$$ $$= 1.41 (3 \text{ s.f.})$$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise H, Question 2 ### **Question:** - (a) Find the exact value of $I = \int_{1}^{4} x \ln x \, dx$. - (b) Find approximate values for I using the trapezium rule with - (i) 3 strips - (ii) 6 strips - (c) Compare the percentage error for these two approximations. ### **Solution:** (a) $$I = \int_{1}^{4} x \ln x \, dx$$ $u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$ $\frac{dv}{dx} = x \implies v = \frac{1}{2}x^{2}$ $\therefore I = \begin{bmatrix} \frac{1}{2}x^{2}\ln x \end{bmatrix}_{1}^{4} - \int_{1}^{4} \frac{1}{2}x^{2} \times \frac{1}{x} \, dx$ $= 8\ln 4 - \begin{bmatrix} \frac{x^{2}}{4} \end{bmatrix}_{1}^{4}$ $= 8\ln 4 - \left(4 - \frac{1}{4}\right)$ $= 8\ln 4 - \frac{15}{4}$ (b) (i) $$I \approx \frac{1}{2} \times 1 \left[5.545 + 2 \left(1.386 + 3.296 \right) \right]$$ = $\frac{1}{2} \left(14.909 \right) = 7.4545 = 7.45 (3 s.f.)$ (ii) *x* 1 1.5 2 2.5 3 3.5 4 *x* ln *x* 0 0.608 1.386 2.291 3.296 4.385 5.545 $$I \approx \frac{1}{2} \times 0.5 \left[5.545 + 2 \left(0.608 + 1.386 + 2.291 + 3.296 + 4.385 \right) \right]$$ = $\frac{1}{4} \left[29.477 \right] = 7.36925 = 7.37 (3 s.f.)$ (c) % error using 3 strips: $$\frac{[7.4545 - (8 \ln 4 - 3.75)] \times 100}{8 \ln 4 - 3.75} = 1.6 \% 1 \text{ d.p.}$$ % error using 6 strips: $$\frac{[7.376925 - (8 \ln 4 - 3.75)] \times 100}{8 \ln 4 - 3.75} = 0.4 \% 1 \text{ d.p.}$$ [©] Pearson Education Ltd 2009 ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise H, Question 3 ## **Question:** - (a) Find an approximate value for $I = \int_0^1 e^x \tan x \, dx$ using - (i) 2 strips - (ii) 4 strips - (ii) 8 strips. - (b) Suggest a possible value for *I*. #### **Solution:** (a) (i) $$x = 0.0.5 1$$ $e^x \tan x 0.0.901 4.233$ $$I \simeq \frac{1}{2} \times 0.5 \left(0 + 4.233 + 2 \times 0.901 \right) = \frac{1}{4} \left(6.035 \right) = 1.509$$ (ii) $$x$$ 0 0.25 0.5 0.75 1 $e^x \tan x$ 0 0.328 0.901 1.972 4.233 $$I \simeq \frac{1}{2} \times 0.25 \left[4.233 + 2 \left(0.328 + 0.901 + 1.972 \right) \right]$$ = $\frac{1}{8} \left(10.635 \right) = 1.329$ (iii) $$x$$ 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 $e^{x} tan x$ 0 0.142 0.328 0.573 0.901 1.348 1.972 2.872 4.233 $$I \simeq \frac{1}{2} \times \frac{1}{8} \left[4.233 + 2 \right]$$ $$0.142 + 0.328 + 0.573 + 0.901 + 1.348 + 1.972 + 2.872$$ $$= \frac{1}{16} \left(20.505 \right) = 1.282$$ (b) Halving h reduces differences by about $\frac{1}{3}$: So an answer in the range 1.25 - 1.27 seems likely. (**Note:** Calculator gives 1.265) # **Edexcel AS and A Level Modular Mathematics** Integration Exercise H, Question 4 ## **Question:** - (a) Find the exact value of $I = \int_0^2 x \sqrt{(2-x)} dx$. - (b) Find an approximate value for I using the trapezium rule with - (i) 4 and - (ii) 6 strips. - (c) Compare the percentage error for these two approximations. ### **Solution:** (a) $$u^2 = 2 - x \implies 2u \, du = -dx \, and \, x = 2 - u^2$$ Also $u = 0$ when $x = 2$ and $u = \sqrt{2}$ when $x = 0$. $$\therefore I = \int_{\sqrt{2}} \sqrt{2} (2 - u^2) u \times (-2u) \, du$$ $$= \int_{0}^{\sqrt{2}} (2 - u^2) 2u^2 \, du$$ $$= \int_{0}^{\sqrt{2}} (4u^2 - 2u^4) \, du$$ $$= \left[\frac{4u^3}{3} - \frac{2u^5}{5} \right]_{0}^{\sqrt{2}}$$ $$= \left(\frac{4 \times 2\sqrt{2}}{3} - \frac{2 \times 4\sqrt{2}}{5} \right) - \left(0 \right)$$ $$= \frac{16\sqrt{2}}{15}$$ (b) (i) $$I \simeq \frac{1}{2} \times 0.5 \left[0 + 2 \left(0.612 + 1 + 1.061 \right) \right]$$ = $\frac{1}{4} \left(5.346 \right) = 1.3365 = 1.34 (2 d.p.)$ (ii) $$x$$ 0 $\frac{1}{3}$ $\frac{2}{3}$ 1 $\frac{4}{3}$ $\frac{5}{3}$ 2 $x\sqrt{2-x}$ 0 0.430 0.770 1 1.089 0.962 0 $$I \simeq \frac{1}{2} \times \frac{1}{3} \left[0 + 2 \left(0.430 + 0.770 + 1 + 1.089 + 0.962 \right) \right]$$ $$= \frac{1}{6} \left(8.502 \right) = 1.417 = 1.42 (2 \text{ d.p.})$$ (c) (i) % error with 4 strips = $$\frac{\frac{16}{15} \sqrt{2 - 1.3365}}{\frac{16}{15} \sqrt{2}} \times 100 = 11.4 \%$$ (ii) % error with 6 strips = $$\frac{\frac{16\sqrt{2}}{15} - 1.417}{\frac{16}{15}\sqrt{2}} \times 100 = 6.1\%$$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise I, Question 1 ### **Question:** The region R is bounded by the curve with equation y = f(x), the x-axis and the lines x = a and x = b. In each of the following cases find the exact value of: (i) the area of R, (ii) the volume of the solid of revolution formed by rotating R through 2π radians about the x-axis. (a) f $$(x) = \frac{2}{1+x}$$; $a = 0, b = 1$ (b) f (x) = $$\sec x$$; $a = 0, b = \frac{\pi}{3}$ (c) f (x) = $$\ln x$$; $a = 1, b = 2$ (d) f (x) = $$\sec x \tan x$$; $a = 0, b = \frac{\pi}{4}$ (e) f (x) = $$x\sqrt{4-x^2}$$; $a = 0, b = 2$ (a) (i) Area = $$\int_0^1 \frac{2}{1+x} dx = \left[2 \ln |1+x| \right]_0^1 = \left(2 \ln 2 \right) - \left(2 \ln 1 \right)$$ $$\therefore$$ Area = $2 \ln 2$ (ii) Volume $$= \pi \int_0^1 \left(\frac{2}{1+x}\right)^2 dx$$ $= \pi \int_0^1 \frac{4}{(1+x)^2} dx$ $= \pi \left[4 \frac{(1+x)^{-1}}{-1}\right]_0^1$ $= \pi \left[-\frac{4}{1+x}\right]_0^1$ $$=\pi \left[\left(-\frac{4}{2} \right) - \left(-\frac{4}{1} \right) \right]$$ $$=2\pi$$ (b) (i) Area = $$\int_0^{\frac{\pi}{3}} \sec x dx$$ = $\int_0^{\frac{\pi}{3}} \ln|\sec x + \tan x|$] $\int_0^{\frac{\pi}{3}}$ = $$[\ln (2 + \sqrt{3})] - [\ln (1)]$$ \therefore Area = $\ln (2 + \sqrt{3})$ (ii) Volume $$= \pi \int_0^{\pi/3} \sec^2 x \, dx$$ $= \pi \left[\tan x \right]_0^{\pi/3}$ $= \pi \left[(\sqrt{3}) - (0) \right]$ $= \sqrt{3}\pi$ (c) (i) Area = $$\int_{1}^{2} \ln x \, dx$$ $u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$ $\frac{dv}{dx} = 1 \implies v = x$ \therefore Area = $\left[x \ln x \right]_{1}^{2} - \int_{1}^{2} x \times \frac{1}{x} \, dx$ = $(2 \ln 2) - (0) - \left[x \right]_{1}^{2}$ = $2 \ln 2 - 1$ (ii) Volume = $\pi \int_{1}^{2} (\ln x)^{2} \, dx$ $$u = (\ln x)^{2} \Rightarrow \frac{du}{dx} = 2\ln x \times \frac{1}{x}$$ $$\frac{dv}{dx} = 1
\Rightarrow v = x$$ $$\therefore V = \pi \left\{ \left[x(\ln x)^{2} \right]_{1}^{2} - 2 \int_{1}^{2} x \times \ln x \times \frac{1}{x} dx \right\}$$ $$= \pi \left\{ \left[2(\ln 2)^{2} \right] - (0) \left\{ -2\pi \int_{1}^{2} \ln x dx \right\}$$ But $\int_{1}^{2} \ln x dx = 2\ln 2 - 1$ from (i) $$\therefore V = 2\pi (\ln 2)^{2} - 2\pi (2\ln 2 - 1)$$ (d) (i) Area = $$\int_0^{\frac{\pi}{4}} \sec x \tan x dx$$ = $\left[\sec x \right]_0^{\frac{\pi}{4}}$ = $(\sqrt{2}) - (1)$ \therefore Area = $\sqrt{2} - 1$ (ii) Volume $$= \pi \int_0^{\frac{\pi}{4}} \sec^2 x \tan^2 x dx$$ $= \pi \int_0^{\frac{\tan^3 x}{3}} \int_0^{\frac{\pi}{4}}$ $$= \pi \left[\left(\frac{1^3}{3} \right) - \left(0 \right) \right]$$ $$= \frac{\pi}{3}$$ (e) (i) Area = $$\int_{0}^{2} x \sqrt{4 - x^2} dx$$ Let $$y = (4 - x^2)^{\frac{3}{2}}$$ $$\Rightarrow \frac{dy}{dx} = \frac{3}{2} (4 - x^2)^{\frac{1}{2}} \times (-2x) = -3x (4 - x^2)^{\frac{1}{2}}$$ $$\therefore \text{ Area} = \left[-\frac{1}{3} (4 - x^2)^{\frac{3}{2}} \right]_0^2 = (0) - (-\frac{1}{3} \times 2^3) =$$ (ii) Volume $$= \pi \int_0^2 x^2 (4 - x^2) dx$$ $= \pi \int_0^2 (4x^2 - x^4) dx$ $= \pi \left[\frac{4}{3}x^3 - \frac{x^5}{5} \right]_0^2$ $= \pi \left[\left(\frac{32}{3} - \frac{32}{5} \right) - \left(0 \right) \right]$ $= \frac{64\pi}{15}$ # **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise I, Question 2 ## **Question:** Find the exact area between the curve y = f(x), the x-axis and the lines x = a and x = b where: (a) f $$\left(x\right) = \frac{4x+3}{(x+2)(2x-1)}$$; $a = 1, b = 2$ (b) f $$\left(x\right) = \frac{x}{(x+1)^2}$$; $a = 0, b = 2$ (c) f (x) = $$x \sin x$$; $a = 0$, $b = \frac{\pi}{2}$ (d) f (x) = $$\cos x \sqrt{2\sin x + 1}$$; $a = 0, b = \frac{\pi}{6}$ (e) f (x) = $$xe^{-x}$$; $a = 0$, $b = \ln 2$ (a) $$\frac{4x+3}{(x+2)(2x-1)} \equiv \frac{A}{x+2} + \frac{B}{2x-1}$$ $$\Rightarrow 4x+3 \equiv A(2x-1) + B(x+2)$$ $$x = \frac{1}{2} \Rightarrow 5 = \frac{5}{2}B \Rightarrow B = 2$$ $$x = -2 \Rightarrow -5 = -5A \Rightarrow A = 1$$ $$\therefore \text{ area } = \int_{1}^{2} \frac{4x+3}{(x+2)(2x-1)} dx$$ $$= \int_{1}^{2} \left(\frac{1}{x+2} + \frac{2}{2x-1}\right) dx$$ $$= [\ln|x+2| + \ln|2x-1|]_{1}^{2}$$ $$= (\ln 4 + \ln 3) - (\ln 3 + \ln 1)$$ $$= \ln 4 \text{ or } 2\ln 2$$ (b) $$\frac{x}{(x+1)^2} \equiv \frac{A}{(x+1)^2} + \frac{B}{x+1}$$ $$\Rightarrow$$ $x \equiv A + B (x + 1)$ Compare coefficient of x: $1 = B \implies B = 1$ Compare constants: $0 = A + B \implies A = -1$ $$\therefore \text{ area } = \int_0^2 \frac{x}{(x+1)^2} dx$$ $$= \int_0^2 \left(\frac{1}{x+1} - \frac{1}{(x+1)^2} \right) dx$$ $$= \left[\ln|x+1| + \frac{1}{x+1} \right]_0^2$$ $$= \left(\ln 3 + \frac{1}{3} \right) - \left(\ln 1 + 1 \right)$$ $$= \ln 3 - \frac{2}{3}$$ (c) Area = $$\int_{0}^{\frac{\pi}{2}} x \sin x dx$$ $u = x \Rightarrow \frac{du}{dx} = 1$ $\frac{dv}{dx} = \sin x \Rightarrow v = -\cos x$ $\therefore \text{ area } = \left[-x \cos x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \left(-\cos x \right) dx$ $= \left(-\frac{\pi}{2} \cos \frac{\pi}{2} \right) - \left(0 \right) + \int_{0}^{\frac{\pi}{2}} \cos x dx$ $= 0 + \left[\sin x \right]_{0}^{\frac{\pi}{2}}$ $= \left(\sin \frac{\pi}{2} - 0 \right)$ (d) Area = $$\int_{0}^{\frac{\pi}{6}} \cos x \sqrt{2 \sin x + 1} \, dx$$ Let $y = (2 \sin x + 1)^{\frac{3}{2}}$ $\Rightarrow \frac{dy}{dx} = \frac{3}{2} (2 \sin x + 1)^{\frac{1}{2}} \times 2 \cos x = 3 \cos x (2 \sin x + 1)^{\frac{1}{2}}$ $\therefore \text{ area} = \begin{bmatrix} \frac{1}{3} (2 \sin x + 1)^{\frac{3}{2}} \end{bmatrix}_{0}^{\frac{\pi}{6}}$ $$= \left(\frac{1}{3}2^{\frac{3}{2}}\right) - \left(\frac{1}{3}1^{\frac{3}{2}}\right)$$ $$= \frac{2\sqrt{2}}{3} - \frac{1}{3}$$ $$= \frac{2\sqrt{2} - 1}{3}$$ (e) Area = $$\int_0^{\ln 2} x e^{-x} dx$$ $u = x \implies \frac{du}{dx} = 1$ $\frac{dv}{dx} = e^{-x} \implies v = -e^{-x}$ \therefore area = $\begin{bmatrix} -xe^{-x} \end{bmatrix}_0^{\ln 2} - \int_0^{\ln 2} (-e^{-x}) dx$ = $(-\ln 2 \times e^{-\ln 2}) - (0) + \int_0^{\ln 2} e^{-x} dx$ = $-\ln 2 \times \frac{1}{2} + \begin{bmatrix} -e^{-x} \end{bmatrix}_0^{\ln 2}$ = $-\frac{1}{2} \ln 2 + (-e^{-\ln 2}) - (-e^{-0})$ = $-\frac{1}{2} \ln 2 - \frac{1}{2} + 1$ = $\frac{1}{2} (1 - \ln 2)$ ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise I, Question 3 ### **Question:** The region R is bounded by the curve C, the x-axis and the lines x = -8 and x = +8. The parametric equations for C are $x = t^3$ and $y = t^2$. Find: - (a) the area of R, - (b) the volume of the solid of revolution formed when R is rotated through 2π radians about the x-axis. #### **Solution:** (a) Area = $$\int_{x=-8}^{x=8} y dx$$ $$x = t^3 \Rightarrow dx = 3t^2 dt$$ Also $t = 2$ when $x = 8$ and $t = -2$ when $x = -8$. $$\therefore \text{ area } = \int_{-2}^{2} t^2 \times 3t^2 dt$$ $$= \int_{-2}^{2} 3t^4 dt$$ $$= \left[\frac{3t^5}{5} \right]_{-2}^{2}$$ $$= \left(\frac{96}{5} \right) - \left(-\frac{96}{5} \right)$$ $$= \frac{192}{5}$$ (b) $$V = \pi \int_{x=-8}^{x=-8} x^2 dx$$ $$= \pi \int_{-2}^{2} t^4 \times 3t^2 dt$$ $$= \pi \int_{-2}^{2} 23t^6 dt$$ $$= \pi \left[\frac{3t^7}{7} \right]_{-2}^{2}$$ $$= \pi \left[\left(\frac{3 \times 128}{7} \right) - \left(\frac{-3 \times 128}{7} \right) \right]$$ $$= \frac{768}{7} \pi$$ ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise I, Question 4 ## **Question:** The curve C has parametric equations $x = \sin t$, $y = \sin 2t$, $0 \le t \le \frac{\pi}{2}$. - (a) Find the area of the region bounded by C and the x-axis. If this region is revolved through 2π radians about the x-axis, - (b) find the volume of the solid formed. (a) Area = $$\int_{t=0}^{t=\frac{\pi}{2}} y dx$$ $$x = \sin t \implies dx = \cos t dt$$ $$\therefore \text{ area } = \int_{0}^{\frac{\pi}{2}} \sin 2t \times \cos t dt$$ $$= \int_{0}^{\frac{\pi}{2}} 2\cos^{2}t \sin t dt$$ $$= \left[-\frac{2}{3}\cos^{3}t \right]_{0}^{\frac{\pi}{2}}$$ $$= \left(0 \right) - \left(-\frac{2}{3} \right)$$ $$= \frac{2}{3}$$ (b) $$V = \pi \int_{t=0}^{t=\frac{\pi}{2}} y^2 dx$$ $$= \int_{0}^{\frac{\pi}{2}} \sin^2 2t \cos t dt$$ $$= \pi \int_{0}^{\frac{\pi}{2}} 4 \cos^3 t \sin t \times \sin t dt$$ $$u = \sin t \implies \frac{du}{dt} = \cos t$$ $$\frac{dv}{dt} = 4 \cos^3 t \sin t \implies v = -\cos^4 t$$ $$\therefore V = \pi \left\{ \left[-\sin t \cos^4 t \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} -\cos^5 t dt \right\}$$ $$= \pi \int_0^{\frac{\pi}{2}} \cos^5 t dt$$ $$= \pi \int_0^{\frac{\pi}{2}} (\cos^2 t)^{-2} \times \cos t dt \quad \text{Let } y = \sin t \quad \Rightarrow \quad dy = \cos t dt$$ $$= \pi \int_0^1 (1 - y^2)^{-2} dy$$ $$= \pi \int_0^1 (1 - 2y^2 + y^4) dy$$ $$= \pi \left[y - \frac{2}{3}y^3 + \frac{y^5}{5} \right]_0^1$$ $$= \pi \left(1 - \frac{2}{3} + \frac{1}{5} \right) - \left(0 \right)$$ $$= \frac{8\pi}{15}$$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise J, Question 1 ## **Question:** Find general solutions of the following differential equations. Leave your answer in the form y = f(x). (a) $$\frac{dy}{dx} = \left(1 + y\right) \left(1 - 2x\right)$$ (b) $$\frac{dy}{dx} = y \tan x$$ (c) $$\cos^2 x \frac{dy}{dx} = y^2 \sin^2 x$$ (d) $$\frac{dy}{dx} = 2e^{x-y}$$ (e) $$x^2 \frac{dy}{dx} = y + xy$$ (a) $$\frac{dy}{dx} = \left(1 + y\right) \left(1 - 2x\right)$$ $$\Rightarrow \int \frac{1}{1 + y} dy = \int \left(1 - 2x\right) dx$$ $$\Rightarrow \ln|1 + y| = x - x^2 + C$$ $$\Rightarrow 1 + y = e^{(x - x^2 + C)}$$ $$\Rightarrow 1 + y = A e^{x - x^2}, \quad (A = e^C)$$ $$\Rightarrow y = A e^{x - x^2} - 1$$ (b) $$\frac{dy}{dx} = y \tan x$$ $$\Rightarrow \int \frac{1}{y} dy = \int \tan x dx$$ $$\Rightarrow \ln |y| = \ln |\sec x| + C$$ $$\Rightarrow \ln |y| = \ln |k \sec x|, \qquad (C = \ln k)$$ $$\Rightarrow y = k \sec x$$ (c) $$\cos^2 x \frac{dy}{dx} = y^2 \sin^2 x$$ $$\Rightarrow \int \frac{1}{y^2} dy = \int \frac{\sin^2 x}{\cos^2 x} dx$$ $$\Rightarrow \int \frac{1}{y^2} dy = \int \tan^2 x dx = \int \left(\sec^2 x - 1 \right) dx$$ $$\Rightarrow -\frac{1}{y} = \tan x - x + C$$ $$\Rightarrow y = \frac{-1}{\tan x - x + C}$$ (d) $$\frac{dy}{dx} = 2e^{x - y} = 2e^{x}e^{-y}$$ $$\Rightarrow \int \frac{1}{e^{-y}} dy = \int 2e^{x} dx$$ i.e. $\Rightarrow \int e^{y} dy = \int 2e^{x} dx$ $$\Rightarrow e^{y} = 2e^{x} + C$$ $$\Rightarrow y = \ln (2e^{x} + C)$$ (e) $$x^2 \frac{dy}{dx} = y + xy = y \left(1 + x \right)$$ $$\Rightarrow \int \frac{1}{y} dy = \int x^{-2} + \frac{1}{x} dx$$ $$\Rightarrow \ln|y| = -x^{-1} + \ln|x| + C$$ $$\Rightarrow \ln|y| - \ln|x| = C - \frac{1}{x}$$ $$\Rightarrow \ln\left|\frac{y}{x}\right| = C - \frac{1}{x}$$ $$\Rightarrow \frac{y}{x} = e^{C - \frac{1}{x}}$$ $$\Rightarrow \frac{y}{x} = Ae^{-\frac{1}{x}}, \qquad \left(e^{C} = A \right)$$ $$\Rightarrow y = Axe^{-\frac{1}{x}}$$ # **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise J, Question 2 ### **Question:** Find a general solution of the following differential equations. (You do not need to write the answers in the form y = f(x).) (a) $$\frac{dy}{dx} = \tan y \tan x$$ (b) $$\sin y \cos x \frac{dy}{dx} = \frac{x \cos y}{\cos x}$$ (c) $$\left(1+x^2\right)\frac{dy}{dx}=x\left(1-y^2\right)$$ (d) $$\cos y \sin 2x \frac{dy}{dx} = \cot x \csc y$$ (e) $$e^{x+y} \frac{dy}{dx} = x \left(2 + e^{y} \right)$$ (a) $$\frac{dy}{dx} = \tan y \tan x$$ $$\Rightarrow \int \frac{1}{\tan y} dy = \int \tan x dx$$ $$\Rightarrow \int \cot y dy = \int \tan x dx$$ $$\Rightarrow \ln |\sin y| = \ln |\sec x| + C = \ln |k \sec x| \qquad (\ln k = C)$$ $$\Rightarrow \sin y = k \sec x$$ (b) $$\sin y \cos x \frac{dy}{dx} = \frac{x \cos y}{\cos x}$$ $$\Rightarrow \int \frac{\sin y}{\cos y} dy = \int \frac{x}{\cos^2 x} dx$$ $$\Rightarrow \int \tan y dy = \int x \sec^2 x dx$$ $$\Rightarrow \ln|\sec y| = \int x \sec^2 x dx$$ $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \sec^2 x \implies v = \tan x$$ $$\Rightarrow \ln |\sec y| = x \tan x - \int \tan x dx$$ $$\Rightarrow \ln |\sec y| = x \tan x - \ln |\sec x| + C$$ $$(c) \left(1
+ x^2\right) \frac{dy}{dx} = x \left(1 - y^2\right)$$ $$\Rightarrow \int \frac{1}{1 - y^2} dy = \int \frac{x}{1 + x^2} dx$$ $$\frac{1}{1 - y^2} \equiv \frac{A}{1 - y} + \frac{B}{1 + y}$$ $$\Rightarrow 1 \equiv A (1 + y) + B (1 - y)$$ $$y = 1 \implies 1 = 2A \implies A = \frac{1}{2}$$ $$y = -1 \implies 1 = 2B \implies B = \frac{1}{2}$$ $$\therefore \int \left(\frac{(\frac{1}{2})}{1 - y} + \frac{(\frac{1}{2})}{1 + y}\right) dy = \int \frac{x}{1 + x^2} dx$$ $$\Rightarrow \frac{1}{2} \ln |1 + y| - \frac{1}{2} \ln |1 - y| = \frac{1}{2} \ln |1 + x^2| + C$$ $$(using \int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$ $$\Rightarrow \ln \left|\frac{1 + y}{1 - y}\right| = \ln |1 + x^2| + 2C$$ $$\Rightarrow \left|\frac{1 + y}{1 - y}\right| = k \left(1 + x^2\right) \qquad \left(\ln k = 2C\right)$$ (d) $$\cos y \sin 2x \frac{dy}{dx} = \cot x \csc y$$ $$\Rightarrow \int \frac{\cos y}{\csc y} \, dy = \int \frac{\cot x}{\sin 2x} \, dx$$ $$\Rightarrow \int \sin y \cos y \, dy = \int \frac{\cos x}{\sin x + 2 \sin x \cos x} \, dx$$ $$\Rightarrow \int \frac{1}{2} \sin 2y \, dy = \int \frac{1}{2} \csc^2 x \, dx$$ $$\Rightarrow -\frac{1}{4} \cos 2y = -\frac{1}{2} \cot x + C$$ or $\cos 2y = 2 \cot x + k$ (e) $$e^{x+y}$$ $\frac{dy}{dx} = x$ $\left(2 + e^{y}\right)$ $\Rightarrow e^{x}e^{y} \frac{dy}{dx} = x$ $\left(2 + e^{y}\right)$ $\Rightarrow \int \frac{e^{y}}{2 + e^{y}} dy = \int xe^{-x} dx$ $u = x \Rightarrow \frac{du}{dx} = 1$ $\frac{dv}{dx} = e^{-x} \Rightarrow v = -e^{-x}$ $\therefore \ln|2 + e^{y}| = -xe^{-x} + \int e^{-x} dx$ $\Rightarrow \ln|2 + e^{y}| = -xe^{-x} - e^{-x} + C$ # **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise J, Question 3 ## **Question:** Find general solutions of the following differential equations: (a) $$\frac{dy}{dx} = ye^x$$ (b) $$\frac{dy}{dx} = xe^y$$ (c) $$\frac{dy}{dx} = y \cos x$$ (d) $$\frac{dy}{dx} = x \cos y$$ (e) $$\frac{dy}{dx} = \left(1 + \cos 2x\right) \cos y$$ (f) $$\frac{dy}{dx} = \left(1 + \cos 2y\right) \cos x$$ (a) $$\frac{dy}{dx} = ye^x$$ $$\Rightarrow \int \frac{1}{y} dy = \int e^x dx$$ $$\Rightarrow \ln|y| = e^x + C$$ (b) $$\frac{dy}{dx} = xe^y$$ $$\Rightarrow \int \frac{1}{e^y} dy = \int x dx$$ $$\Rightarrow \int e^{-y} dy = \int x dx$$ $$\Rightarrow -e^{-y} = \frac{1}{2}x^2 + C$$ (c) $$\frac{dy}{dx} = y \cos x$$ $$\Rightarrow \int \frac{1}{y} dy = \int \cos x dx$$ $$\Rightarrow \ln|y| = \sin x + C$$ or $y = Ae^{\sin x}$ (d) $$\frac{dy}{dx} = x \cos y$$ $$\Rightarrow \int \frac{1}{\cos y} dy = \int x dx$$ $$\Rightarrow \int \sec y dy = \int x dx$$ $$\Rightarrow \ln|\sec y + \tan y| = \frac{x^2}{2} + C$$ (e) $$\frac{dy}{dx} = \left(1 + \cos 2x\right) \cos y$$ $$\Rightarrow \int \frac{1}{\cos y} dy = \int \left(1 + \cos 2x\right) dx$$ $$\Rightarrow \int \sec y dy = \int (1 + \cos 2x) dx$$ $$\Rightarrow \ln|\sec y + \tan y| = x + \frac{1}{2} \sin 2x + C$$ (f) $$\frac{dy}{dx} = \left(1 + \cos 2y\right) \cos x$$ $$\Rightarrow \int \frac{1}{1 + \cos 2y} dy = \int \cos x dx$$ $$\Rightarrow \int \frac{1}{2\cos^2 y} dy = \int \cos x dx$$ $$\Rightarrow \int \frac{1}{2} \sec^2 y dy = \int \cos x dx$$ $$\Rightarrow \frac{1}{2} \tan y = \sin x + C$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise J, Question 4 ### **Question:** Find particular solutions of the following differential equations using the given boundary conditions. (a) $$\frac{dy}{dx} = \sin x \cos^2 x; y = 0, x = \frac{\pi}{3}$$ (b) $$\frac{dy}{dx} = \sec^2 x \sec^2 y; y = 0, x = \frac{\pi}{4}$$ (c) $$\frac{dy}{dx} = 2\cos^2 y \cos^2 x$$; $y = \frac{\pi}{4}$, $x = 0$ (d) $$\left(1-x^2\right)\frac{dy}{dx} = xy + y; x = 0.5, y = 6$$ (e) 2 $$\left(1+x\right)\frac{dy}{dx} = 1-y^2$$; $x = 5$, $y = \frac{1}{2}$ (a) $$\frac{dy}{dx} = \sin x \cos^2 x$$ $$\Rightarrow \int dy = \int \sin x \cos^2 x dx$$ $$\Rightarrow y = -\frac{\cos^3 x}{3} + C$$ $$y = 0, x = \frac{\pi}{3} \implies 0 = -\frac{\left(\frac{1}{8}\right)}{3} + C \implies C = \frac{1}{24}$$ $$\therefore y = \frac{1}{24} - \frac{1}{3}\cos^3 x$$ (b) $$\frac{dy}{dx} = \sec^2 x \sec^2 y$$ $$\Rightarrow \int \frac{1}{\sec^2 y} \, dy = \int \sec^2 x \, dx$$ $$\Rightarrow \int \cos^2 y \, dy = \int \sec^2 x \, dx$$ $$\Rightarrow \int \left(\frac{1}{2} + \frac{1}{2}\cos 2y\right) \, dy = \int \sec^2 x \, dx$$ $$\Rightarrow \frac{1}{2}y + \frac{1}{4}\sin 2y = \tan x + C$$ or $\sin 2y + 2y = 4\tan x + k$ $$y = 0, x = \frac{\pi}{4} \Rightarrow 0 = 4 + k \Rightarrow k = -4$$ $$\therefore \sin 2y + 2y = 4\tan x - 4$$ (c) $$\frac{dy}{dx} = 2\cos^2 y \cos^2 x$$ $$\Rightarrow \int \frac{1}{\cos^2 y} dy = \int 2\cos^2 x dx$$ $$\Rightarrow \int \sec^2 y dy = \int (1 + \cos 2x) dx$$ $$\Rightarrow \tan y = x + \frac{1}{2}\sin 2x + C$$ $$x = 0, \quad y = \frac{\pi}{4} \quad \Rightarrow \quad 1 = 0 + C$$ $$\therefore \tan y = x + \frac{1}{2}\sin 2x + 1$$ (d) $$\left(1 - x^2\right) \frac{dy}{dx} = xy + y$$ $$\Rightarrow \left(1 - x^2\right) \frac{dy}{dx} = \left(x + 1\right) y$$ $$\Rightarrow \int \frac{1}{y} dy = \int \frac{1 + x}{1 - x^2} dx$$ $$\Rightarrow \int \frac{1}{y} dy = \int \frac{1 + x}{(1 - x)(1 + x)} dx$$ $$\Rightarrow \int \frac{1}{y} dy = \int \frac{1}{1 - x} dx$$ $$\Rightarrow \ln|y| = -\ln|1 - x| + C$$ $$x = 0.5, \quad y = 6 \Rightarrow \ln 6 = -\ln\frac{1}{2} + C \Rightarrow C = \ln 3$$ $$\therefore \ln|y| = \ln 3 - \ln|1 - x|$$ or $$y = \frac{3}{1 - x}$$ (e) $$2 \left(1+x \right) \frac{dy}{dx} = 1-y^2$$ $$\Rightarrow \int \frac{2}{1-y^2} dy = \int \frac{1}{1+x} dx$$ $$\frac{2}{1-y^2} \equiv \frac{A}{1-y} + \frac{B}{1+y}$$ $$\Rightarrow 2 \equiv A (1+y) + B (1-y)$$ $$y = 1 \Rightarrow 2 = 2A \Rightarrow A = 1$$ $$y = -1 \Rightarrow 2 = 2B \Rightarrow B = 1$$ $$\therefore \int \left(\frac{1}{1+y} + \frac{1}{1-y} \right) dy = \int \frac{1}{1+x} dx$$ $$\Rightarrow \ln|1+y| - \ln|1-y| = \ln|1+x| + C$$ $$\Rightarrow \ln\left|\frac{1+y}{1-y}\right| = \ln|k(1+x)| \qquad \left(C = \ln k\right)$$ $$\Rightarrow \frac{1+y}{1-y} = k \left(1+x\right)$$ $$x = 5, y = \frac{1}{2} \Rightarrow \frac{\frac{3}{2}}{\frac{1}{2}} = 6k \Rightarrow k = \frac{1}{2}$$ $$\therefore \frac{1+y}{1-y} = \frac{1+x}{2}$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise K, Question 1 ### **Question:** The size of a certain population at time t is given by P. The rate of increase of P is given by $\frac{dP}{dt} = 2P$. Given that at time t = 0, the population was 3, find the population at time t = 2. #### **Solution:** $$\frac{dP}{dt} = 2P$$ $$\Rightarrow \int \frac{1}{P} dP = \int 2 dt$$ $$\Rightarrow \ln |P| = 2t + C$$ $$\Rightarrow P = Ae^{2t}$$ $$t = 0, P = 3 \Rightarrow 3 = Ae^{0} \Rightarrow A = 3$$ $$\therefore P = 3e^{2t}$$ When $t = 2, P = 3e^{4} = 164$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise K, Question 2 ### **Question:** The number of particles at time t of a certain radioactive substance is N. The substance is decaying in such a way that $\frac{dN}{dt} = -\frac{N}{3}$. Given that at time t = 0 the number of particles is N_0 , find the time when the number of particles remaining is $\frac{1}{2}N_0$. ### **Solution:** $$\frac{dN}{dt} = -\frac{N}{3}$$ $$\Rightarrow \int \frac{1}{N} dN = \int -\frac{1}{3} dt$$ $$\Rightarrow \ln |N| = -\frac{1}{3}t + C$$ $$\Rightarrow N = Ae^{-\frac{1}{3}t}$$ $$t = 0, N = N_0 \Rightarrow N_0 = Ae^0 \Rightarrow A = N_0$$ $$\therefore N = N_0 e^{-\frac{1}{3}t}$$ $$N = \frac{1}{2} N_0 \Rightarrow \frac{1}{2} = e^{-\frac{1}{3}t}$$ $$\Rightarrow -\ln 2 = -\frac{1}{3}t$$ $$\Rightarrow t = 3\ln 2 \text{ or } 2.08$$ ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise K, Question 3 ### **Question:** The mass M at time t of the leaves of a certain plant varies according to the differential equation $\frac{dM}{dt} = M - M^2$. - (a) Given that at time t = 0, M = 0.5, find an expression for M in terms of t. - (b) Find a value for M when $t = \ln 2$. - (c) Explain what happens to the value of *M* as *t* increases. $$\frac{\mathrm{d}M}{\mathrm{d}t} = M - M^2$$ $$\Rightarrow \int \frac{1}{M(1-M)} dM = \int 1 dt \text{ but } \frac{1}{M(1-M)} \equiv \frac{A}{M} + \frac{B}{1-M}$$ $$\therefore 1 \qquad \equiv A(1-M) + BM$$ $$M = 0 : 1 \qquad = 1A, A = 1$$ $$M = 1 : 1 \qquad = 1B, B = 1$$ $$\Rightarrow \int \left(\frac{1}{M} + \frac{1}{1-M}\right) dM = \int 1 dt$$ $$\Rightarrow \ln |M| - \ln |1 - M| = t + C$$ $$\Rightarrow \ln \left|\frac{M}{1-M}\right| = t + C$$ $$\Rightarrow \frac{M}{1-M} = Ae^{t}$$ (a) $$t = 0, M = 0.5$$ $\Rightarrow \frac{0.5}{0.5} = Ae^0 \Rightarrow A = 1$ $$\therefore M = e^t - e^t M \Rightarrow M = \frac{e^t}{1 + e^t}$$ (b) $$t = \ln 2$$ \Rightarrow $M = \frac{e^{\ln 2}}{1 + e^{\ln 2}} = \frac{2}{1 + 2} = \frac{2}{3}$ (c) $$t \to \infty$$ \Rightarrow $M = \frac{1}{e^{-t} + 1} \to \frac{1}{1} = 1$ [©] Pearson Education Ltd 2009 ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise K, Question 4 ### **Question:** The volume of liquid Vcm³ at time t seconds satisfies $$-15 \frac{dV}{dt} = 2V - 450.$$ Given that initially the volume is 300 cm³, find to the nearest cm³ the volume after 15 seconds. ### **Solution:** $$-15 \frac{dV}{dt} = 2V - 450$$ $$\Rightarrow \int \frac{1}{2V - 450} dV = \int -\frac{1}{15} dt$$ $$\Rightarrow \frac{1}{2} \ln|2V - 450| = -\frac{1}{15}t + C$$ $$\Rightarrow 2V - 450 = Ae^{-\frac{2}{15}t}$$ $$t = 0, V = 300 \Rightarrow 150 = Ae^{0} \Rightarrow A = 150$$ $$\therefore 2V = 150e^{-\frac{2}{15}t} + 450$$ $$t = 15 \Rightarrow 2V = 150e^{-2} + 450$$ $$\Rightarrow V = \frac{150}{2} \left(e^{-2} + 3 \right)$$ $$\Rightarrow V = 75 \left(3 + e^{-2} \right) = 235$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise K, Question 5 ### **Question:** The thickness of ice x mm on a pond is increasing and $\frac{dx}{dt} = \frac{1}{20x^2}$, where t is measured in hours. Find how long it takes the thickness of ice to increase from 1 mm to 2 mm. ### **Solution:** $$\frac{dx}{dt} = \frac{1}{20x^2}$$ $$\Rightarrow \int x^2 dx = \int \frac{1}{20} dt$$ $$\Rightarrow \frac{1}{3}x^3 =
\frac{t}{20} + C$$ $$t = 0, x = 1 \Rightarrow \frac{1}{3} = C$$ $$\therefore \frac{20(x^3 - 1)}{3} = t$$ $$x = 2 \Rightarrow t = \frac{20}{3} \left(8 - 1 \right)$$ $$\Rightarrow t = \frac{140}{3} \text{ or } 46 \frac{2}{3}$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise K, Question 6 ### **Question:** The depth h metres of fluid in a tank at time t minutes satisfies $\frac{dh}{dt} = -k \sqrt{h}$, where k is a positive constant. Find, in terms of k, how long it takes the depth to decrease from 9 m to 4 m. #### **Solution:** $$\frac{dh}{dt} = -k \sqrt{h}$$ $$\Rightarrow \int \frac{1}{h^{\frac{1}{2}}} dh = \int -k dt$$ $$\Rightarrow \int h^{-\frac{1}{2}} dh = \int -k dt$$ $$\Rightarrow 2h^{\frac{1}{2}} = -kt + C$$ $$t = 0, h = 9 \Rightarrow 2 \times 3 = 0 + C \Rightarrow C = 6$$ $$\therefore 2h^{\frac{1}{2}} - 6 = -kt$$ or $t = \frac{6 - 2 \sqrt{h}}{k}$ $$h = 4 \Rightarrow t = \frac{6 - 2 \times 2}{k} = \frac{2}{k}$$ ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise K, Question 7 ### **Question:** The rate of increase of the radius r kilometres of an oil slick is given by $\frac{dr}{dt} = \frac{k}{r^2}$, where k is a positive constant. When the slick was first observed the radius was 3 km. Two days later it was 5 km. Find, to the nearest day when the radius #### **Solution:** will be 6. $$\frac{dr}{dt} = \frac{k}{r^2}$$ $$\Rightarrow \int r^2 dr = \int k dt$$ $$\Rightarrow \frac{1}{3}r^3 = kt + C$$ $$t = 0, r = 3 \Rightarrow \frac{27}{3} = C \Rightarrow C = 9$$ $$\therefore kt = \frac{1}{3}r^3 - 9$$ $$t = 2, r = 5 \Rightarrow 2k = \frac{125}{3} - 9 \Rightarrow k = 16\frac{1}{3}$$ $$\therefore \frac{49}{3}t = \frac{1}{3}r^3 - 9$$ or $t = \frac{r^3 - 27}{49}$ $$r = 6 \Rightarrow t = \frac{6^3 - 27}{49} = 3.85... = 4 \text{ days}$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 1 ### **Question:** It is given that $y = x^{\frac{3}{2}} + \frac{48}{x}, x > 0$. - (a) Find the value of x and the value of y when $\frac{dy}{dx} = 0$. - (b) Show that the value of y which you found is a minimum. The finite region *R* is bounded by the curve with equation $y=x^{\frac{3}{2}}+\frac{48}{x}$, the lines x=1, x=4 and the *x*-axis. (c) Find, by integration, the area of R giving your answer in the form $p + q \ln r$, where the numbers p, q and r are to be found. ### **Solution:** (a) $$y = x^{\frac{3}{2}} + 48x^{-1}$$ $\Rightarrow \frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} - 48x^{-2}$ $\frac{dy}{dx} = 0$ $\Rightarrow \frac{3}{2}x^{\frac{1}{2}} = \frac{48}{x^2}$ $\Rightarrow x^{\frac{5}{2}} = \frac{2}{3} \times 48 = 32$ $\Rightarrow x = 4, y = 2^3 + 12 = 20$ $\Rightarrow x = 4, y = 20$ (b) $$\frac{d^2y}{dx^2} = \frac{3}{4}x^{-\frac{1}{2}} + 96x^{-3} > 0$$ for all $x > 0$ ∴ 20 is a minimum value of y (c) Area = $$\int_{1}^{4} \left(x^{\frac{3}{2}} + \frac{48}{x} \right) dx$$ $$= \left[\frac{2}{5}x^{\frac{5}{2}} + 48\ln|x| \right]_{1}^{4}$$ $$= \left(\frac{2}{5} \times 32 + 48\ln4 \right) - \left(\frac{2}{5} + 0 \right)$$ $$= \frac{62}{5} + 48\ln4$$ #### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 2 #### **Question:** The curve *C* has two arcs, as shown, and the equations $x = 3t^2$, $y = 2t^3$, where t is a parameter. (a) Find an equation of the tangent to C at the point P where t = 2. The tangent meets the curve again at the point Q. (b) Show that the coordinates of Q are (3, -2). The shaded region R is bounded by the arcs OP and OQ of the curve C, and the line PQ, as shown. (c) Find the area of *R*. #### **Solution:** (a) $$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{6t^2}{6t} = t$$ *P* is (12, 16) : tangent is y - 16 = 2 (x - 12) or y = 2x - 8 (b) Substitute $x = 3t^2$, $y = 2t^3$ into the equation for the tangent $\Rightarrow 2t^3 = 6t^2 - 8$ $$\Rightarrow 2t^3 = 6t^2 - 8$$ $$\Rightarrow \quad t^3 - 3t^2 + 4 = 0$$ $$\Rightarrow (t-2)^2(t+1) = 0$$ $$\Rightarrow t = -1 \text{ at } Q (3, -2)$$ (c) Area of $$R = A_1 - T_1 + A_2 + T_2$$ $$A_1 + A_2 = \int y \, dx = \int_{t = -1}^{t = 2} 2t^3 \times 6t \, dt = \int_{-1}^{2} 12t^4 \, dt$$ $$= \left[\frac{12}{5} t^5 \right]_{-1}^2 = \left(\frac{12 \times 32}{5} \right) - \left(-\frac{12}{5} \right) = 79.2$$ $$T_1 = \frac{1}{2} \times 16 \times 8 = 64$$ $$T_2 = \frac{1}{2} \times 1 \times 2 = 1$$ $$\therefore \text{ area of } R = 79.2 - 64 + 1 = 16.2$$ #### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 3 #### **Question:** (a) Show that $$(1 + \sin 2x)^2 \equiv \frac{1}{2} (3 + 4\sin 2x - \cos 4x)$$. (b) The finite region bounded by the curve with equation $y = 1 + \sin 2x$, the x-axis, the y-axis and the line with equation $x = \frac{\pi}{2}$ is rotated through 2π about the x-axis. Using calculus, calculate the volume of the solid generated, giving your answer in terms of π . #### **Solution:** (a) $$(1 + \sin 2x)^2 = 1 + 2\sin 2x + \sin^2 2x$$ $= 1 + 2\sin 2x + \frac{1}{2} \left(1 - \cos 4x\right)$ $= \frac{3}{2} + 2\sin 2x - \frac{1}{2}\cos 4x$ $= \frac{1}{2} \left(3 + 4\sin 2x - \cos 4x\right)$ (b) $$V = \pi \int y^2 dx = \pi \int_0^{\frac{\pi}{2}} (1 + \sin 2x)^2 dx$$ $$= \frac{\pi}{2} \int_0^{\frac{\pi}{2}} (3 + 4\sin 2x - \cos 4x) dx$$ $$= \frac{\pi}{2} \left[3x - 2\cos 2x - \frac{1}{4}\sin 4x \right]_0^{\frac{\pi}{2}}$$ $$= \frac{\pi}{2} \left[\left(\frac{3\pi}{2} - 2\cos \pi - \frac{1}{4}\sin 2\pi \right) - \left(0 - 2 - 0 \right) \right]$$ $$= \frac{\pi}{2} \left(\frac{3\pi}{2} + 2 + 2 \right)$$ $$= \frac{\pi}{4} \left(3\pi + 8 \right)$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 4 ### **Question:** This graph shows part of the curve with equation y = f(x) where $f(x) \equiv e^{0.5x} + \frac{1}{x}, x > 0.$ The curve has a stationary point at $x = \alpha$. - (a) Find f'(x). - (b) Hence calculate f $^{\prime}$ (1.05) and f $^{\prime}$ (1.10) and deduce that $1.05 < \alpha < 1.10.$ - (c) Find $\int f(x) dx$. The shaded region R is bounded by the curve, the x-axis and the lines x = 2 and x = 4. (d) Find, to 2 decimal places, the area of R. (a) f' $$\left(x\right) = \frac{1}{2}e^{\frac{1}{2}x} - \frac{1}{x^2}$$ Change of sign \therefore root α in interval (1.05, 1.10) (c) $$\int \left(e^{0.5x} + \frac{1}{x} \right) dx = 2e^{0.5x} + \ln|x| + C$$ (d) Area = $$\int_{2}^{4} y \, dx$$ = $[2e^{0.5x} + \ln|x|]_{2}^{4}$ = $(2e^{2} + \ln 4) - (2e^{1} + \ln 2)$ = $2e^{2} - 2e^{1} + \ln 2$ = $10.03 (2 d.p.)$ [©] Pearson Education Ltd 2009 ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 5 ### **Question:** - (a) Find $\int xe^{-x} dx$. - (b) Given that $y = \frac{\pi}{4}$ at x = 0, solve the differential equation $e^{x} \frac{dy}{dx} = \frac{x}{\sin 2y}$ #### **Solution:** (a) $$I = \int xe^{-x} dx$$ $u = x \Rightarrow \frac{du}{dx} = 1$ $\frac{dv}{dx} = e^{-x} \Rightarrow v = -e^{-x}$ $\therefore I = -xe^{-x} - \int (-e^{-x}) dx$ i.e. $I = -xe^{-x} - e^{-x} + C$ (b) $$e^{x} \frac{dy}{dx} = \frac{x}{\sin 2y}$$ $$\Rightarrow \int \sin 2y \, dy = \int x e^{-x} \, dx$$ $$\Rightarrow -\frac{1}{2} \cos 2y = -x e^{-x} - e^{-x} + C$$ $$x = 0, y = \frac{\pi}{4} \Rightarrow 0 = 0 - 1 + C \Rightarrow C = 1$$ $$\therefore \frac{1}{2} \cos 2y = x e^{-x} + e^{-x} - 1$$ or $\cos 2y = 2$ ($x e^{-x} + e^{-x} - 1$) ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 6 ### **Question:** The diagram shows the finite shaded region bounded by the curve with equation $y = x^2 + 3$, the lines x = 1, x = 0 and the x-axis. This region is rotated through 360° about the x-axis. Find the volume generated. #### **Solution:** $$V = \pi \int_{0}^{1} y^{2} dx = \pi \int_{0}^{1} (x^{2} + 3)^{2} dx$$ $$= \pi \int_{0}^{1} (x^{4} + 6x^{2} + 9) dx$$ $$= \pi \left[\frac{1}{5} x^{5} + 2x^{3} + 9x \right]_{0}^{1}$$ $$= \pi \left[\left(\frac{1}{5} + 2 + 9 \right) - \left(0 \right) \right]$$ $$= \frac{56\pi}{5}$$ ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 7 #### **Question:** (a) Find $$\int \frac{1}{x(x+1)} dx$$ - (b) Using the substitution $u = e^x$ and the answer to **a**, or otherwise, find $\int \frac{1}{1+e^x} dx$. - (c) Use integration by parts to find $\int x^2 \sin x \, dx$. (a) $$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$$ $\therefore \int \frac{1}{x(x+1)} dx = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx$ $= \ln|x| - \ln|x+1| + C$ $= \ln\left|\frac{x}{x+1}\right| + C$ (b) $$I = \int \frac{1}{1 + e^x} dx$$ $u = e^x \implies du = e^x dx$ $$\therefore I = \int \frac{1}{(1 + u)} \times \frac{1}{u} du = \ln \left| \frac{u}{1 + u} \right| + C \quad \text{or} \quad \ln \left| \frac{e^x}{1 + e^x} \right|$$ + C (c) $$I = \int x^2 \sin x \, dx$$ $u = x^2 \implies \frac{du}{dx} = 2x$ $\frac{dv}{dx} = \sin x \implies v = -\cos x$ $\therefore I = -x^2 \cos x - \int (-\cos x) \times 2x \, dx$ $= -x^2 \cos x + \int 2x \cos x \, dx$ Let $$J = \int 2x \cos x \, dx$$ $u = 2x \implies \frac{du}{dx} = 2$ $\frac{dv}{dx} = \cos x \implies v = \sin x$ $\therefore J = 2x \sin x - \int 2\sin x \, dx$ $= 2x \sin x + 2\cos x + C$ $\therefore I = -x^2 \cos x + 2x \sin x + 2\cos x + k$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 8 ### **Question:** - (a) Find $\int x \sin 2x \, dx$. - (b) Given that y = 0 at $x = \frac{\pi}{4}$, solve the differential equation $\frac{dy}{dx} = x \sin 2x \cos^2 y$. #### **Solution:** (a) $$I = \int x \sin 2x \, dx$$ $u = x \implies \frac{du}{dx} = 1$ $\frac{dv}{dx} = \sin 2x \implies v = \frac{-1}{2} \cos 2x$ $\therefore I = -\frac{1}{2}x \cos 2x - \int \frac{-1}{2} \cos 2x \, dx$ $= -\frac{1}{2}x \cos 2x + \frac{1}{4} \sin 2x + C$ (b) $$\frac{dy}{dx} = x \sin 2x \cos^2 y$$ $$\Rightarrow \int \sec^2 y \, dy = \int x \sin 2x \, dx$$ $$\Rightarrow \tan y = -\frac{1}{2}x \cos 2x + \frac{1}{4}\sin 2x + C$$ $$y = 0, x = \frac{\pi}{4} \Rightarrow 0 =
0 + \frac{1}{4} + C \Rightarrow C = -\frac{1}{4}$$ $$\therefore \tan y = -\frac{1}{2}x \cos 2x + \frac{1}{4}\sin 2x - \frac{1}{4}$$ x # **Solutionbank**Edexcel AS and A Level Modular Mathematics Integration Exercise L, Question 9 ### **Question:** - (a) Find $\int x \cos 2x \, dx$. - (b) This diagram shows part of the curve with equation $y = 2x^{\frac{1}{2}} \sin x$. The shaded region in the diagram is bounded by the curve, the *x*-axis and the line with equation $x = \frac{\pi}{2}$. This shaded region is rotated through 2π radians about the *x*-axis to form a solid of revolution. Using calculus, calculate the volume of the solid of revolution formed, giving your answer in terms of π . ### **Solution:** 0 (a) $$I = \int x \cos 2x \, dx$$ $u = x \implies \frac{du}{dx} = 1$ $$\frac{dv}{dx} = \cos 2x \implies v = \frac{1}{2}\sin 2x$$ $$\therefore I = \frac{x}{2}\sin 2x - \int \frac{1}{2}\sin 2x \, dx$$ $$= \frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x + C$$ (b) $$V = \pi \int_{0}^{\frac{\pi}{2}} y^{2} dx = \pi \int_{0}^{\frac{\pi}{2}} 4x \sin^{2}x dx$$ $\cos 2A = 1 - 2\sin^{2}A \implies 2\sin^{2}x = 1 - \cos 2x$ $\therefore V = \pi \int_{0}^{\frac{\pi}{2}} 2x \left(1 - \cos 2x\right) dx$ $= \pi \int_{0}^{\frac{\pi}{2}} 2x dx - 2\pi \int_{0}^{\frac{\pi}{2}} x \cos 2x dx$ $= [\pi x^{2}]_{0}^{\frac{\pi}{2}} - 2\pi \left[\frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x\right]_{0}^{\frac{\pi}{2}}$ $= \frac{\pi^{3}}{4} - 2\pi \left[\left(\frac{\pi}{4} \sin \pi + \frac{1}{4} \cos \pi\right) - \left(0 + \frac{1}{4}\right)\right]$ $= \frac{\pi^{3}}{4} + \pi$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 10 ### **Question:** A curve has equation y = f(x) and passes through the point with coordinates (0, -1). Given that $f'(x) = \frac{1}{2}e^{2x} - 6x$, - (a) use integration to obtain an expression for f(x), - (b) show that there is a root α of the equation f'(x) = 0, such that $1.41 < \alpha < 1.43$. #### **Solution:** (a) $$f'\left(x\right) = \frac{1}{2}e^{2x} - 6x$$ $$\Rightarrow f\left(x\right) = \frac{1}{4}e^{2x} - 3x^2 + C$$ $$f\left(0\right) = -1 \Rightarrow -1 = \frac{1}{4} - 0 + C \Rightarrow C = -\frac{5}{4}$$ $$\therefore f\left(x\right) = \frac{1}{4}e^{2x} - 3x^2 - \frac{5}{4}$$ (b) f' (1.41) = $$-0.07... < 0$$ f' (1.43) = $+0.15... > 0$ Change of sign \therefore root in interval (1.41, 1.43). ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 11 ### **Question:** $$f\left(x\right) = 16x^{\frac{1}{2}} - \frac{2}{x}, x > 0.$$ - (a) Solve the equation f(x) = 0. - (b) Find $\int f(x) dx$. - (c) Evaluate $\int_{1}^{4} f(x) dx$, giving your answer in the form $p + q \ln r$, where p, q and r are rational numbers. (a) $$f\left(x\right) = 0 \Rightarrow 16x^{\frac{1}{2}} = \frac{2}{x}$$ $$\Rightarrow 16x^{\frac{3}{2}} = 2$$ $$\Rightarrow x^{\frac{3}{2}} = \frac{1}{8}$$ $$\Rightarrow x = \left(3\sqrt{\frac{1}{8}}\right)^2 = \frac{1}{4}$$ (b) $$\int \left(16x^{\frac{1}{2}} - \frac{2}{x} \right) dx = \frac{16x^{\frac{3}{2}}}{\frac{3}{2}} - 2\ln|x| + C$$ $$= \frac{32}{3}x^{\frac{3}{2}} - 2\ln|x| + C$$ (c) $$\int_{1}^{4} f\left(x\right) dx = \left[\frac{32}{3}x^{\frac{3}{2}} - 2\ln|x|\right]_{1}^{4}$$ = $\left(\frac{32}{3} \times 2^{3} - 2\ln 4\right) - \left(\frac{32}{3} - 0\right)$ $$= \frac{224}{3} - 2 \ln 4$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 12 ### **Question:** Shown is part of a curve C with equation $y = x^2 + 3$. The shaded region is bounded by C, the x-axis and the lines with equations x = 1 and x = 3. The shaded region is rotated through 360° about the x-axis. Using calculus, calculate the volume of the solid generated. Give your answer as an exact multiple of π . $$V = \pi \int_{1}^{3} y^{2} dx = \pi \int_{1}^{3} (x^{2} + 3)^{2} dx$$ $$= \pi \int_{1}^{3} (x^{4} + 6x^{2} + 9) dx$$ $$= \pi \left[\frac{1}{5} x^{5} + 2x^{3} + 9x \right]_{1}^{3}$$ $$= \pi \left[\left(\frac{243}{5} + 54 + 27 \right) - \left(\frac{1}{5} + 2 + 9 \right) \right]$$ $$= \pi \left(\frac{242}{5} + 81 - 11 \right)$$ $= 118.4\pi$ ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 13 ### **Question:** (a) Find $$\int x (x^2 + 3)^{-5} dx$$ (b) Show that $$\int_{1}^{e} \frac{1}{x^2} \ln x \, dx = 1 - \frac{2}{e}$$ (c) Given that $$p > 1$$, show that $\int_{1}^{p} \frac{1}{(x+1)(2x-1)} dx = \frac{1}{3} \ln \frac{4p-2}{p+1}$ # Ø (a) Let $$y = (x^2 + 3)^6$$ $$\Rightarrow \frac{dy}{dx} = 6(x^2 + 3)^5 \times 2x$$ $$\therefore \int x(x^2 + 3)^5 dx = \frac{1}{12}(x^2 + 3)^6 + C$$ (b) $$I = \int_{1}^{e} \frac{1}{x^{2}} \ln x \, dx$$ $u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$ $\frac{dv}{dx} = \frac{1}{x^{2}} \implies v = -\frac{1}{x}$ $\therefore I = \left[-\frac{1}{x} \ln x \right]_{1}^{e} - \int_{1}^{e} \left(-\frac{1}{x^{2}} \right) \, dx$ $= \left(-\frac{1}{e} \right) - \left(0 \right) + \left[-\frac{1}{x} \right]_{1}^{e}$ $= -\frac{1}{e} + \left(-\frac{1}{e} \right) - \left(-1 \right)$ $= 1 - \frac{2}{e}$ (c) $$\frac{1}{(x+1)(2x-1)} \equiv \frac{A}{x+1} + \frac{B}{2x-1}$$ $\Rightarrow 1 \equiv A(2x-1) + B(x+1)$ $x = \frac{1}{2} \Rightarrow 1 = \frac{3}{2}B \Rightarrow B = \frac{2}{3}$ $x = -1 \Rightarrow 1 = -3A \Rightarrow A = -\frac{1}{3}$ $\therefore \int_{1}^{p} \frac{1}{(x+1)(2x-1)} dx = \int_{1}^{p} \left(\frac{\frac{2}{3}}{2x-1} + \frac{-\frac{1}{3}}{x+1}\right) dx$ $= \left[\frac{1}{3}\ln|2x-1| - \frac{1}{3}\ln|x+1|\right]_{1}^{p}$ $= \left[\frac{1}{3}\ln\left(\frac{2x-1}{x+1}\right)\right]_{1}^{p}$ $= \left[\frac{1}{3}\ln\left(\frac{2p-1}{p+1}\right)\right] - \left(\frac{1}{3}\ln\frac{1}{2}\right)$ $= \frac{1}{3}\ln\left(\frac{4p-2}{p+1}\right)$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 14 ### **Question:** $$f\left(x\right) \equiv \frac{5x^2 - 8x + 1}{2x(x-1)^2} \equiv \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$ - (a) Find the values of the constants A, B and C. - (b) Hence find $\int f(x) dx$. - (c) Hence show that $\int_4^9 f\left(x\right) dx = \ln\left(\frac{32}{3}\right) \frac{5}{24}$ (a) $$f\left(x\right) \equiv \frac{5x^2 - 8x + 1}{2x(x-1)^2} \equiv \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$ $\Rightarrow 5x^2 - 8x + 1 \equiv 2A(x-1)^2 + 2Bx(x-1) + 2Cx$ $x = 0 \Rightarrow 1 = 2A \Rightarrow A = \frac{1}{2}$ $x = 1 \Rightarrow -2 = 2C \Rightarrow C = -1$ Coefficients of x^2 : $5 = 2A + 2B \Rightarrow B = 2$ (b) $$\int f \left(x \right) dx = \int \left(\frac{\frac{1}{2}}{x} + \frac{2}{x-1} - \frac{1}{(x-1)^2} \right) dx$$ = $\frac{1}{2} \ln|x| + 2 \ln|x-1| + \frac{1}{x-1} + C$ (c) $$\int_{4}^{9} f(x) dx = \left[\frac{1}{2} \ln|x| + 2 \ln|x - 1| + \frac{1}{x - 1}\right]_{4}^{9}$$ = $\left[\ln|\sqrt{x(x - 1)}|^{2} + \frac{1}{x - 1}\right]_{4}^{9}$ $$= \left[\ln \left(3 \times 64 \right) + \frac{1}{8} \right] - \left[\ln \left(2 \times 9 \right) + \frac{1}{3} \right]$$ $$= \ln \left(\frac{3 \times 64}{2 \times 9} \right) + \frac{1}{8} - \frac{1}{3}$$ $$= \ln \frac{32}{3} - \frac{5}{24}$$ ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 15 ### **Question:** The curve shown has parametric equations $$x = 5\cos\theta$$, $y = 4\sin\theta$, $0 \le \theta < 2\pi$. - (a) Find the gradient of the curve at the point P at which $\theta = \frac{\pi}{4}$. - (b) Find an equation of the tangent to the curve at the point P. - (c) Find the coordinates of the point R where this tangent meets the x-axis. The shaded region is bounded by the tangent PR, the curve and the x-axis. - (d) Find the area of the shaded region, leaving your answer in terms of π . #### **Solution:** (a) $$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = -\frac{4\cos\theta}{5\sin\theta}$$ $$\therefore \text{ gradient of tangent at } P = -\frac{4}{5}$$ (b) $$P = \left(\frac{5}{\sqrt{2}}, \frac{4}{\sqrt{2}} \right)$$: equation of tangent is $$y - \frac{4}{\sqrt{2}} = -\frac{4}{5} \left(x - \frac{5}{\sqrt{2}} \right)$$ or $y - 2\sqrt{2} = -\frac{4}{5} \left(x - \frac{5}{\sqrt{2}} \right)$ (c) At $$R, y = 0 \implies x = \frac{5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2} = 5\sqrt{2}$$ $\therefore R \text{ is } (5\sqrt{2}, 0)$ $$A_{1} + A_{2} = \frac{1}{2} \times \left(5\sqrt{2} - \frac{5}{\sqrt{2}} \right) \times \frac{4}{\sqrt{2}} = \frac{1}{2} \times \frac{5}{\sqrt{2}} \times \frac{4}{\sqrt{2}} = 5$$ $$A_{1} = \int y dx = \int \frac{\pi}{4} (4\sin\theta) \times \left(-5\sin\theta \right) d\theta$$ $$= 10 \int_{0}^{\pi} \left(1 - \cos 2\theta \right) d\theta$$ $$= [10\theta - 5\sin 2\theta]_{0}^{\pi} \frac{\pi}{4}$$ $$= \frac{5\pi}{2} - 5$$ $$\therefore A_{2} = 5 - A_{1} = 5 - \left(\frac{5\pi}{2} - 5 \right) = 10 - 2.5\pi$$ ### **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 16 ### **Question:** (a) Obtain the general solution of the differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} = xy^2, y > 0.$$ (b) Given also that y = 1 at x = 1, show that $$y = \frac{2}{3 - x^2}, - \sqrt{3} < x < \sqrt{3}$$ is a particular solution of the differential equation. The curve C has equation $y = \frac{2}{3-x^2}, x \neq -\sqrt{3}, x \neq \sqrt{3}$ - (c) Write down the gradient of C at the point (1, 1). - (d) Deduce that the line which is a tangent to C at the point (1, 1) has equation y = x. - (e) Find the coordinates of the point where the line y = x again meets the curve C. ### **Solution:** (a) $\frac{dy}{dx} = xy^2$ $$\Rightarrow \int \frac{1}{y^2} dy = \int x dx$$ $$\Rightarrow \quad -\frac{1}{y} = \frac{x^2}{2} + \quad C$$ or $$y = \frac{-2}{x^2 + k}$$ $\left(k = 2C\right)$ (b) $$y = 1, x = 1 \implies 1 = \frac{-2}{1+k} \implies k = -3$$ ∴ $$y = \frac{2}{3 - x^2}$$ for $x^2 \neq 3$ and $y > 0$, i.e. $-\sqrt{3} < x < \sqrt{3}$ - (c) When x = 1, y = 1 $\frac{dy}{dx}$ is 1 - (d) Equation of tangent is y 1 = 1 (x 1), i.e. y = x. (e) $$x = \frac{2}{3 - x^2}$$ \Rightarrow $-x^3 + 3x = 2 \text{ or } x^3 - 3x + 2 = 0$ \Rightarrow $(x - 1)^2
(x + 2) = 0$ $\therefore y = x \text{ meets curve at } (-2, -2)$. ### **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 17 ### **Question:** The diagram shows the curve C with parametric equations $$x = a\sin^2 t, y = a\cos t, 0 \le t \le \frac{1}{2}\pi,$$ where a is a positive constant. The point P lies on C and has coordinates $$\frac{3}{4}a, \frac{1}{2}a$$. - (a) Find $\frac{dy}{dx}$, giving your answer in terms of t. - (b) Find an equation of the tangent to C at P. - (c) Show that a cartesian equation of C is $y^2 = a^2 ax$. The shaded region is bounded by C, the tangent at P and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution. (d) Use calculate the volume of the solid revolution formed, giving your answer in the form $k\pi a^3$, where k is an exact fraction. #### **Solution:** (a) $$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{-a\sin t}{2a\sin t\cos t} = -\frac{1}{2}\sec t$$ (b) $$P$$ is $\left(\frac{3}{4}a, \frac{1}{2}a\right)$, so $\cos t = \frac{1}{2}$ $$\Rightarrow M = -\frac{1}{2 \times \frac{1}{2}} = -1$$ $$\therefore \text{ tangent is } y - \frac{1}{2}a = -1 \left(x - \frac{3}{4}a \right)$$ or $$y = -x + \frac{5}{4}a$$ (c) $$\sin^2 t + \cos^2 t = 1 \implies \frac{x}{a} + \frac{y^2}{a^2} = 1$$ or $y^2 = a^2 - ax$ (d) volume = cone – $$\pi \int \frac{3}{4} a^2 y^2 dx$$ cone = $$\frac{1}{3}\pi \left(\frac{1}{2}a\right)^2 \left(\frac{5}{4}a - \frac{3}{4}a\right) = \frac{\pi a^3}{24}$$ $$\pi \int \frac{3}{4} a^3 y^2 dx = \pi \left[a^2 x - \frac{a}{2} x^2 \right] \frac{3}{4} a^a$$ $$= \pi \left[\left(a^3 - \frac{a^3}{2} \right) - \left(\frac{3}{4}a^3 - \frac{9}{32}a^3 \right) \right] = \frac{\pi a^3}{32}$$:. Volume = $$\pi \left(\frac{a^3}{24} - \frac{a^3}{32} \right) = \frac{\pi a^3}{96}$$ ## **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 18 ## **Question:** (a) Using the substitution u = 1 + 2x, or otherwise, find $\int \frac{4x}{(1+2x)^2} dx, x > -\frac{1}{2},$ (b) Given that $y = \frac{\pi}{4}$ when x = 0, solve the differential equation $$(1+2x)^2 \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{\sin^2 y}$$ (a) $$I = \int \frac{4x}{(1+2x)^2} dx$$ $$u = 1 + 2x$$ $$\Rightarrow \frac{du}{2} = dx \text{ and } 4x = 2 (u-1)$$ $$\therefore I = \int \frac{2(u-1)}{u^2} \times \frac{du}{2}$$ $$= \int \left(\frac{1}{u} - u^{-2}\right) du$$ $$= \ln|u| + \frac{1}{u} + C$$ $$= \ln|1 + 2x| + \frac{1}{1+2x} + C$$ (b) $$(1 + 2x)^2 \frac{dy}{dx} = \frac{x}{\sin^2 y}$$ $$\Rightarrow \int \sin^2 y \, dy = \int \frac{x}{(1 + 2x)^2} dx$$ $$\Rightarrow \int 4 \sin^2 y \, dy = \int \frac{4x}{(1 + 2x)^2} dx$$ $$\Rightarrow \int (2 - 2\cos 2y) \, dy = I$$ $$\Rightarrow 2y - \sin 2y = \ln |1 + 2x| + \frac{1}{1 + 2x} + C$$ $$x = 0, y = \frac{\pi}{4} \Rightarrow \frac{\pi}{2} - 1 = \ln 1 + 1 + C$$ $$\Rightarrow C = \frac{\pi}{2} - 2$$ $$\therefore 2y - \sin 2y = \ln |1 + 2x| + \frac{1}{1 + 2x} + \frac{\pi}{2} - 2$$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 19 # **Question:** The diagram shows the curve with equation $y = xe^{2x}$, $-\frac{1}{2} \le x \le \frac{1}{2}$. The finite region R_1 bounded by the curve, the x-axis and the line $x = -\frac{1}{2}$ has area A_1 . The finite region R_2 bounded by the curve, the x-axis and the line $x = \frac{1}{2}$ has area A_2 . - (a) Find the exact values of A_1 and A_2 by integration. - (b) Show that A_1 : $A_2 = (e 2)$: e. (a) $$\int xe^{2x} dx$$ $u = x \implies \frac{du}{dx} = 1$ $$\frac{dv}{dx} = e^{2x} \implies v = \frac{1}{2}e^{2x}$$ $$\therefore \int xe^{2x} dx = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} dx = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + C$$ $$A_1 = -\left[\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} \right] - \frac{1}{2}^0$$ $$= -\left[\left(0 - \frac{1}{4} \right) - \left(-\frac{1}{4}e^{-1} - \frac{1}{4}e^{-1} \right) \right]$$ $$= \frac{1}{4} \left(1 - 2e^{-1} \right)$$ $$A_2 = \left[\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} \right]_0^{\frac{1}{2}}$$ $$= \left(\frac{1}{4}e^{1} - \frac{1}{4}e^{1} \right) - \left(0 - \frac{1}{4} \right)$$ $$= \frac{1}{4}$$ (b) $$\frac{A_1}{A_2} = \frac{\frac{1}{4}(1-2e^{-1})}{\frac{1}{4}} = 1 - 2e^{-1} = \frac{e-2}{e}$$ $\therefore A_1: A_2 = (e-2): e$ # **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 20 ## **Question:** Find $\int x^2 e^{-x} dx$. Given that y = 0 at x = 0, solve the differential equation $\frac{dy}{dx} = x^2 e^{3y - x}$. ## **Solution:** $$I = \int x^{2}e^{-x} dx$$ $$u = x^{2} \implies \frac{du}{dx} = 2x$$ $$\frac{dv}{dx} = e^{-x} \implies v = -e^{-x}$$ $$\therefore I = -x^{2}e^{-x} - \int (-e^{-x}) \times 2x dx$$ $$= -x^{2}e^{-x} + \int 2xe^{-x} dx$$ $$J = \int 2xe^{-x} dx$$ $$u = 2x \implies \frac{du}{dx} = 2$$ $$\frac{dv}{dx} = e^{-x} \implies v = -e^{-x}$$ $$\therefore J = -2xe^{-x} - \int (-e^{-x}) \times 2 dx$$ $$= -2xe^{-x} - 2e^{-x} + k$$ $$\therefore I = -x^{2}e^{-x} - 2xe^{-x} - 2e^{-x} + C$$ $$\frac{dv}{dx} = 2xe^{-x} - 2xe^{-x} - 2e^{-x} + C$$ $$\frac{dy}{dx} = x^{2}e^{3y - x} = x^{2}e^{-x}e^{3y}$$ $$\Rightarrow \int e^{-3y} dy = \int x^{2}e^{-x} dx$$ $$\Rightarrow -\frac{1}{3}e^{-3y} = -x^{2}e^{-x} - 2xe^{-x} - 2e^{-x} + C$$ $$x = 0, y = 0 \Rightarrow -\frac{1}{3}e^{-3y} = x^{2}e^{-x} + 2xe^{-x} + 2e^{-x} - \frac{5}{3}$$ $$\therefore \frac{1}{3}e^{-3y} = x^{2}e^{-x} + 2xe^{-x} + 2e^{-x} - \frac{5}{3}$$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 21 ## **Question:** The curve with equation $y = e^{3x} + 1$ meets the line y = 8 at the point (h, 8). - (a) Find h, giving your answer in terms of natural logarithms. - (b) Show that the area of the finite region enclosed by the curve with equation $y = e^{3x} + 1$, the x-axis, the y-axis and the line x = h is $2 + \frac{1}{3} \ln 7$. (a) $$8 = e^{3x} + 1 \implies 7 = e^{3x}$$ $\therefore x = \frac{1}{3} \ln 7$, i.e. $h = \frac{1}{3} \ln 7$ Area = $$\int_0^{\frac{1}{3}\ln 7} y \, dx$$ = $$\int_0^{\frac{1}{3}\ln 7} \left(e^{3x} + 1 \right) dx$$ = $$\left[\frac{1}{3}e^{3x} + x \right]_0^{\frac{1}{3}\ln 7}$$ $$= \left(\frac{1}{3}e^{\ln 7} + \frac{1}{3}\ln 7\right) - \left(\frac{1}{3} + 0\right)$$ $$= \frac{1}{3}\left(7 + \ln 7\right) - \frac{1}{3}$$ $$= \frac{1}{3}\left(6 + \ln 7\right)$$ $$= 2 + \frac{1}{3}\ln 7$$ ## **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 22 ## **Question:** (a) Given that $$\frac{x^2}{x^2 - 1} \equiv A + \frac{B}{x - 1} + \frac{C}{x + 1},$$ find the values of the constants A, B and C. (b) Given that x = 2 at t = 1, solve the differential equation $$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 - \frac{2}{x^2}, x > 1.$$ You need not simplify your final answer. #### **Solution:** (a) $$\frac{x^2}{x^2 - 1} \equiv A + \frac{B}{x - 1} + \frac{C}{x + 1}$$ $$\Rightarrow x^2 \equiv A(x - 1)(x + 1) + B(x + 1) + C(x - 1)$$ $$x = 1 \Rightarrow 1 = 2B \Rightarrow B = \frac{1}{2}$$ $$x = -1 \Rightarrow 1 = -2C \Rightarrow C = -\frac{1}{2}.$$ Coefficients of x^2 : $1 = A \implies A = 1$ (b) $$\frac{dx}{dt} = 2 \frac{(x^2 - 1)}{x^2}$$ $$\Rightarrow \int \frac{x^2}{x^2 - 1} dx = \int 2 dt$$ $$\Rightarrow \int \left(1 + \frac{\left(\frac{1}{2}\right)}{x - 1} - \frac{\left(\frac{1}{2}\right)}{x + 1} \right) dx = 2t$$ $$\Rightarrow$$ $x + \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| = 2t + C$ $$x = 2, t = 1 \implies 2 + \frac{1}{2} \ln \frac{1}{3} = 2 + C \implies C = \frac{1}{2} \ln \frac{1}{3}$$ $\therefore x + \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| = 2t + \frac{1}{2} \ln \frac{1}{3}$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 23 ## **Question:** The curve C is given by the equations $$x=2t, y=t^2,$$ where t is a parameter. - (a) Find an equation of the normal to C at the point P on C where t = 3. The normal meets the y-axis at the point B. The finite region R is bounded by the part of the curve C between the origin O and P, and the lines OB and OP. - (b) Show the region R, together with its boundaries, in a sketch. The region R is rotated through 2π about the y-axis to form a solid S. - (c) Using integration, and explaining each step in your method, find the volume of S, giving your answer in terms of π . (a) $$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{2t}{2} = t$$. $$\therefore$$ at $P(6, 9)$ gradient of normal is $-\frac{1}{3}$ $$\therefore$$ equation of normal is $y - 9 = -\frac{1}{3}\left(x - 6\right)$ or $y = -\frac{1}{3}x + 11$ (b) $$x = 2t, y = t^2 \implies y = \frac{x^2}{4}$$ $$B$$ is $(0, 11)$ (c) volume = cone + $$\pi \int_0^9 x^2 dy$$ cone = $\frac{1}{3}\pi \times 6^2 \times 2 = 24\pi$ $\pi \int_0^9 x^2 dy = \pi \int_{t=0}^{t=3} 4t^2 \times 2t dt = \pi \int_0^3 8t^3 dt$ = $\pi \left[2t^4 \right]_0^3 = \pi \times 2 \times 81 = 162\pi$ \therefore Volume of $S = 186\pi$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 24 ## **Question:** Shown is part of the curve with equation $y = e^{2x} - e^{-x}$. The shaded region R is bounded by the curve, the x-axis and the line with equation x = 1. Use calculus to find the area of R, giving your answer in terms of e. #### **Solution:** Area = $$\int_0^1 (e^{2x} - e^{-x}) dx$$ = $\left[\frac{1}{2} e^{2x} + e^{-x} \right]_0^1$ = $\left(\frac{1}{2} e^2 + e^{-1} \right) - \left(\frac{1}{2} + 1 \right)$ = $\frac{1}{2} \left(e^2 + \frac{2}{e} - 3 \right)$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 25 ## **Question:** - (a) Given that $2y = x \sin x \cos x$, show that $\frac{dy}{dx} = \sin^2 x$. - (b) Hence find $\int \sin^2 x \, dx$. - (c) Hence, using integration by parts, find $\int x \sin^2 x dx$. (a) $$2y = x - \sin x \cos x$$ $$\Rightarrow 2 \frac{dy}{dx} = 1 - \left[\cos^2 x + \sin x \left(-\sin x \right) \right] = 1 - \cos^2 x + \sin^2 x$$ $$\therefore \frac{dy}{dx} = \sin^2 x \quad \text{(using } \sin^2 x = 1 - \cos^2 x
\text{)}$$ (b) $$\int \sin^2 x \, dx = y + C_1$$ = $\frac{x}{2} - \frac{1}{2} \sin x \cos x + C_1$ (c) $$\int x \sin^2 x \, dx$$ $$u = x \quad \Rightarrow \quad \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \sin^2 x \Rightarrow v = \left(b \right)$$ $$\therefore \int x \sin^2 x \, dx = \frac{x^2}{2} - \frac{1}{2} x \sin x \cos x - \int \left(\frac{x}{2} - \frac{1}{2} \sin x \cos x \right) \, dx$$ $$= \frac{x^2}{2} - \frac{1}{2} x \sin x \cos x - \frac{x^2}{4} + \frac{1}{4} \int \sin 2x \, dx$$ $$= \frac{x^2}{4} - \frac{1}{2} x \sin x \cos x - \frac{1}{8} \cos 2x + C_2$$ ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 26 # **Question:** The rate, in $cm^3 s^{-1}$, at which oil is leaking from an engine sump at any time t seconds is proportional to the volume of oil, $V \text{cm}^3$, in the sump at that instant. At time t = 0, V = A. - (a) By forming and integrating a differential equation, show that $V = Ae^{-kt}$ where k is a positive constant. - (b) Sketch a graph to show the relation between *V* and *t*. Given further that $V = \frac{1}{2}A$ at t = T, - (c) show that $kT = \ln 2$. (a) $$\frac{dv}{dt} = -k V$$ $$\Rightarrow \int \frac{1}{V} dV = \int -k dt$$ $$\Rightarrow \ln |V| = -kt + C$$ $$\Rightarrow V = A_1 e^{-kt}$$ $$t = 0, V = A \Rightarrow V = A e^{-kt} \qquad (A_1 = A)$$ (c) $$t = T$$, $V = \frac{1}{2}A \implies \frac{1}{2}A = Ae^{-kT}$ $\Rightarrow -\ln 2 = -kT$ $\Rightarrow kT = \ln 2$ ## **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 27 ## **Question:** This graph shows part of the curve C with parametric equations $$x = (t+1)^{2}, y = \frac{1}{2}t^{3} + 3, t \ge -1.$$ P is the point on the curve where t = 2. The line S is the normal to C at P. (a) Find an equation of S. The shaded region R is bounded by C, S, the x-axis and the line with equation x = 1. (b) Using integration and showing all your working, find the area of R. (a) $$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{\frac{3}{2}t^2}{2(t+1)} = \frac{3t^2}{4(t+1)}$$ At P (9, 7) gradient of normal is $$-\frac{4 \times 3}{3 \times 2^2} = -1$$ $$\therefore$$ equation of line S is $y - 7 = -1 (x - 9)$ i.e. $$y = -x + 16$$ or $y + x = 16$ (b) Area = $\int_{x=1}^{x=9} y dx$ + area of triangle shown below $$\int_{x=1}^{x=9} y \, dx = \int_{t=0}^{t=2} \left(\frac{1}{2} t^3 + 3 \right) 2 \left(t+1 \right) dt$$ $$= \int_{0}^{2} \left(t^4 + t^3 + 6t + 6 \right) dt$$ $$= \left[\frac{1}{5} t^5 + \frac{1}{4} t^4 + \frac{6t^2}{2} + 6t \right]_{0}^{2}$$ $$= \left(\frac{32}{5} + \frac{16}{4} + 3 \times 4 + 6 \times 2 \right) - \left(0 \right)$$ $$= 34.4$$ $$\therefore \text{ Area} = 34.4 + \frac{1}{2} \times 7^2 = 58.9$$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 28 ## **Question:** Shown is part of the curve C with parametric equations $$x = t^2$$, $y = \sin 2t$, $t \ge 0$. The point A is an intersection of C with the x-axis. - (a) Find, in terms of π , the *x*-coordinate of *A*. - (b) Find $\frac{dy}{dx}$ in terms of t, t > 0. - (c) Show that an equation of the tangent to C at A is $4x + 2\pi y = \pi^2$. The shaded region is bounded by C and the x-axis. - (d) Use calculus to find, in terms of π , the area of the shaded region. (a) At $$A$$, $y = 0 \Rightarrow \sin 2t = 0 \Rightarrow 2t = 0 \text{ or } \pi \Rightarrow t = \frac{\pi}{2}$ $\therefore A$ is $\left(\left(\frac{\pi}{2} \right)^2, 0 \right)$ or $\left(\frac{\pi^2}{4}, 0 \right)$ (b) $$\frac{dy}{dx} = \frac{2\cos 2t}{2t} = \frac{\cos 2t}{t}$$ (c) Gradient of tangent at A is $$\frac{\cos \pi}{(\frac{\pi}{2})} = -\frac{1}{(\frac{\pi}{2})} = -\frac{2}{\pi}$$ $$\therefore \text{ equation of tangent is } y - 0 = -\frac{2}{\pi} \left(x - \frac{\pi^2}{4} \right)$$ $$\Rightarrow \quad \pi y = -2x + \frac{2\pi^2}{4}$$ or $$2\pi y + 4x = \pi^2$$ (d) Area = $$\int y dx = \int_{t=0}^{t=\frac{\pi}{2}} \sin 2t \times 2t dt$$ $u = t \implies \frac{du}{dt} = 1$ $$\frac{\mathrm{d}v}{\mathrm{d}t} = 2\sin 2t \Rightarrow v = -\cos 2t$$ $$\therefore \text{ Area } = \begin{bmatrix} -t\cos 2t \end{bmatrix} \quad 0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \left(-\cos 2t \right) dt$$ $$= \left(+\frac{\pi}{2} \right) - \left(0 \right) + \left[\frac{1}{2}\sin 2t \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 29 # **Question:** Showing your method clearly in each case, find - (a) $\int \sin^2 x \cos x \, dx$, - (b) $\int x \ln x \, dx$. Using the substitution $t^2 = x + 1$, where x > -1, t > 0, - (c) Find $\int \frac{x}{\sqrt{x+1}} dx$. - (d) Hence evaluate $\int_0^3 \frac{x}{\sqrt{x+1}} dx$. (a) Let $$y = \sin^3 x \implies \frac{dy}{dx} = 3\sin^2 x \cos x$$ $$\therefore \int \sin^2 x \cos x \, dx = \frac{1}{3}\sin^3 x + C$$ (b) $$\int x \ln x \, dx$$ $u = \ln x \implies \frac{du}{dx} = \frac{1}{x}$ $\frac{dv}{dx} = x \implies v = \frac{1}{2}x^2$ $\therefore \int x \ln x \, dx = \frac{1}{2}x^2 \ln x - \int \frac{1}{2}x^2 \times \frac{1}{x} \, dx$ $= \frac{1}{2}x^2 \ln x - \frac{x^2}{4} + C$ (c) $$t^2 = x + 1 \implies 2t \, dt = dx$$ $$\therefore I = \int \frac{x}{\sqrt{x+1}} \, dx$$ $$= \int \frac{t^2 - 1}{t} \times 2t \, dt$$ $$= \int (2t^{2} - 2) dt$$ $$= \frac{2}{3}t^{3} - 2t + C$$ $$= \frac{2}{3}(x+1)^{\frac{3}{2}} - 2\sqrt{x+1} + C$$ $$= \frac{2}{3}\sqrt{x+1}(x-2) + C$$ (d) $$\int_0^3 \frac{x}{\sqrt{x+1}} dx = \left[\frac{2}{3} \left(x - 2 \right) \sqrt{x+1} \right]_0^3$$ $$= \left(\frac{2}{3} \times 2 \right) - \left(-\frac{4}{3} \right) = \frac{8}{3}$$ [©] Pearson Education Ltd 2009 # **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 30 ## **Question:** - (a) Using the substitution $u = 1 + 2x^2$, find $\int x (1 + 2x^2)^{-5} dx$. - (b) Given that $y = \frac{\pi}{8}$ at x = 0, solve the differential equation $\frac{dy}{dx} = x (1 + 2x^2)^{-5} \cos^2 2y.$ #### **Solution:** (a) $$u = 1 + 2x^2 \implies du = 4x dx \implies x dx = \frac{du}{4}$$ So $\int x (1 + 2x^2)^{-5} dx = \int \frac{u^5}{4} du = \frac{u^6}{24} + C_1 = \frac{(1 + 2x^2)^{-6}}{24} + C_1$ (b) $$\frac{dy}{dx} = x (1 + 2x^2)^{-5} \cos^2 2y$$ $\Rightarrow \int \sec^2 2y \, dy = \int x (1 + 2x^2)^{-5} \, dx$ $\Rightarrow \frac{1}{2} \tan 2y = \frac{(1 + 2x^2)^{-6}}{24} + C_2$ $y = \frac{\pi}{8}, x = 0 \Rightarrow \frac{1}{2} = \frac{1}{24} + C_2 \Rightarrow C_2 = \frac{11}{24}$ $\therefore \tan 2y = \frac{(1 + 2x^2)^{-6}}{12} + \frac{11}{12}$ # **Solutionbank**Edexcel AS and A Level Modular Mathematics Integration Exercise L, Question 31 ## **Question:** Find $\int x^2 \ln 2x \, dx$. #### **Solution:** $$I = \int x^2 \ln 2x \, dx$$ $$u = \ln 2x \quad \Rightarrow \quad \frac{du}{dx} = \frac{1}{x}$$ $$\frac{dv}{dx} = x^2 \quad \Rightarrow \quad v = \frac{x^3}{3}$$ $$\therefore I = \frac{x^3}{3} \ln 2x - \int \frac{x^3}{3} \times \frac{1}{x} \, dx$$ $$= \frac{x^3}{3} \ln 2x - \int \frac{x^2}{3} \, dx$$ $$= \frac{x^3}{3} \ln 2x - \int \frac{x^3}{3} \, dx$$ # **Edexcel AS and A Level Modular Mathematics** Integration Exercise L, Question 32 #### **Ouestion:** Obtain the solution of $$x \left(x + 2 \right) \frac{dy}{dx} = y, y > 0, x > 0,$$ for which y = 2 at x = 2, giving your answer in the form $y^2 = f(x)$. #### **Solution:** $$x \left(x+2\right) \frac{dy}{dx} = y$$ $$\Rightarrow \int \frac{1}{y} dy = \int \frac{1}{x(x+2)} dx$$ $$\frac{1}{x(x+2)} \equiv \frac{A}{x} + \frac{B}{x+2}$$ $$\Rightarrow 1 \equiv A(x+2) + Bx$$ $$x = 0 \Rightarrow 1 = 2A \Rightarrow A = \frac{1}{2}$$ $$x = -2 \Rightarrow 1 = -2B \Rightarrow B = -\frac{1}{2}$$ $$\text{So } \ln y = \int \left(\frac{(\frac{1}{2})}{x} - \frac{(\frac{1}{2})}{x+2}\right) dx$$ $$= \frac{1}{2} \ln|x| - \frac{1}{2} \ln|x+2| + C$$ $$\therefore y = \sqrt{\frac{kx}{x+2}} \qquad \left(C = \frac{1}{2} \ln k\right)$$ $$x = 2, y = 2 \Rightarrow 2 = \sqrt{\frac{2k}{4}} \Rightarrow 4 \times 2 = k$$ $$\therefore y = \sqrt{\frac{8x}{x+2}} \quad \text{or} \quad y^2 = \frac{8x}{x+2}$$ # **Solutionbank**Edexcel AS and A Level Modular Mathematics Integration Exercise L, Question 33 ## **Question:** (a) Use integration by parts to show that $$\int_{0}^{\frac{\pi}{4}} x \sec^{2} x \, dx = \frac{1}{4} \pi - \frac{1}{2} \ln 2.$$ The finite region R, bounded by the curve with equation $y = x^{\frac{1}{2}} \sec x$, the line $x = \frac{\pi}{4}$ and the x-axis is shown. The region R is rotated through 2π radians about the x-axis. (b) Find the volume of the solid of revolution generated. (c) Find the gradient of the curve with equation $y = x^{\frac{1}{2}} \sec x$ at the point where $x = \frac{\pi}{4}$. (a) $$I = \int_0^{\pi} \frac{\pi}{4} x \sec^2 x \, \mathrm{d}x$$ $$u = x \implies \frac{du}{dx} = 1$$ $$\frac{dv}{dx} = \sec^2 x \implies v = \tan x$$ $$\therefore I = \begin{bmatrix} x \tan x \end{bmatrix} = 0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \tan x \, dx$$ $$= \left(\frac{\pi}{4} \right) - \left(0 \right) - \begin{bmatrix} \ln|\sec x| \end{bmatrix} = 0^{\frac{\pi}{4}}$$ $$= \frac{\pi}{4} - \left[\left(\ln \sqrt{2} \right) - \left(\ln 1 \right) \right]$$ $$= \frac{\pi}{4} - \frac{1}{2} \ln 2$$ (b) $$V = \pi \int_0^{\pi} \frac{\pi}{4} y^2 dx = \pi \int_0^{\pi} \frac{\pi}{4} x \sec^2 x dx$$ Using (a) $V = \frac{\pi^2}{4} - \frac{\pi}{2} \ln 2 = 1.38 (3 \text{ s.f.})$ (c) $$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}}\sec x + x^{\frac{1}{2}}\sec x \tan x$$ At $x = \frac{\pi}{4}\frac{dy}{dx} = \frac{1}{2} \times \frac{2}{\sqrt{\pi}} \times \sqrt{2} + \frac{\sqrt{\pi}}{2} \times \sqrt{2} \times 1 = \sqrt{\frac{\pi}{2}} + \sqrt{\frac{\pi}{2}} = 2.05$ (3 s.f.) ## **Edexcel AS and A Level Modular Mathematics** **Integration** Exercise L, Question 34 ## **Question:** Part of the design of a stained glass window is shown. The two loops enclose an area of blue glass. The remaining area within the rectangle *ABCD* is red glass. The loops are described by the curve with parametric equations $$x = 3\cos t$$, $y = 9\sin 2t$, $0 \le t < 2\pi$. - (a) Find the
cartesian equation of the curve in the form $y^2 = f(x)$. - (b) Show that the shaded area enclosed by the curve and the *x*-axis, is given by $\int_0^{\pi} \frac{dt}{2} A \sin 2t \sin t \, dt$, stating the value of the constant *A*. - (c) Find the value of this integral. The sides of the rectangle *ABCD* are the tangents to the curve that are parallel to the coordinate axes. Given that 1 unit on each axis represents 1 cm, (d) find the total area of the red glass. (a) $$x = 3\cos t$$ $y = 9\sin 2t \implies y = 18\cos t\sin t$ $\Rightarrow y = 6x\sin t$ $$\therefore \cos t = \frac{x}{3}, \sin t = \frac{y}{6x}$$ $$\cos^2 t + \sin^2 t = 1 \implies \frac{x^2}{9} + \frac{y^2}{36x^2} = 1$$ i.e. $4x^4 + y^2 = 36x^2$ or $y^2 = 4x^2 (9 - x^2)$ (b) Area = $$\int y \, dx$$ = $\int_{t=\frac{\pi}{2}}^{t=0} 9 \sin 2t \times \left(-3 \sin t\right) dt$ = $27 \int_{0}^{\frac{\pi}{2}} \sin 2t \sin t \, dt$ (c) $$27 \int_{0}^{\frac{\pi}{2}} \sin 2t \sin t dt = 54 \int_{0}^{\frac{\pi}{2}} \sin^{2}t \cos t dt$$ $$= \left[\frac{54 \sin^{3}t}{3} \right]_{0}^{\frac{\pi}{2}}$$ $$= (18 \times 1) - (0)$$ $$= 18$$ (d) Area of blue glass is $18 \times 4 = 72$ Area of rectangle = 108 \therefore Area of red glass = $108 - 72 = 36 \text{ cm}^2$ ## **Edexcel AS and A Level Modular Mathematics** Exam style paper Exercise A, Question 1 ## **Question:** Use the binomial theorem to expand $\frac{1}{(2+x)^2}$, |x| < 2, in ascending powers of x, as far as the term in x^3 , giving each coefficient as a simplified fraction. (6) #### **Solution:** $$(2+x)^{-2} = 2^{-2} \left(1 + \frac{x}{2}\right)^{-2}$$ $$= 2^{-2} \left[1 + \left(-2\right) \left(\frac{x}{2}\right) + \frac{(-2)(-3)}{1 \times 2} \left(\frac{x}{2}\right)^{2} + \frac{(-2)(-3)(-4)}{1 \times 2 \times 3} \left(\frac{x}{2}\right)^{3} + \dots\right]$$ $$= 2^{-2} \left(1 - x + \frac{3}{4}x^{2} - \frac{1}{2}x^{3} + \dots\right)$$ $$= \frac{1}{4} - \frac{x}{4} + \frac{3x^{2}}{16} - \frac{x^{3}}{8} + \dots$$ # **Edexcel AS and A Level Modular Mathematics** Exam style paper Exercise A, Question 2 ## **Question:** The curve C has equation $$x^2 + 2y^2 - 4x - 6yx + 3 = 0$$ Find the gradient of C at the point (1, 3). (7) #### **Solution:** $$x^2 + 2y^2 - 4x - 6yx + 3 = 0$$ Differentiate with respect to *x*: $$2x + 4y \frac{dy}{dx} - 4 - \left(6x \frac{dy}{dx} + 6y \right) = 0$$ At the point (1, 3), x = 1 and y = 3. $$\therefore 2 + 12 \frac{dy}{dx} - 4 - \left(6 \frac{dy}{dx} + 18 \right) = 0$$ $$\therefore 6 \frac{dy}{dx} - 20 = 0$$ $$\frac{dy}{dx} = \frac{20}{6} = \frac{10}{3}$$ \therefore the gradient of C at (1, 3) is $\frac{10}{3}$. # **Edexcel AS and A Level Modular Mathematics** Exam style paper Exercise A, Question 3 ## **Question:** Use the substitution u = 5x + 3, to find an exact value for $$\int_{0}^{3} \frac{10x}{(5x+3)^{3}} dx$$ (9) #### **Solution:** $$u = 5x + 3$$ $$\frac{du}{dx} = 5 \text{ and } x = \frac{u - 3}{5}$$ $$\int \frac{10x}{(5x + 3)^3} dx = \int \frac{2(u - 3)}{u^3} \frac{du}{5}$$ $$= \frac{2}{5} \int \frac{u - 3}{u^3} du$$ $$= \frac{2}{5} \int \frac{u}{u^3} - \frac{3}{u^3} du$$ $$= \frac{2}{5} \int u^{-2} - 3u^{-3} du$$ $$= \frac{2}{5} \int u^{-2} - 3u^{-3} du$$ Change the limits: $x = 0 \implies u = 3$ and $x = 3 \implies u = 18$ $$\therefore \text{ Integral } = \frac{2}{5} \left[-\frac{1}{18} + \frac{3}{2 \times 18^2} - \left(-\frac{1}{3} + \frac{3}{2 \times 3^2} \right) \right] = \frac{5}{108}$$ # **Edexcel AS and A Level Modular Mathematics** Exam style paper Exercise A, Question 4 ## **Question:** (a) Find the values of A and B for which $$\frac{1}{(2x+1)(x-2)} \equiv \frac{A}{2x+1} + \frac{B}{x-2} \tag{3}$$ - (b) Hence find $\int \frac{1}{(2x+1)(x-2)} dx$, giving your answer in the form $y = \ln f(x)$. - (c) Hence, or otherwise, obtain the solution of $$\left(\begin{array}{c} 2x+1 \end{array}\right) \left(\begin{array}{c} x-2 \end{array}\right) \frac{dy}{dx} = 10y, y>0, x>2$$ for which y = 1 at x = 3, giving your answer in the form y = f(x). (5) #### **Solution:** (a) $$\frac{1}{(2x+1)(x-2)} \equiv \frac{A}{(2x+1)} + \frac{B}{(x-2)} \equiv \frac{A(x-2) + B(2x+1)}{(2x+1)(x-2)}$$ $$\therefore A(x-2) + B(2x+1) \equiv 1$$ Substitute x = 2, then $5B = 1 \implies B = \frac{1}{5}$ Substitute $x = -\frac{1}{2}$, then $-\frac{5}{2}A = 1 \implies A = -\frac{2}{5}$ (b) $$\therefore$$ Integral $=\int \frac{-\frac{2}{5}}{2x+1} + \frac{\frac{1}{5}}{x-2} dx$ $$= -\frac{1}{5} \ln \left| 2x + 1 \right| + \frac{1}{5} \ln \left| x - 2 \right| + C$$ $$= \ln \left[k \left(\frac{|x - 2|}{|2x + 1|} \right) \frac{1}{5} \right]$$ (c) Separate the variables to give $$\int \frac{\mathrm{d}y}{y} = \int \frac{10 \, \mathrm{d}x}{(2x+1)(x-2)}$$ ∴ $$\ln y = 2 \ln |x - 2| - 2 \ln |2x + 1| + C$$ $y = 1 \text{ when } x = 3 \implies C = 2 \ln 7 = \ln 49$ ∴ $y = 49 \left(\frac{|x - 2|}{|2x + 1|}\right)^2$ ## **Edexcel AS and A Level Modular Mathematics** Exam style paper Exercise A, Question 5 # **Question:** A population grows in such a way that the rate of change of the population P at time t in days is proportional to P. - (a) Write down a differential equation relating P and t. (2) - (b) Show, by solving this equation or by differentiation, that the general solution of this equation may be written as $P = Ak^t$, where A and k are positive constants. (5) Initially the population is 8 million and 7 days later it has grown to 8.5 million. (c) Find the size of the population after a further 28 days. (5) (a) $$\frac{\mathrm{d}P}{\mathrm{d}t} \propto P$$ $$\therefore \frac{\mathrm{d}P}{\mathrm{d}t} = m'P$$ (b) $$\int \frac{\mathrm{d}P}{P} = \int m \, \mathrm{d}t$$ $$\therefore \ln P = mt + C$$ $$\therefore P = e^{mt} + C$$ $$= Ae^{mt} \quad \text{where } A = e^{C}$$ $$= Ak^{t} \quad \text{where } k = e^{m}$$ (c) When $$t = 0, P = 8$$: $A = 8$ When $$t = 7$$, $P = 8.5$ $\therefore 8.5 = 8k^7$ $$\therefore k^7 = \frac{8.5}{8}$$ When $$t = 35$$, $$P=8k^{35}$$ $$= 8 (k^7)^{5}$$ $$= 8 \left(\frac{8.5}{8}\right) 5$$ $$= 10.8 \text{ million (to 3 s.f.)}$$ # **Edexcel AS and A Level Modular Mathematics** Exam style paper Exercise A, Question 6 ## **Question:** Referred to an origin O the points A and B have position vectors i - 5j - 7k and 10i + 10j + 5k respectively. P is a point on the line AB. - (a) Find a vector equation for the line passing through A and B. (3) - (b) Find the position vector of point P such that OP is perpendicular to AB. (5) - (c) Find the area of triangle *OAB*. (4) - (d) Find the ratio in which P divides the line AB. (2) #### **Solution:** (a) $$AB = 9i + 15j + 12k$$ (or $BA = -9i - 15j - 12k$) : the line may be written $$\mathbf{r} = \begin{pmatrix} 1 \\ -5 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 9 \\ 15 \\ 12 \end{pmatrix}$$ or $\mathbf{r} = \begin{pmatrix} 10 \\ 10 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$ or equivalent (b) $$\begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} +1+9\lambda \\ -5+15\lambda \\ -7+12\lambda \end{pmatrix} = 0$$ $$\therefore$$ + 3 + 27 λ - 25 + 75 λ - 28 + 48 λ = 0 $$150 \lambda - 50 = 0$$ $$\therefore \lambda = \frac{1}{3}$$ $$\therefore$$ the point *P* has position vector $\begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}$ (c) $$|OP| = 5$$ and $|AB| = \sqrt{9^2 + 15^2 + 12^2} = 15 \sqrt{2}$ Area of $$\triangle OAB = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 15 \sqrt{2} \times 5 = \frac{1}{2} \times 75 \sqrt{2}$$ (d) $$AP = \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix} - \begin{pmatrix} 1 \\ -5 \\ -7 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$$ and $PB = \begin{pmatrix} 10 \\ 10 \\ 5 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}$ $$= \begin{pmatrix} 6 \\ 10 \\ 8 \end{pmatrix}$$ $$\therefore PB = 2AP$$ i.e. P divides AB in the ratio 1 : 2. # **Edexcel AS and A Level Modular Mathematics** Exam style paper Exercise A, Question 7 ## **Question:** The curve C, shown has parametric equations $x = 1 - 3 \cos t$, $y = 3t - 2 \sin 2t$, $0 < t < \pi$. - (a) Find the gradient of the curve at the point *P* where $t = \frac{\pi}{6}$. (4) - (b) Show that the area of the finite region beneath the curve, between the lines $x = -\frac{1}{2}$, x = 1 and the x-axis, shown shaded in the diagram, is given by the integral $$\int \frac{\pi}{3} \frac{\pi}{2} 9t \sin t \, dt - \int \frac{\pi}{3} \frac{\pi}{2} 12 \sin^2 t \cos t \, dt. \tag{4}$$ (c) Hence, by integration, find an exact value for this area. (7) (a) $$x = 1 - 3 \cos t$$, $y = 3t - 2 \sin 2t$ $$\frac{dx}{dt} = 3 \sin t \text{ and } \frac{dy}{dt} = 3 - 4 \cos 2t$$ $$\therefore \frac{dy}{dx} = \frac{3-4 \cos 2t}{3 \sin t}$$ When $$t = \frac{\pi}{6}$$, $\frac{dy}{dx} = \frac{3-2}{(\frac{3}{2})} = \frac{2}{3}$ (b) The area shown is given by $\int_{t_1}^{t_1} 2y \frac{dx}{dt} dt$ Where t_1 is value of parameter when $x = -\frac{1}{2}$ and t_2 is value of parameter when x = 1 i.e. $$1 - 3 \cos t_1 = -\frac{1}{2}$$ $$\therefore \cos t_1 = \frac{1}{2}$$ $$\therefore t_1 = \frac{\pi}{3}$$ Also $1 - 3 \cos t_2 = 1$ $$\therefore \cos t_2 = 0$$ $$\therefore t_2 = \frac{\pi}{2}$$ The area is given by $$\int \frac{\pi}{3} \frac{\pi}{2} \left(3t - 2 \sin 2t \right) \times 3 \sin t \, dt$$ $= \int \frac{\pi}{3} \frac{\pi}{2} 9t \sin t \, dt - \int \frac{\pi}{3} \frac{\pi}{2} 6 \times 2 \sin t \cos t \sin t \, dt$ Using the double angle formula $= \int \frac{\pi}{3} \frac{\pi}{2} 9t \sin t \, dt - \int \frac{\pi}{3} \frac{\pi}{2} 12 \sin^2 t \cos t \, dt$ (c) Area = $$\begin{bmatrix} -9t \cos t \end{bmatrix} \frac{\pi}{3} \frac{\pi}{2} + \int \frac{\pi}{3} \frac{\pi}{2} 9 \cos t \, dt - \begin{bmatrix} 4 \sin^3 t \end{bmatrix} \frac{\pi}{3} \frac{\pi}{3}$$ = $\begin{bmatrix} -9t \cos t + 9 \sin t - 4 \sin^3 t \end{bmatrix} \frac{\pi}{3} \frac{\pi}{2}$ = $\begin{pmatrix} 9 - 4 \end{pmatrix} - \begin{pmatrix} -\frac{3\pi}{2} + \frac{9\sqrt{3}}{2} - 4 \times \frac{3\sqrt{3}}{8} \end{pmatrix}$ = $5 - 3\sqrt{3} + \frac{3\pi}{2}$ ## **Edexcel AS and A Level Modular Mathematics** Review
Exercise Exercise A, Question 1 #### **Question:** Express $$\frac{2x-1}{(x-1)(2x-3)}$$ in partial fractions. *E* #### **Solution:** $$\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{A}{x-1} + \frac{B}{2x-3}$$ $$\equiv \frac{A(2x-3) + B(x-1)}{(x-1)(2x-3)}$$ Compare numerators of fractions $$2x-1 \equiv A(2x-3) + B(x-1) *$$ Use a common denominator and add the two fractions. $$2x-1 \equiv A(2x-3) + B(x-1) *$$ Because the fractions are equivalent, the numerators are also. $$\therefore 1 = -A + 0 \Rightarrow A = -1$$ Put $x = 1\frac{1}{2}$ in equation * $$\therefore 2 = 0 + \frac{1}{2}B \Rightarrow B = 4$$ To find B , substitute $x = 1\frac{1}{2}$. $$\Rightarrow 0 = \frac{2x-1}{(x-1)(2x-3)} \equiv \frac{-1}{x-1} + \frac{4}{2x-3}$$ So $\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{-1}{x-1} + \frac{4}{2x-3}$ ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 2 #### **Question:** It is given that $$f(x) = \frac{3x+7}{(x+1)(x+2)(x+3)}$$. Express $f(x)$ as the sum of three partial fractions. Express $f(x)$ as the sum of three partial fractions. #### **Solution:** #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 3 #### **Question:** Given that $$f(x) = \frac{2}{(2-x)(1+x)^2}$$, express $f(x)$ in the form $$\frac{A}{(2-x)} + \frac{B}{(1+x)} + \frac{C}{(1+x)^2}$$. #### **Solution:** Put x = -1 2 = 0+0+3C $$C = \frac{2}{3}$$ $$C = \frac{2}{9}(1+x)^2 + B(2-x)(1+x) + \frac{2}{3}(2-x)$$ To find C substitute $x = -1$. $$C = \frac{2}{9}(1+x)^2 + B(2-x)(1+x) + \frac{2}{3}(2-x)$$ \frac{4}{9}(1+x)^2 + \frac{2}{9}(1+x)^2 \frac{$$ Equate terms in x^2 on both sides $$0 = \frac{2}{9}x^2 - Bx^2 \qquad \therefore B = \frac{2}{9}$$ $$\therefore \frac{2}{(2-x)(1+x)^2} = \frac{2}{9(2-x)} + \frac{2}{9(1+x)} + \frac{2}{3(1+x)^2}$$ Equate terms in x^2 to find B . ### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 4 #### **Question:** $$\frac{14x^2 + 13x + 2}{(x+1)(2x+1)^2} \equiv \frac{A}{x+1} + \frac{B}{2x+1} + \frac{C}{(2x+1)^2}.$$ Find the values of the constants A, B and C. E #### **Solution:** $$\frac{14x^{2} + 13x + 2}{(x+1)(2x+1)^{2}} = \frac{A}{x+1} + \frac{B}{2x+1} + \frac{C}{(2x+1)^{2}}$$ $$= \frac{A(2x+1)^{2} + B(x+1)(2x+1) + C(x+1)}{(x+1)(2x+1)^{2}}$$ You need denominators of $(x+1), (2x+1)$ and $(2x+1)^{2}$. Add the three fractions. Compare numerators of fractions $$14x^{2} + 13x + 2 = A(2x+1)^{2} + B(x+1)(2x+1) + C(x+1)$$ Set the numerators equal. Put x = -1 $$\therefore 3 = A + 0 + 0 \Rightarrow A = 3$$ To find A set $x = -1$. Put $$x = -\frac{1}{2}$$ $$\therefore \frac{14}{4} - \frac{13}{2} + 2 = \frac{1}{2}C \Rightarrow C = -2$$ To find $C \text{ set } x = -\frac{1}{2}$. ∴ $$14x^2 + 13x + 2 = 3(2x+1)^2 + B(x+1)(2x+1) - 2(x+1)$$ Compare coefficients of x^2 : Equate terms in x^2 . $14x^2 = 3.2^2x^2 + 2Bx^2$ $$14 = 12 + 2B \Rightarrow B = 1$$ Solve equation to find B. Check constant term $$2 = 3 + 1 - 2$$ $$\therefore \frac{14x^2 + 13x + 2}{(x+1)(2x+1)^2} = \frac{3}{x+1} + \frac{1}{2x+1} - \frac{2}{(2x+1)^2}$$ ## **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 5 #### **Question:** $$f(x) = \frac{x^2 + 6x + 7}{(x+2)(x+3)}, x \in \mathbb{R}.$$ Given that $f(x) = A + \frac{B}{(x+2)} + \frac{C}{(x+3)}$ find the values of A , B and C . #### **Solution:** #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 6 #### **Question:** Given that $$f(x) = \frac{11 - 5x^2}{(x+1)(2-x)}$$, find constants A and B such that $$f(x) = 5 + \frac{A}{(x+1)} + \frac{B}{(2-x)}$$. #### **Solution:** $$f(x) = \frac{11-5x^2}{(x+1)(2-x)}$$ This is an improper fraction so multiply out the denominator. $$= \frac{11-5x^2}{2+x-x^2}$$ $$= \frac{10+5x-5x^2}{2+x-x^2} + \frac{1-5x}{2+x-x^2}$$ Either divide denominator into numerator to obtain 5 with $(1-5x)$ as remainder or split numerator, as shown. where $$\frac{1-5x}{(x+1)(2-x)} \equiv \frac{A}{x+1} + \frac{B}{2-x}$$ $$\equiv \frac{A(2-x) + B(x+1)}{(x+1)(2-x)}$$ Use partial fractions with denominators $(x+1)$ and $(2-x)$. Add the two fractions. $$\therefore 1-5x = A(2-x) + B(x+1)$$ Put $x = 2$ $$-9 = 3B \Rightarrow B = -3$$ Substitute $x = 2$ to find B . Put $x = -1$ $$6 = 3A \Rightarrow A = 2$$ $$\therefore f(x) = 5 + \frac{2}{x+1} - \frac{3}{2-x}$$ Substitute $x = 1$ to find B . Write out full solution. #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 7 #### **Question:** $$f(x) = \frac{9 - 3x - 12x^2}{(1 - x)(1 + 2x)}.$$ Given that $f(x) = A + \frac{B}{(1 - x)} + \frac{C}{(1 + 2x)}$, find the values of the constants A , B and C . E #### **Solution:** $$f(x) = \frac{9-3x-12x^2}{(1-x)(1+2x)}$$ $$= \frac{9-3x-12x^2}{1+x-2x^2}$$ $$= \frac{6+6x-12x^2}{1+x-2x^2} + \frac{3-9x}{1+x-2x^2}$$ $$= 6+\frac{B}{1-x} + \frac{C}{1+2x}$$ Where $$\frac{3-9x}{(1-x)(1+2x)} = \frac{B}{1-x} + \frac{C}{1+2x}$$ $$= \frac{B(1+2x)+C(1-x)}{(1-x)(1+2x)}$$ $$= \frac{B(1+2x)+C(1-x)}{(1-x)(1+2x)}$$ $$= \frac{B(1+2x)+C(1-x)}{(1-x)(1+2x)}$$ Add the two fractions. Set the numerators equal. $$\therefore 7\frac{1}{2} = 1\frac{1}{2}C \Rightarrow C = 5$$ Put $x = 1$ $$\therefore -6 = 3B \Rightarrow B = -2$$ Substitute $x = -1$ to find A . So $$f(x) = 6 - \frac{2}{1-x} + \frac{5}{1+2x}$$ Write out the full solution. ## **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 8 #### **Question:** Use the Binomial theorem to expand $\sqrt{(4-9x)}$, $|x| < \frac{4}{9}$, in ascending powers of x, as far as the term in x^3 , simplifying each term. #### **Solution:** ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 9 #### **Question:** $$f(x) = (2-5x)^{-2}, |x| < \frac{2}{5}.$$ Find the binomial expansion of f(x), in ascending powers of x, as far as the term in x^3 , giving each coefficient as a simplified fraction. #### **Solution:** $$f(x) = (2-5x)^{-2}$$ $$= \left[2\left(1-\frac{5}{2}x\right)\right]^{-2}$$ $$= 2^{-2}\left(1-\frac{5}{2}x\right)^{-2}$$ $$= \frac{1}{4}\left(1-\frac{5}{2}x\right)^{-2}$$ $$= \frac{1}{4}\left[1+(-2)\left(\frac{-5x}{2}\right)+\frac{(-2)(-3)}{2!}\left(\frac{-5x}{2}\right)^{2}+\frac{(-2)(-3)(-4)}{3!}\left(\frac{-5x}{2}\right)^{3}+\right]$$ $$= \frac{1}{4}\left[1+5x+\frac{75x^{2}}{4}+\frac{125x^{3}}{2}+\cdots\right]$$ Expand $\left(1-\frac{5}{2}x\right)^{-2}$ using binomial expansion with $n=-2$ and $x=\frac{-5}{2}x$. Simplify the coefficients. Multiply by $\frac{1}{4}$. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 10 #### **Question:** $$f(x) = (3+2x)^{-3}, |x| < \frac{3}{2}.$$ Find the binomial expansion of f(x), in ascending powers of x, as far as the term in x^3 . Give each coefficient as a simplified fraction. #### **Solution:** ## **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 11 #### **Question:** $$f(x) = \frac{1}{\sqrt{(1-x)}} - \sqrt{(1+x)}, -1 \le x \le 1$$ Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 . #### **Solution:** $$f(x) = \frac{1}{\sqrt{(1-x)}} - \sqrt{(1+x)}$$ $$= (1-x)^{\frac{1}{2}} - (1+x)^{\frac{1}{2}}$$ $$= \left[1 + \left(\frac{-1}{2}\right)(-x) + \frac{\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)(-x)^{2}}{2}\right]$$ $$+ \frac{\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)\left(\frac{-5}{2}\right)(-x)^{3}}{3!} + \frac{1}{2}\left[1 + \frac{1}{2}x + \frac{1}{2}\left(\frac{-1}{2}\right)x^{2} + \frac{1}{2}\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right)x^{3}}{3!} + \frac{1}{2}\left[1 + \frac{1}{2}x + \frac{3}{8}x^{2} + \frac{5x^{3}}{16} + \cdots\right]$$ $$= \left[1 + \frac{1}{2}x + \frac{3}{8}x^{2} + \frac{5x^{3}}{16} + \cdots\right]$$ $$= \left[1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} + \cdots\right]$$ $$= \frac{4}{8}x^{2} + \frac{4}{16}x^{3} + \cdots$$ $$= \frac{1}{2}x^{2} + \frac{1}{4}x^{3} + \cdots$$ Simplify answer. # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics **Review Exercise** Exercise A, Question 12 # **Question:** Given that $$\frac{3+5x}{(1+3x)(1-x)} \equiv \frac{A}{(1+3x)} + \frac{B}{(1-x)},$$ a find the values of the constants A and B. b Hence or otherwise find the series expansion, in ascending powers of x, up to and including the term in x^2 , of $\frac{3+5x}{(1+3x)(1-x)}$. c State, with a reason, whether your series expansion in part **b** is valid for $x = \frac{1}{2}$. $$\frac{3+5x}{(1+3x)(1-x)} = \frac{A}{1+3x} + \frac{B}{1-x}$$ $$= \frac{A(1-x)+B(1+3x)}{(1+3x)(1-x)}$$ Add the fractions. Set the numerators equal. Put $x = 1$ $$\therefore 8 = 4B \Rightarrow B = 2$$ $$\therefore 3 - \frac{5}{3} = \frac{4}{3}A \Rightarrow A = 1$$ $$\Rightarrow (1+3x)^{-1} + 2(1-x)^{-1}$$ Expand using binomial theorem: $$= [1+(-1)(3x) + \frac{(-1)(-2)}{1\times 2}(3x)^2 + \cdots]$$ $$= [1-3x+9x^2 + \cdots] + 2(1+x+x^2 +)$$ $$= (1+3x)^{-1} \text{ is valid for } |3x| < 1 \text{ only.}$$ The denominators must be $(1+3x)$ and $(1-x)$. Add the fractions. Set the numerators equal. Set $x = \frac{-1}{3}$ to find A . Write in index form. Expand $(1+3x)^{-1}$ using the binomial expansion with $n = -1$ and $n = 3x$. Expand $(1-x)^{-1}$ using the binomial expansion with $n = -1$ and $n = 1$ ## **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 13 #### **Question:** $$f(x) = \frac{3x - 1}{(1 - 2x)^2}, |x| < \frac{1}{2}.$$ Given that, for $x \neq \frac{1}{2}, \frac{3x - 1}{(1 - 2x)^2} = \frac{A}{(1 - 2x)} + \frac{B}{(1 - 2x)^2}$, where A and B are constants, - a find the values of A and B. - b Hence or otherwise find the series expansion of f(x), in ascending powers of x, up to and including the term in x^3 , simplifying each term. a $$\frac{3x-1}{(1-2x)^2} \equiv \frac{A}{(1-2x)} + \frac{B}{(1-2x)^2}$$ $$\equiv \frac{A(1-2x)+B}{(1-2x)^2} \qquad \qquad \text{Add the fractions.}$$ $$\therefore 3x-1 \equiv A(1-2x)+B \qquad \qquad \text{Set the numerators
equal.}$$ Put $$x = \frac{1}{2}$$ $$\frac{1}{2}$$ = $B \leftarrow B$ Set $x = \frac{1}{2}$ to find B . $$\therefore 3x - 1 \equiv A(1 - 2x) + \frac{1}{2}$$ Compare coefficients of x $$3 = -2A \Rightarrow A = -\frac{3}{2}$$ As expressions are identical equate terms in x and put coefficients equal. [check constant term $-1 = -\frac{3}{2} + \frac{1}{2}$] $$\therefore \frac{3x-1}{(1-2x)^2} = -\frac{3}{2}(1-2x)^{-1} + \frac{1}{2}(1-2x)^{-2}$$ Write in index form. b Use binomial expansions: $$= -\frac{3}{2} \left[1 + (-1)(-2x) + \frac{(-1)(-2)}{2!} (-2x)^2 + \frac{(-1)(-2)(-3)(-2x)^3}{3!} + \cdots \right]$$ Expand $-\frac{3}{2} (1-2x)^{-1}$ using the binomial expansion with $n = -1$ and $x = -2x$. $$= -\frac{3}{2} \left[1 + 2x + 4x^2 + 8x^3 + \cdots \right] + \frac{1}{2} \left[1 + 4x + 12x^2 + 32x^3 + \cdots \right]$$ Expand $-\frac{3}{2} (1-2x)^{-1}$ using the binomial expansion with $n = -1$ and $x = -2x$. $$= -1 - x + 0x^2 + 4x^3 + \cdots$$ Expand $\frac{1}{2} (1-2x)^{-2}$ using the binomial expansion with $n = -2$ and $x = -2x$. Simplify each expression. Collect the terms. # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics **Review Exercise** Exercise A, Question 14 ## **Question:** $$f(x) = \frac{3x^2 + 16}{(1 - 3x)(2 + x)^2}$$ $$= \frac{A}{(1 - 3x)} + \frac{B}{(2 + x)} + \frac{C}{(2 + x)^2}, |x| < \frac{1}{3}.$$ - a Find the values of A and C and show that B = 0. - b Hence, or otherwise, find the series expansion of f(x), in ascending powers of x, up to and including the term in x³. Simplify each term E $$\frac{3x^{3}+16}{(1-3x)(2+x)^{2}} = \frac{A}{(1-3x)} + \frac{B}{(2+x)^{2}} + \frac{C}{(2+x)^{2}}$$ $$= \frac{A(2+x)^{2} + B(1-3x)(2+x) + C(1-3x)}{(1-3x)(2+x)^{2}}$$ Add the fractions. $$\therefore 3x^{2} + 16 = A(2+x)^{2} + B(1-3x)(2+x) + C(1-3x)$$ Put $x = -2$ $$28 = 7C \Rightarrow C = 4$$ Put $x = \frac{1}{3}$ $$16\frac{1}{3} = \frac{49}{9}A \Rightarrow A = 3$$ $$\therefore 3x^{2} + 16 = 3(2+x)^{2} + B(1-3x)(2+x) + 4(1-3x)$$ Compare x^{2} terms. $$3 = 3 - 3B \Rightarrow B = 0$$ Compare constants. $$16 = 12 + 2B + 4 \Rightarrow B = 0$$ Equate coefficients of terms in x^{2} or equate constant terms to find B . $$\frac{3x^{2} + 16}{(1-3x)(2+x)^{2}} = \frac{3}{3(1-3x)^{-1} + 4(2+x)^{-2}}$$ $$= 3(1-3x)^{-1} + 4 \times 2^{-2} \left(1 + \frac{x}{2}\right)^{-2}$$ $$= 3\left[1 + (-1)(-3x) + \frac{(-1)(-2)(-3x)^{2}}{2!} + \frac{(-1)(-2)(-3)(-3x)^{3}}{3!} + \frac{1}{4}\right]$$ Expand $3(1-3x)^{-1}$ using the binomial expansion with $n = -1$ and $x = -3x$. $$= 3\left[1 + 3x + 9x^{2} + 27x^{3} + \cdots\right] + \left[1 - x + \frac{3x^{2} - 4x^{3}}{4} + \cdots\right]$$ $$= 4 + 8x + \frac{111x^{2}}{4} + \frac{161}{2}x^{3} + \cdots$$ Expand $4 \times 2^{-2} \left(1 + \frac{x}{2}\right)^{-2}$ using binomial expansion with $n = -2$ and $x = \frac{x}{2}$. # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics **Review Exercise** Exercise A, Question 15 ### **Question:** $$f(x) = \frac{25}{(3+2x)^2(1-x)}.$$ Express f(x) as a sum of partial fractions. b Find the series expansion of f(x) in ascending powers of x up to and including the term in x^2 . Give each coefficient as a simplified fraction. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 16 ### **Question:** When $(1+ax)^n$ is expanded as a series in ascending powers of x, the coefficients of x and x^2 are -6 and 45 respectively. - a Find the value of a and the value of n. - **b** Find the coefficient of x^3 . - c Find the set of values of x for which the expansion is valid. E[adapted] #### **Solution:** a $$(1+ax)^n = 1+nax + \frac{n(n-1)}{2}a^2x^2 + \cdots$$ $\therefore na = -6$ and $\dots (1)$ $$\frac{n(n-1)}{2}a^2 = 45 \qquad \dots (2)$$ From (1) $a = \frac{-6}{n}$, substitute into equation (2). $$\frac{n(n-1)}{2} \times \frac{36}{n^2} = 45$$ $$\frac{36n^2 - 36n = 90n^2}{3n^2} \times \frac{-36n = 54n^2}{3n^2}$$ $\Rightarrow n = 0 \text{ or } n = \frac{-36}{54} = \frac{-2}{3}$ Substitute into equation (1) to give $a = 9$. Substitute into equation (1) to give $a = 9$. Check solutions in equation (2). Check solutions in equation (2). Substitute values found for n and a into the binomial expansion to give the coefficient of x^3 . $$\frac{-2}{3} \times -\frac{5}{3} \times -\frac{8}{3} \times 9^3$$ $$\frac{3!}{3!} = \frac{-80 \times 27}{6}$$ $$= -360$$ Check solutions in equation (2). Substitute values found for n and a into the binomial expansion to give the coefficient of x^3 . The terms in the expansion are $(9x)$, $(9x)^3$ and so $|9x| < 1$. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 17 # **Question:** - a Find the binomial expansion of $\sqrt{(1-x)}$, in ascending powers of x up to and including the term in x^3 . - b By substituting a suitable value for x in this expansion, find an approximation to $\sqrt{0.9}$, giving your answer to 6 decimal places. #### **Solution:** a $$\sqrt{(1-x)} = (1-x)^{\frac{1}{2}}$$ Write the expression in index form. $$= 1 + \frac{1}{2}(-x) + \frac{\frac{1}{2}(-\frac{1}{2})}{2!}(-x)^2 + \frac{\frac{1}{2}(-\frac{1}{2})(-\frac{3}{2})}{3!}(-x)^3 + \cdots$$ $$= 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{16}x^3 + \cdots$$ Replace n by $\frac{1}{2}$ and x by $-x$ in the binomial expansion. Simplify the terms. This is valid as $|x| < 1$. $$\sqrt{0.9} = 1 - 0.05 - \frac{1}{8} \times 0.01 - \frac{1}{16} \times 0.001$$ $$= 1 - 0.05 - 0.00125 - 0.0000625$$ $$= 0.948688 (6 d.p.)$$ This gives an estimate for $\sqrt{0.9}$. You would need to calculate further terms to give increased accuracy. #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 18 #### **Question:** In the binomial expansion, in ascending powers of x, of $(1+ax)^n$, where a and n are constants, the coefficient of x is 15. The coefficients of x^2 and of x^3 are equal. - a Find the value of a and the value of n. - b Find the coefficient of x^3 . #### **Solution:** a $(1+ax)^n = 1+nax + \frac{n(n-1)}{2}a^2x^2 + \cdots + \frac{n(n-1)(n-2)a^3x^3}{6} + \cdots$ As coefficient of x is 15 na = 15(1) As coefficient of x^2 and x^3 are equal: Subtract equation on (2) from equation (1) $\frac{n(n-1)}{2}a^2 = \frac{n(n-1)(n-2)a^3}{6}$ and (n-2)a=3 Set the coefficient of x from the binomial theorem equal to 15 and set the coefficients of x^2 and x^3 as equal to each other. Divide both sides of the equation by $n(n-1)^{-2}$ $2a = 12 \Rightarrow a = 6$ Substitute into equation (1) $\therefore n = \frac{15}{6} = \frac{5}{2}.$ Solve equations (1) and (2) as simultaneous equations and check your answer. **b** Coefficient of x^3 is Substitute the values you have found for a and n into the binomial expansion term for x^3 . [You could also check the term for x^2 , which should be equal.] #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 19 #### **Question:** The vectors **u** and **v** are given by $\mathbf{u} = 5\mathbf{i} - 4\mathbf{j} + s\mathbf{k}, \mathbf{v} = 2\mathbf{i} + t\mathbf{j} - 3\mathbf{k}$ - a Given that the vectors u and v are perpendicular, find a relation between the scalars s and t. - b Given instead that the vectors u and v are parallel, find the values of the scalars s and t. E #### **Solution:** a $$\mathbf{u} \cdot \mathbf{v} = \begin{pmatrix} 5 \\ -4 \\ s \end{pmatrix} \cdot \begin{pmatrix} 2 \\ t \\ -3 \end{pmatrix}$$ Write in column matrix form. Use $\mathbf{u} \cdot \mathbf{v} = 5 \times 2 + (-4) \times t + S \times -3$ Use the condition $\mathbf{u} \cdot \mathbf{v} = 0$ For perpendicular vectors the scalar product is zero. Simplify your answers. b As \mathbf{u} and \mathbf{v} are parallel $\mathbf{v} = \lambda \mathbf{u}$ where λ is constant. $$2\mathbf{i} + t\mathbf{j} - 3\mathbf{k} = \lambda \left(5\mathbf{i} - 4\mathbf{j} + s\mathbf{k} \right)$$ For parallel vectors one vector is a multiple of the other. Compare coefficients of i, j and k. $$5\lambda = 2 \Rightarrow \lambda = \frac{2}{5}$$ Equate the coefficients of x , y and z . $t = -4\lambda \Rightarrow t = -\frac{8}{5} = -1.6$ $$\lambda s = -3 \Rightarrow s = -3 \div \frac{2}{5}$$ $$= \frac{-15}{2} = -7.5$$ Solve to find the values of s and t . ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 20 #### **Question:** Find the angle between the vectors **a** and **b** given that $|\mathbf{a}| = 4$, $|\mathbf{b}| = 4$ and $|\mathbf{a} - \mathbf{b}| = 7$. $E[\mathbf{adapted}]$ # **Solution:** Use the cosine rule on $\triangle OAB$. $$7^{2} = 4^{2} + 4^{2} - 2 \times 4 \times 4 \times \cos \theta$$ $$\therefore 49 = 16 + 16 - 32 \cos \theta$$ $$\Rightarrow 32 \cos \theta = -17$$ $$\therefore \cos \theta = \frac{-17}{32}$$ $$\therefore \theta = 122^{\circ}(3 \text{ s.f.})$$ Use the triangle law and draw two triangles. One shows vectors. The other shows the magnitudes of the vectors. use the cosine rule to find $\cos \theta$. The cosine is negative, so the angle is obtuse. ## **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 21 #### **Question:** The position vectors of the points A and B relative to an origin O are $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $5\mathbf{i} + 6\mathbf{j} + 5\mathbf{k}$, respectively. Find the position vector of the point P which lies on AB produced such that AP = 3BP. E [adapted] #### **Solution:** # **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 22 #### **Question:** The points A and B have coordinates (2t, 10, 1) and (3t, 2t, 5) respectively. - a Find $|\overrightarrow{AB}|$. - **b** By differentiating $\left| \overrightarrow{AB} \right|^2$, find the value of t for which $\left| \overrightarrow{AB} \right|$ is a minimum. - c Find the minimum value of $|\overline{AB}|$. #### **Solution:** $$\mathbf{a} = \begin{pmatrix} 2t \\ 10 \\ 1 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3t \\ 2t \\ 5
\end{pmatrix}$$ $$\mathbf{a}$$ $$\therefore \overline{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} t \\ 2t - 10 \\ 4 \end{pmatrix}$$ $$\therefore |\overline{AB}| = \sqrt{t^2 + (2t - 10)^2 + 4^2}$$ $$= \sqrt{5t^2 - 40t + 116}$$ $$\mathbf{b} \quad |\overline{AB}|^2 = 5t^2 - 40t + 116$$ Differentiating with respect to t gives $$\frac{dp}{dt} = 10t - 40$$ So $$10t - 40 = 0$$ $$t = 4$$ Use the vector magnitude formula. Call this p and differentiate. Use the fact that $\frac{dp}{dt} = 0$ at a minimum. $$\frac{d^2p}{dt^2} = 10$$, positive, \therefore minimum $$\mathbf{c}$$ $$|\overline{AB}| = \sqrt{5t^2 - 40t + 116}$$ $$= \sqrt{80 - 160 + 116}$$ $$= \sqrt{36}$$ Substitute $t = 4$ back into $$|\overline{AB}|$$. Substitute $t = 4$ back into $$|\overline{AB}|$$. # **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 23 #### **Question:** ``` The line l_1 has vector equation \mathbf{r} = 11\mathbf{i} + 5\mathbf{j} + 6\mathbf{k} + \lambda(4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}) and the line l_2 has vector equation \mathbf{r} = 24\mathbf{i} + 4\mathbf{j} + 13\mathbf{k} + \mu(7\mathbf{i} + \mathbf{j} + 5\mathbf{k}), where \lambda and \mu are parameters. a Show that the lines l_1 and l_2 intersect. b Find the coordinates of their point of intersection. Given that \theta is the acute angle between l_1 and l_2 c Find the value of \cos \theta. Give your answer in the form k\sqrt{3}, where k is a simplified fraction. ``` a Assuming that the lines do intersect: You can write the equations of the lines in column vector form and put them equal. Rearranging gives: $$4\lambda - 7\mu = 13$$ $$2\lambda - \mu = -1$$ $$4\lambda - 5\mu = 7$$ Equate the x, y and z components. Solve these simultaneous equations. $$(1)$$ – (3) gives $$-2\mu = 6$$ $\therefore \mu = -3$ Substitute into (1) to give Solve equations (1) and (3) simultaneously. $4\lambda + 21 = 13 \Rightarrow \lambda = -2$ As this solution satisfies all three equations, the lines do meet. *y* components must also be equal so $\mu = -3, \lambda = -2$ must $\mu = -3$, $\lambda = -2$ must b Substituting into * gives the coordinates of the point of intersection $$\begin{pmatrix} 11-8 \\ 5-4 \\ 6-8 \end{pmatrix} = \begin{pmatrix} 24-21 \\ 4-3 \\ 13-15 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$$ Substituting λ or μ will give the point of intersection. (3, 1, -2) is point of intersection. The directions of the lines are 4i+2j+4k and 7i+j+5k $$\cos \theta = \frac{(4\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}) \cdot (7\mathbf{i} + \mathbf{j} + 5\mathbf{k})}{\sqrt{4^2 + 2^2 + 4^2} \sqrt{7^2 + 1^2 + 5^2}}$$ $$= \frac{28 + 2 + 20}{\sqrt{36} \sqrt{75}}$$ Use $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$, where \mathbf{a} and \mathbf{b} are the direction vectors of the lines. $$= \frac{50}{6 \times 5\sqrt{3}}$$ $$= \frac{5}{3\sqrt{3}}$$ Simplify the surds. $$= \frac{5}{3\sqrt{3}}$$ #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 24 #### **Question:** The line l_1 has equation $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and the line l_2 has equation $$\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}.$$ a Show that l_1 and l_2 do not meet. A is the point on l_1 where $\lambda = 1$ and B is the point on l_2 where $\mu = 2$. b Find the cosine of the acute angle between AB and l_1 . #### a Assume that the lines do meet: $$\begin{pmatrix} 1+\lambda \\ 0+\lambda \\ -1 \end{pmatrix} = \begin{pmatrix} 1+2\mu \\ 3+\mu \\ 6-\mu \end{pmatrix}$$ Put the right hand sides of the equations of the two lines equal. So $$2\mu - \lambda = 0$$ (1) $\mu - \lambda = -3$ (2) Equate the x, y and z components. Solve equation (3) to give $\mu = 7$ substitute into equation (1) to give $\lambda = 14$. Check in equation (2) $7-14 \neq -3$ to find a contradiction. Solve equations (1) and (3) simultaneously. This implies that no values for λ and μ satisfy all three equations simultaneously .. The lines do not meet. The values $\mu = 7$, $\lambda = 14$ do not satisfy equation (2) and so y components are not equal. b A is the point $$(2,1,-1)$$ and Substitute $\lambda = 1$ into equation of line l_1 . B is the point $(5,5,4)$ So $$\overrightarrow{AB} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$ Substitute $\mu = 2$ into equation of line l_2 . Use $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$. Direction of $$l_1$$ is $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ Obtain the direction of the line l_1 from the equation of l_1 . $$\therefore \cos \theta = \frac{\begin{pmatrix} 3 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}}{\sqrt{3^2 + 4^2 + 5^2} \sqrt{1^2 + 1^2 + 0^2}} = \frac{3 + 4 + 0}{\sqrt{50} \sqrt{2}}$$ Use $\cos \theta = \frac{\mathbf{c} \cdot \mathbf{d}}{|\mathbf{c}|| \mathbf{d}|}$ where \mathbf{c} is the vector \overrightarrow{AB} and \mathbf{d} is the direction of the line l_1 . # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics **Review Exercise** Exercise A, Question 25 #### **Question:** ``` The line l_1 has vector equation \mathbf{r} = 8\mathbf{i} + 12\mathbf{j} + 14\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} - \mathbf{k}). The points A, with coordinates (4, 8, a), and B, with coordinates (b, 13, 13), lie on this line. a Find the values of a and b. Given that the point O is the origin, and that the point P lies on l_1 such that OP is perpendicular to l_1, b find the coordinates of P. c Hence find the distance OP, giving your answer as a simplified surd. ``` The position vector of $$A$$ $\begin{pmatrix} 4 \\ 8 \\ a \end{pmatrix} = \begin{pmatrix} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{pmatrix}$ The position vector of A $\begin{pmatrix} 4 \\ 8 \\ a \end{pmatrix} = \begin{pmatrix} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{pmatrix}$ Use the x or y coordinates to find λ . Substitute to give $a = 14 - \lambda = 18$ The position vector of B $\begin{pmatrix} 5 \\ 13 \\ 13 \end{pmatrix} = \begin{pmatrix} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{pmatrix}$ Use the x or y coordinates to find λ . Find a using the value of λ . Also B lies on the line. Use $13 = 12 + \lambda$ or $13 = 14 - \lambda$ Use the y or z coordinates to find λ . Find y using this value of y . Find y using this value of y . Find y using this value of y . This is obtained from the equation of y . These are perpendicular $$\begin{pmatrix} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{pmatrix}$$ These are perpendicular $$\begin{pmatrix} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{pmatrix}$$ Use the condition for perpendicular lines, y of y or #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 26 #### **Question:** The line l₁ has equation $$\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} \text{ and the line } l_2 \text{ has equation } \mathbf{r} = \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$ Find, by calculation, a the coordinates of B, the point of intersection of l_1 and l_2 , b the value of $\cos \theta$, where θ is the acute angle between l_1 and l_2 . (Give your answer as a simplified fraction.) The point A, which lies on l_1 has position vector $\mathbf{a} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$. The point C, which lies on l_2 , has position vector $\mathbf{c} = 5\mathbf{i} - \mathbf{j} - 2\mathbf{k}$. The point D lies in the plane ABC and ABCD is a parallelogram. E c Show that $|\overrightarrow{AB}| = |\overrightarrow{BC}|$. d Find the position vector of the point D. #### a As the two lines meet: Use the triangle law. © Pearson Education Ltd 2009 Also = (5i - j - 2k) + (i - j + 4k) $(6\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$ #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 27 #### **Question:** The points A and B have position vectors $5\mathbf{j}+11\mathbf{k}$ and $c\mathbf{i}+d\mathbf{j}+21\mathbf{k}$ respectively, where c and d are constants. The line AB has vector equation $\mathbf{r} = 5\mathbf{j} + 11\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} + 5\mathbf{k}).$ a Find the value of c and the value of d. The point P lies on the line AB, and \overrightarrow{OP} is perpendicular to the line AB, where O is the origin. - b Find the position vector of P. - c Find the area of triangle OAB, giving your answer to 3 significant figures. E $$\mathbf{r} = \begin{pmatrix} 2\lambda \\ \lambda + 5 \\ 5\lambda + 11 \end{pmatrix}$$ You can write the line equation in this form. As B lies on the line $$2\lambda = c, (\lambda + 5) = d, 5\lambda + 11 = 21$$ \therefore Solving $5\lambda + 11 = 21, \lambda = 2$ and substituting into other equations gives c = 4, d = 7. $\begin{pmatrix} 2\lambda \\ \lambda+5 \\ 52 & 11 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = 0$ $\therefore 2(2\lambda) + 1(\lambda + 5) + 5(5\lambda + 11) = 0$ $$30\lambda + 60 = 0$$ $$\lambda = -2$$ \therefore P has position vector $\begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix}$ Use the z coordinate to find the value of λ . Find c and d using the value of use $\overrightarrow{OP} \cdot \mathbf{y} = 0$ where \mathbf{y} is the direction of the line and is obtained from the equation of the line. > Substitute $\lambda = -2$ into the equation of the line. Area of $\triangle OAB = \frac{1}{2} |\overrightarrow{OA}| \cdot |\overrightarrow{OB}| \sin B\widehat{OA}$ and $\cos B \hat{O} A = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA}| \cdot |\overrightarrow{OB}|}$ Use area of triangle is $$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 5 \\ 11 \end{pmatrix}$$ and $\overrightarrow{OB} = \begin{pmatrix} 4 \\ 7 \\ 21 \end{pmatrix}$
$$\therefore \cos B\hat{O}A = \frac{0 \times 4 + 5 \times 7 + 11 \times 21}{\sqrt{(0^2 + 5^2 + 11^2)}\sqrt{(4^2 + 7^2 + 21^2)}}$$ Use the scalar product to find the angle between \overrightarrow{OA} and \overrightarrow{OB} . $\frac{266}{\sqrt{146}\sqrt{506}}$ 0.9787 (4 s.f.) $\therefore B\hat{O}A = 11.86 (4 \text{ s.f.})$ \therefore Area = 27.9 (3 s.f.) Substitute $\sqrt{146}$, $\sqrt{506}$ and angle 11.86° into the formula for area of a triangle. #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 28 #### **Question:** The points A and B have position vectors $\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and $4\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ respectively. - a Find $|\overline{AB}|$. - b Find a vector equation for the line l₁ which passes through the points A and B. A second line l_2 has vector equation $$\mathbf{r} = 6\mathbf{i} + 4\mathbf{j} - 3\mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} - \mathbf{k}).$$ - c Show that the line l₂ also passes through B. - d Find the size of the acute angle between l_1 and l_2 . - e Hence, or otherwise, find the shortest distance from A to l_2 . E a $$\mathbf{a} = \mathbf{i} - \mathbf{j} + 3\mathbf{k}, \mathbf{b} = 4\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$$ $$\therefore \overline{AB} = \mathbf{b} - \mathbf{a}$$ $$= 3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$$ $$\therefore |\overline{AB}| = \sqrt{5^2 + 4^2 + (-5)^2}$$ $$= \sqrt{50} \text{ or } 5\sqrt{2} \text{ or } 7.07$$ b $\mathbf{r} = \mathbf{i} - \mathbf{j} + 3\mathbf{k} + \lambda(3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k})$ or $$\mathbf{r} = 4\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \mu(3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k})$$ or $$\mathbf{r} = 4\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \mu(3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k})$$ or $$\mathbf{r} = 4\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \mu(3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k})$$ e If $\mathbf{r} = 6\mathbf{i} + 4\mathbf{j} - 3\mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} - \mathbf{k})$ passes through $4\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ then $6 + 2\mu = 4$ $$4 + \mu = 3$$ $$-3 - \mu = -2$$ As $\mu = -1$ satisfies all three equations, the line passes through B as required. d The lines have directions $3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$ and $2\mathbf{i} + \mathbf{j} - \mathbf{k}$ If the angle between the lines is θ then $\cos \theta = \frac{(3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}) \cdot (2\mathbf{i} + \mathbf{j} - \mathbf{k})}{|3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}||2\mathbf{i} + \mathbf{j} - \mathbf{k}|} = \frac{3 \times 2 + 4 \times 1 + (-5) \times (-1)}{\sqrt{50}\sqrt{2^2 + 1^2 + (-1)^2}} = \frac{15}{\sqrt{50}\sqrt{6}}$ This answer is acute. If your answer is obtuse, subtract it from 180° . The shortest distance from point A to the line l_2 is The shortest distance is the perpendicular distance. $$|\overline{AB}| \sin \theta = 5\sqrt{2} \times \frac{1}{2}$$ Use trigonometry $\sin \theta = \frac{P}{|AB|}$ Use trigonometry $\sin \theta = \frac{P}{|AB|}$ #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 29 #### **Question:** The point A, with coordinates (0, a, b) lies on the line l_1 , which has equation $\mathbf{r} = 6\mathbf{i} + 19\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$. a Find the values of a and b. The point P lies on l_1 and is such that OP is perpendicular to l_1 , where O is the origin. b Find the position vector of point P. Given that B has coordinates (5, 15, 1), c show that the points A, P and B are collinear and find the ratio AP:PB. You can write the equation in the form. Equate $$x, y$$ and z coordinates of A to those of the line. 19 + $4\lambda = a$ (2) 1-2 $\lambda = b$ (3) From equation (1) $\lambda = -6$ Substituting this value for λ into equation (2) gives $a = -5$ Substituting $\lambda = -6$ into equation (3) gives $b = 11$ Find a and b using this value of a . The directions of a and a are obtained from the equation of the line. $$\begin{pmatrix} 6 + \lambda \\ -1 - 2\lambda \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ -1 - 2\lambda \end{pmatrix}$$ The directions of a and a are obtained from the equation of the line. Use condition for perpendicular lines, a and a and a are obtained from the equation of the line. Substitute a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Substitute a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a are obtained from the equation of the line. Find a and a are obtained from the equation of the line. Find a are obtained from the equation of the line. Find a are obtained from the equation of the line. Find a are obtained from the equation of the line. Find a are obtained from the equation of the line. Find a are obtai $\therefore \overrightarrow{AP} = \frac{2}{3} \overrightarrow{PB} \Rightarrow \text{ vectors are in the same direction, and as they have a point in mmon they are collinear.}$ Ratio $$\overrightarrow{AP}: \overrightarrow{PB} = \frac{2}{3}\overrightarrow{PB}: \overrightarrow{PB}$$ Note that each of these vectors is a multiple of $\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ and so one is a multiple of the other. $$= \frac{2}{3}:1$$ $$= 2:3$$ # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics **Review Exercise** Exercise A, Question 30 #### **Question:** The point A has position vector $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and the point B has position vector $\mathbf{b} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$, relative to an origin O. - Find the position vector of the point C, with position vector \mathbf{c} , given by $\mathbf{c} = \mathbf{a} + \mathbf{b}$. - b Show that OACB is a rectangle, and find its exact area. The diagonals of the rectangle, AB and OC meet at the point D. - Write down the position vector of the point D. - d Find the size of the angle ADC. E a c = a+b = (2i+2j+k)+(i+j-4k) = 3i+3j-3k b As $$\overline{OA} = \overline{BC}$$ and $\overline{OB} = \overline{AC}$ OACB is a parallelogram. As a·b = 2+2-4=0 a is perpendicular to b $\therefore OACB$ is a parallelogram with all of its angles right angles i.e., it is a rectangle Its area = |a|x|b| = $\sqrt{2^2+2^2+1^2} \times \sqrt{1^2+1^2+(-4)^2}$ = $3 \times 3\sqrt{2}$ = $9\sqrt{2}$ C The diagonals bisect each other. $\therefore d = \frac{3}{2}i + \frac{3}{2}j - \frac{3}{2}k$ d $\overline{AD} = d - a = -\frac{1}{2}i - \frac{1}{2}j - \frac{5}{2}k$ $\overline{CD} = d - c = -\frac{3}{2}i - \frac{3}{2}j + \frac{3}{2}k$ Use the triangle law to find \overline{AD} and \overline{CD} , or \overline{DA} and \overline{DC} . Use the formula $\cos \theta = \frac{x \cdot y}{|x||y|}$ with $x = \overline{AD}$ and $y = \overline{CD}$. Use the formula $\cos \theta = \frac{x \cdot y}{|x||y|}$ with $x = \overline{AD}$ and $y = \overline{CD}$. As $\cos A\widehat{D}C$ is negative, angle ADC is obtuse. $\therefore A\widehat{DC} = 109.5'(1 d.p.)$ ## **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 31 #### **Question:** Relative to a fixed origin O, the point A has position vector $5\mathbf{j} + 5\mathbf{k}$ and the point B has position vector $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$. - a Find a vector equation of the line L which passes through A and B. The point C lies on the line L and OC is perpendicular to L. - b Find the position vector of C. The points O, B and A together with the point D lie at the vertices of parallelogram OBAD. - c Find the position vector of D. - d Find the area of the parallelogram OBAD. E #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 32 #### **Question:** Find the gradient of the curve $3x^3 - 2x^2y + y^3 = 17$ at the point with coordinates (2, 1). #### **Solution:** #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 33 #### **Question:** A curve has equation $$x^2 + 2xy - 3y^2 + 16 = 0$$. Find the coordinates of the points on the curve where $\frac{dy}{dx} = 0$. #### **Solution:** $x^2 + 2xy - 3y^2 + 16 = 0$ Differentiate with respect to x. Use implicit differentiation as it is awkward to make y the subject of the formula. $2x + \left[2x\frac{dy}{dx} + 2y\right] - 6y\frac{dy}{dx}$ Use the product rule to differentiate the 2xy term. Put $\frac{dy}{dx} = 0$ Use the chain rule to differentiate $\therefore 2x + 0 + 2y - 0 = 0$ Differentiate 16 to give 0. i.e. 2(x+y)=0 (2) $\therefore x = -y$ Substitute this into equation (1) Find the relationship between x and y $v^2 - 2v^2 - 3v^2 + 16 = 0$ Solve equations (1) and (2) as simultaneous equation. $\therefore 4v^2 = 16$ $\therefore y = \pm 2$ The points at which $\frac{dy}{dx} = 0$ are (-2,2) and (2,-2). Match corresponding values for x and y to give the required coordinates. #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 34 #### **Question:** A curve C is described by the equation $$3x^2 - 2y^2 + 2x - 3y + 5 = 0$$. Find an equation of the normal to C at the point (0, 1), giving your answer in the form ax + by + c = 0, where a, b and c are integers. E #### **Solution:** $$3x^2 -
2y^2 + 2x - 3y + 5 = 0$$ Differentiate with respect to xThen Use implicit differentiation. $$6x - 4y \frac{dy}{dx} + 2 - 3 \frac{dy}{dx} + 0 = 0$$ Substitute x = 0, y = 1 then Use the chain rule to differentiate $-2y^2$ and -3y. $$-4\frac{dy}{dx} + 2 - 3\frac{dy}{dx} = 0$$ $\therefore 7\frac{\mathrm{d}y}{\mathrm{d}x} = 2$ i.e. $\frac{dy}{dx} = \frac{2}{7}$ You could make $\frac{dy}{dx}$ the subject of the formula before substituting x = 0, y = 1. In this case $\frac{dy}{dx} = \frac{6x+2}{3+4y}$. The gradient of the normal to C at (0,1) is $\frac{-7}{2}$ Use the result that $mm^1 = -1$ for perpendicular lines. \therefore Equation of the normal is $y-1=\frac{-7}{2}(x-0)$ i.e. $y = \frac{-7}{2}x + 1$ This could be obtained directly from y = mx + c. or 7x + 2y - 2 = 0 give the answer in the form required by the question. #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 35 #### **Question:** A curve C is described by the equation $$3x^2 + 4y^2 - 2x + 6xy - 5 = 0$$. Find an equation of the tangent to C at the point (1,-2), giving your answer in the form ax + by + c = 0, where a, b and c are integers. #### **Solution:** Use implicit differentiation. Differentiate with respect to x $6x + 8y\frac{dy}{dx} - 2 + \left[6x\frac{dy}{dx} + 6y\right] - 0 = 0$ Use the chain rule to differentiate $4y^2$ Use the product rule to differentiate 6xy. Substitute x = 1, y = -2 $$6-16\frac{dy}{dx}-2+6\frac{dy}{dx}-12=0$$ If you rearranged you would get $$\frac{dy}{dx} = \frac{2-6x-6y}{8y+6x}.$$ $$\therefore -8 - 10 \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$ $$\therefore \frac{dy}{dx} = \frac{-8}{10}$$ Gradient of the tangent at (1,-2) is $-\frac{8}{10}$. .. Equation of the tangent is $$(y+2) = \frac{-8}{10}(x-1) \leftarrow$$ $$\therefore y + 2 = \frac{-8}{10}x + \frac{8}{10}$$ $$\therefore 10y + 8x + 12 = 0$$ Multiply by 10 and collect the terms as required by the question. i.e. 4x + 5y + 6 = 0 #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 36 #### **Question:** A set of curves is given by the equation $\sin x + \cos y = 0.5$. Use implicit differentiation to find an expression for $\frac{dy}{dx}$. For $-\pi \le x \le \pi$ and $-\pi \le y \le \pi$. find the coordinates of the points where $\frac{dy}{dx} = 0$. E #### **Solution:** $\sin x + \cos y = 0.5 \quad *$ Differentiate with respect to x: $$\cos x - \sin y \frac{dy}{dx} = 0$$ $$\therefore \frac{dy}{dx} = \frac{\cos x}{\sin y}$$ Use the chain rule to differentiate $$\cos y.$$ $$\text{Make } \frac{dy}{dx} \text{ the subject of the formula.}$$ $$\text{b} \qquad \text{When } \frac{dy}{dx} = 0.$$ **b** When $$\frac{dy}{dx} = 0$$, $$\cos x = 0$$ $$\therefore x = \pm \frac{\pi}{2}$$ Give answers in the range $-\pi < x < \pi$. when $x = \frac{\pi}{2}$ substitute into * $$1 + \cos y = 0.5$$ $$\therefore \cos y = -0.5$$ $$\therefore y = \frac{2\pi}{3} \text{ or } \frac{-2\pi}{3}.$$ Give answers in the range $$-\pi < y < \pi.$$ when $x = -\frac{\pi}{2}$ substitute into * $$-1+\cos y = 0.5$$ $\therefore \cos y = 1.5$ As $\cos y$ cannot be greater than 1 this equation has no solutions. \therefore Stationary points at $(\frac{\pi}{2}, \frac{2\pi}{3})$ and $(\frac{\pi}{2}, \frac{-2\pi}{3})$ only in the given range. #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 37 #### **Question:** - a Given that $y = 2^x$, and using the result $2^x = e^{x \ln 2}$, or otherwise, show that $\frac{dy}{dx} = 2^x \ln 2$. - **b** Find the gradient of the curve with equation $y = 2^{x^2}$ at the point with coordinates (2, 16). #### **Solution:** Substitute x = 2 into your expression. © Pearson Education Ltd 2009 64 ln 2 # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics **Review Exercise** Exercise A, Question 38 #### **Question:** Find the coordinates of the minimum point on the curve with equation $y = x2^x$. $$y = x2^{x} *$$ $$\frac{dy}{dx} = x \cdot 2^{x} \ln 2 + 2^{x} \times 1$$ $$= 2^{x} (x \ln 2 + 1)$$ Use the product rule. At a minimum point, $$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$ Put $\frac{dy}{dx} = 0$ and solve. $$\therefore x \ln 2 + 1 = 0$$ i.e. $$x = \frac{-1}{\ln 2}$$ Substitute into * to give: $$y = \frac{-1}{\ln 2} \times 2^{\frac{-1}{\ln 2}}$$ Substitute x value into the equation given, to find y. $$= \frac{-1}{\ln 2} \times \frac{1}{2^{\frac{1}{\ln 2}}} \dagger$$ Let $$2^{\frac{1}{\ln 2}} = u$$ Take lns of both sides \checkmark You may simplify $2^{\frac{1}{\ln 2}} = e$. $$\ln 2^{\frac{1}{\ln 2}} = \ln u$$ $$\therefore \frac{1}{\ln 2} \times \ln 2 = \ln u$$ i.e. $$\ln u = 1 \Rightarrow u = e$$. Substitute back into † $$y = \frac{-1}{e \ln 2}$$ $$\therefore \text{ minimum point is}$$ To check that this is indeed a minimum point you would need to find $$\frac{d^2y}{dx^2} = 2^x \ln 2(x \ln 2 + 2)$$ As this is positive at $x = \frac{-1}{\ln 2}$ the turning point is a minimum. © Pearson Education Ltd 2009 at $\left(\frac{-1}{\ln 2}, \frac{-1}{\ln 2}\right)$. #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 39 #### **Question:** The value £V of a car t years after the 1st January 2001 is given by the formula $V = 10000 \times (1.5)^{-t}$. a Find the value of the car on 1st January 2005. **b** Find the value of $$\frac{dV}{dt}$$ when $t = 4$. #### **Solution:** a $$V = 10000 \times (1.5)^{-t}$$ On 1st January 2005, $t = 4$ $$\therefore V = 10000 \times (1.5)^{-4}$$ $$= £1975.31(2 d.p.)$$ Give your answer to a suitable accuracy. b $$\frac{dV}{dt} = -10000 \times (1.5)^{-t} \times \ln 1.5$$ $$= -800.92 (2 d.p.)$$ Differentiate and substitute $t = 4$. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 40 #### **Question:** A spherical balloon is being inflated in such a way that the rate of increase of its volume, $V \text{ cm}^3$, with respect to time t seconds is given by $$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{k}{V}$$, where k is a positive constant. Given that the radius of the balloon is r cm, and that $V = \frac{4}{3}\pi r^3$, - a prove that r satisfies the differential equation $\frac{dr}{dt} = \frac{B}{r^5}, \text{ where } B \text{ is a constant.}$ - Find a general solution of the differential equation obtained in part a. a $$V = \frac{4}{3}\pi r^3$$ You need to find $\frac{dV}{dr}$ in order $$\therefore \frac{dV}{dr} = 4\pi r^2 *$$ to connect $\frac{dr}{dt}$ and $\frac{dV}{dt}$, using the chain rule. $$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \cdot \frac{\mathrm{d}r}{\mathrm{d}t}$$ Substitute $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{k}{V}$ (given) and $\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$ (from *) into the chain rule: $$\therefore \frac{k}{V} = 4\pi r^2 \times \frac{dr}{dt}$$ $$\therefore \frac{dr}{dt} = \frac{k}{V} \div 4\pi r^2$$ $$= \frac{k}{\frac{4}{3}\pi r^3} \times \frac{1}{4\pi r^2}$$ $$= \frac{3k}{16\pi^2 r^5}.$$ Substitute $V = \frac{4}{3}\pi r^3$ and note that $$\frac{4\pi r^2}{1} \text{ is the same as } \times \text{ by } \frac{1}{4\pi r^2}.$$ Separate the variables. $$\int r^{5} dr = \int \frac{3k}{16\pi^{2}} dt$$ $$\therefore \frac{r^{6}}{6} = \frac{3k}{16\pi^{2}} t + A \qquad \qquad \text{Integrate each side and include constant of integration.}$$ $$\therefore r = \left[\frac{9k}{8\pi^{2}} t + A' \right]^{\frac{1}{6}} \qquad \qquad \text{Multiply by 6 and take the sixth root to give } r.$$ $$A' = 6A.$$ #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 41 #### **Question:** At time t seconds the length of the side of a cube is x cm, the surface area of the cube is S cm², and the volume of the cube is V cm³. The surface area of the cube is increasing at a constant rate of $8\ cm^2\ s^{-1}$. Show that a $$\frac{dx}{dt} = \frac{k}{x}$$, where k is a constant to be found, $$\mathbf{b} \qquad \frac{\mathrm{d}V}{\mathrm{d}t} = 2V^{\frac{1}{3}}.$$ Given that V = 8 when t = 0, solve the differential equation in part b, and find the value of t when $V = 16\sqrt{2}$. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 42 #### **Question:** Liquid is poured into a container at a constant rate of $30 \text{ cm}^3 \text{ s}^{-1}$. At time t seconds liquid is leaking from the container at a rate of $\frac{2}{15}V \text{ cm}^3 \text{ s}^{-1}$, where $V \text{ cm}^3$ is the volume of liquid in the container at that time. a Show that $$-15\frac{dV}{dt} = 2V - 450$$. Given that V = 1000 when t = 0, b find the solution of the differential equation, in the form V = f(t). Find the limiting value of V as $t \to \infty$. #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 43 #### **Question:** Liquid is pouring into a container at a constant rate of 20 cm³ s⁻¹ and is leaking out at a rate proportional to the volume of the liquid already in the container. a Explain why, at time t seconds, the volume, V cm³, of liquid in the container satisfies the differential equation $$\frac{\mathrm{d}V}{\mathrm{d}t} = 20 - kV,$$ where k is a positive constant. The container is initially empty. By solving the differential equation, show that $$V = A + Be^{-kt}$$. giving the values of A and B in terms of k. Given also that $$\frac{dV}{dt} = 10$$ when $t = 5$, find the volume of liquid in the container at 10 s after the start. E a Rate of change of volume is $$\frac{dV}{dt}$$ cm³ s⁻¹ Increase is 20 cm³ s⁻¹ Decrease is $kV \text{ cm}^3 \text{ s}^{-1}$, where k is constant of proportionality. Explain the minus sign and the function of the constant k. $$\therefore \frac{\mathrm{d}V}{\mathrm{d}t} = 20 - kV$$ b Separate the variables: $$\int \frac{\mathrm{d}V}{20 - kV} = \int \mathrm{d}t$$ $$\therefore -\frac{1}{k} \ln|20 - kV| = t + c$$ You need to include a constant of integration c. When t = 0, V = 0 $\therefore -\frac{1}{k} \ln 20 = c$ $\therefore -\frac{1}{k} \ln \frac{20 - kV}{20} = t$ You were told that the container was
initially empty i.e. V = 0 when t = 0. Use this to find c. Multiply both sides by -k Combine the two in terms together as $$-\frac{1}{k}(\ln(20-kV) - \ln 20) = -\frac{1}{k}\ln\frac{20-kV}{20}$$ $$\ln \frac{20 - kV}{20} = -kt$$ $$\therefore \frac{20 - kV}{20} = e^{-ht} \blacktriangleleft$$ Take exponentials of each side. $\therefore kV = 20 - 20e^{-kt}$ $$\therefore V = \frac{20}{k} - \frac{20}{k} e^{-kt} * \blacktriangleleft$$ Rearrange to give V as the subject of the formula. i.e. $A = \frac{20}{k}$ and $B = -\frac{20}{k}$ Differentiate the equation * c $$\frac{\mathrm{d}V}{\mathrm{d}t} = 20\mathrm{e}^{-kt}$$ Differentiate to give $\frac{dV}{dt}$. Substitute $\frac{dV}{dt} = 10$ when t = 5 ∴ 10 = 20 $$e^{-5k}$$ use the given information to find k. $$\therefore e^{-5k} = \frac{1}{2}$$ Taking Ins: $$-5k = \ln \frac{1}{2} \text{ or } 5k = \ln 2$$ $$\therefore k = \frac{1}{5} \ln 2 \text{ or } 0.1386 (4 \text{ d.p.})$$ Substitute into equation * $$V = \frac{100}{100} - \frac{100}{100} \left(\frac{1}{100}\right)^{\frac{t}{5}}$$ This is the particular solution of the #### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 44 #### **Question:** - Express $\frac{2x-1}{(x-1)(2x-3)}$ in partial fractions. - b Given that $x \ge 2$, find the general solution of the differential equation $$(2x-3)(x-1)\frac{dy}{dx} = (2x-1)y$$. Hence find the particular solution of this differential equation that C satisfies y = 10 at x = 2, giving your answer in the form y = f(x). E #### **Solution:** Separating the variables. $$\int \frac{dy}{y} = \int \frac{(2x-1)dx}{(2x-3)(x-1)}$$ Use the partial fractions from part a to split this fraction. $$\therefore \ln y = \int \frac{-1}{x-1} dx + \int \frac{4}{2x-3} dx$$ $$= -\ln|x-1|+2\ln|2x-3|+c$$ $$\therefore \ln y = -\ln|x-1|+\ln(2x-3)^2 + \ln A$$ $$\ln y = \ln A \frac{(2x-3)^2}{(x-1)}$$ $$\therefore y = \frac{A(2x-3)^2}{(x-1)}$$ Combine the ln terms using the law for combining logs. Combine the ln terms using the law for combining logs. Make y the subject of the formula. Use the partial fractions from part a to split this fraction. These fractions can be integrated to give ln functions. Express the constant as $\ln A$. Under the partial fractions from part a to split this fraction. These fractions can be integrated to give ln functions. Express the constant as $\ln A$. Use the given coordinates to find the value of the constant. Express the constant as $\ln A$. Combine the ln terms using the law for combining logs. Make y the subject of the formula. Use the given coordinates to find the value of the constant. # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics Review Exercise Exercise A, Question 45 ## **Question:** The rate of decrease of the concentration of a drug in the blood stream is proportional to the concentration C of that drug which is present at that time. The time t is measured in hours from the administration of the drug and C is measured in micrograms per litre. - a Show that this process is described by the differential equation $\frac{dC}{dt} = -kC$, explaining why k is a positive constant. - **b** Find the general solution of the differential equation, in the form $C = \mathbf{f}(t)$. After 4 hours, the concentration of the drug in the blood stream is reduced to 10% of its starting value C_0 . c Find the exact value of k. E # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics **Review Exercise** Exercise A, Question 46 #### **Question:** A radioactive isotope decays in such a way that the rate of change of the number, N, of radioactive atoms present after t days, is proportional to N. - a Write down a differential equation relating N and t. - **b** Show that the general solution may be written as $N = Ae^{-kt}$, where A and k are positive constants. Initially the number of radioactive atoms present is 7×10^{18} and 8 days later the number present is 3×10^{17} . - c Find the value of k. - d Find the number of radioactive atoms present after a further 8 days. E ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 47 # **Question:** The volume of a spherical balloon of radius r cm is V cm³, where $V = \frac{4}{3}\pi r^3$. a Find $$\frac{dV}{dr}$$. The volume of the balloon increases with time t seconds according to the formula $$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1000}{(2t+1)^{2}} \ t \ge 0.$$ - b Using the chain rule, or otherwise, find an expression in terms of r and t for $\frac{dr}{dt}$. - c Given that V = 0 when t = 0, solve the differential equation $\frac{dV}{dt} = \frac{1000}{(2t+1)^2}$ to obtain V in terms of t. - d Hence, at time t = 5, - i find the radius of the balloon, giving your answer to 3 significant figures, - show that the rate of increase of the radius of the balloon is approximately 2.90×10^{-2} cm s⁻¹. $$V = \frac{4}{3}\pi r^3$$ $$\therefore \frac{dV}{dr} = 4\pi r^2$$ $$b \qquad \text{From the chain rule:}$$ $$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$ $$\frac{dV}{dt} = \frac{1000}{(2t+1)^2}$$ $$\therefore \frac{1000}{(2t+1)^2} = 4\pi r^2 \times \frac{dr}{dt}$$ $$\therefore \frac{dr}{dt} = \frac{250}{\pi (2r+1)^2 r^2} *$$ $$c \qquad \frac{dV}{dt} = \frac{1000}{(2t+1)^2}$$ $$\text{Separating the variables.}$$ $$\int dV = \int \frac{1000}{(2t+1)^2} dt$$ $$\therefore V = -500(2t+1)^{-1} + c$$ $$\text{But } V = 0 \text{ when } t = 0$$ $$\therefore 0 = -500 + c$$ i.e. $c = 500$ $$\therefore V = 500 - \frac{500}{(2t+1)}$$ $$d \qquad \text{(i)} \qquad \text{When } t = 5,$$ $$V = \frac{4}{3}\pi r^3 = 454.5...$$ $$\therefore r = 4.77 (3 \text{ s. f.})$$ $$\text{(ii)} \qquad \text{Substitute } r = 4.77, t = 5 \text{ into } *$$ $$\therefore \frac{dr}{dt} = 0.0289... \approx 2.90 \times 10^{-2}$$ Use the chain rule to connect $$\frac{dV}{dt} \cdot \frac{dV}{dt} \text{ and } \frac{dr}{dt}.$$ $$\frac{dr}{dt} \text{ the subject of the formula.}$$ $$\frac{dr}{dt} \cdot \frac{dV}{dt} \cdot \frac{dV}{dt} \text{ and } \frac{dr}{dt}.$$ $$\frac{dr}{dt} \text{ the subject of the formula.}$$ $$\frac{dr}{dt} \cdot \frac{dV}{dt} \cdot \frac{dV}{dt} \text{ and } \frac{dr}{dt}.$$ $$\frac{dr}{dt} \cdot \frac{dV}{dt} \cdot \frac{dV}{dt} \text{ and } \frac{dr}{dt}.$$ $$\frac{dr}{dt} \cdot \frac{dV}{dt} \cdot \frac{dV}{dt} \text{ and } \frac{dr}{dt}.$$ $$\frac{dr}{dt} \cdot \frac{dV}{dt} \cdot \frac{dV}{dt} \text{ and } \frac{dr}{dt}.$$ $$\frac{dV}{dt} \cdot \frac{dV}{dt} \text{ and } \frac{dr}{dt}.$$ $$\frac{dV}{dt} \cdot \frac{dV}{dt} \cdot \frac{dV}{dt} \text{$$ # **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 48 ## **Question:** A population growth is modelled by the differential equation $\frac{dP}{dt} = kP$, where P is the population, t is the time measured in days and k is a positive constant. Given that the initial population is P_0 , a solve the differential equation, giving P in terms of P_0 , k and t. Given also that k = 2.5, b find the time taken, to the nearest minute, for the population to reach 2P₀. In an improved model the differential equation is given as $\frac{\mathrm{d}P}{\mathrm{d}t} = \lambda P\cos\lambda t$, where P is the population, t is the time measured in days and λ is a positive constant. Given, again, that the initial population is P_0 and that time is measured in days, c solve the second differential equation, giving P in terms of P₀, λ and t. Given also that $\lambda = 2.5$, d find the time taken, to the nearest minute, for the population to reach 2P₀ for the first time, using the improved model. E $$\frac{\mathrm{d}P}{\mathrm{d}t} = kP$$ Separate the variables. $\ln P_0$ is the arbitrary constant which is found from the initial condition. $$\ln P - \ln P_0 = kt$$ $$\ln \frac{P}{P_0} = kt$$ Collect the two ln terms and use the law that $\ln P - \ln P_0 = \ln \frac{P}{P}$. Substitute k = 2.5 and $P = 2P_0$ Take exponentials and make P the subject of the formula. $$\therefore 2P_0 = P_0 e^{2.5t}$$ $$\therefore e^{2.5t} = 2$$ $$\therefore 2.5t = \ln 2$$ $$t = \frac{\ln 2}{2.5 \ln 2}$$ = 0.277...days 6.65 h = 6 h39 minutes $\frac{\mathrm{d}P}{\mathrm{d}t} = \lambda P \cos \lambda t$ Take lns and make t the subject of the formula. The units are days and need to be converted to minutes, so multiply by 24 then by 60. Separate the variables. $$\int \frac{\mathrm{d}P}{P} = \int \lambda \cos \lambda t \, \mathrm{d}t$$ $$\therefore \ln \frac{P}{P_0} = \sin \lambda t$$ $$\therefore P = P_0 e^{\sin \lambda t}$$ The method is similar to that used in part a. Substitute $P = 2P_0$ and $\lambda = 2.5$ d $$\therefore e^{\sin 2.5t} = 2$$ $$: \sin 2.5t = \ln 2$$ $$\therefore 2.5t = \sin^{-1}(\ln 2)$$ t = 0.306 days Use radians to calculate $\sin^{-1}(\ln 2)$. = 7.35 h = 441 mins or 7 h 21 min Again change the time from days to # **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 49 # **Question:** The diagram shows the graph of the curve with equation $$y = xe^{2x}, x \ge 0.$$ The finite region R bounded by the lines x = 1, the x-axis and the curve is shown shaded in the diagram. a Use integration to find the exact value of the area for R. **b** Complete the table with the values of y corresponding to x = 0.4 and 0.8. | x | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | |---------------|---|---------|-----|---------|-----|---------| | $y = xe^{2x}$ | 0 | 0.29836 | | 1.99207 | | 7.38906 | c Use the trapezium rule with all the values in the table to find an approximate value of this area, giving your answer to 4 significant figures. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 50 # **Question:** Given that $y = \sec x$, complete the table with the values of y corresponding to $x = \frac{\pi}{16}, \frac{\pi}{9}$ and $\frac{\pi}{4}$. | x | 0 | π | π | 3π | π | |---|---|----|---|---------|---| | | | 16 | 8 | 16 | 4 | | y | 1 | | | 1.20269 | | **b** Use the trapezium rule, with all the values for y in the
completed table, to obtain an estimate for $\int_0^{\frac{\pi}{4}} \sec x \, dx$. Show all the steps of your working and give your answer to 4 decimal places. The exact value of $\int_0^{\frac{\pi}{4}} \sec x \, dx$ is $\ln(1+\sqrt{2})$. c Calculate the % error in using the estimate you obtained in part b. E #### **Solution:** a | х | 0 | π | π | 3π | π | |---|---|---------|---------|---------|---------| | | | 16 | 8 | 16 | 4 | | y | 1 | 1.01959 | 1.08239 | 1.20269 | 1.41421 | b $$I = \frac{1}{2} \cdot \frac{\pi}{16} [1 + 2(1.01959 + 1.08239 + 1.20269) + 1.41421]$$ $$= \frac{\pi}{32} \times 9.02355$$ $$= 0.88588... = 0.8859 (4 d.p.)$$ c Percentage error is $$\frac{\left(0.8859 - \ln(1 + \sqrt{2})\right)}{\ln(1 + \sqrt{2})} \times 100 =$$ 0.5136% (4 d.p.) ### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 51 ## **Question:** $$I = \int_0^5 e^{\sqrt{(3x+1)}} dx$$. Given that $y = e^{\sqrt{(3x+1)}}$, complete the table with the values of y corresponding to x = 2, 3 and 4. | x | 0 | 1 | 2 | 3 | 4 | 5 | |---|----------------|----------------|---|------|---|----------------| | y | e ¹ | e ² | | - 35 | | e ⁴ | - b Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the original integral I, giving your answer to 4 significant figures. - Use the substitution $t = \sqrt{(3x+1)}$ to show that I may be expressed as $\int_a^b kte^t dt$, giving the values of a, b and k. - d Use integration by parts to evaluate this integral, and hence find the value of I correct to 4 significant figures, showing all the steps in your working. E | a | | | | | | | | 55 | |-------------------|---|--|--|--|-----------|----------------|-------------------|--| | X | 0 | 1 | 2 | 3 | 4 | 5 | - | You could | | <i>y</i> | e ¹ | e ² | 14.094 | 23.624 | 36.802 | e ⁴ | J | complete the table | | b | | | | | | | | with $e^{\sqrt{1}}$, $e^{\sqrt{10}}$
and $e^{\sqrt{13}}$. | | | $\frac{1}{2}$ | 1 + 2/2 | 14.004 ⊥ | 22 624 ± 3 | 36.802)+e | 1] | | and e. | | 1 - | 2^1[| +2(6 | T14.0547 | 23.024 + . | 30.802)+6 |] | | | | = | | | $\frac{1}{2} \times 22$ | 1.1 | | | | | | = | | | 110.6 (| | | | | | | с | 1 – | $e^{-5} e^{\sqrt{(3x+1)}}$ | 100000000000000000000000000000000000000 | | | 5 | ou ne | eed to replace each | | | 1 – J | 0 | at 4 | | | α | term | with a | | Let | = | 13×1 | 1) | | | | | oonding t term.
eplace dx with a | | | | | | | | 100 | erm ir | · - | | $\frac{di}{dx} =$ | $=\frac{3}{2}(3x)$ | $(+1)^{-\frac{1}{2}}$ | $=\frac{3}{2t}$ | | | | | | | Replac | e dx wit | $\frac{2t}{dt}$ | _ | | | — F | Jse t = | $=\sqrt{(3x+1)}$ to | | repine | | 3 | | | | 17 | | the limits. When | | | | | - | $\begin{pmatrix} x & t \\ 0 & 1 \end{pmatrix}$ | | 1 | | t=1 and when | | | | | | 5 4 | | 3 | x = 5, | t=4. | | So I = | $\int_{1}^{4} e^{t} \cdot \frac{2t}{3}$ | $\frac{t}{dt} = \int_{0}^{4}$ | $\frac{2}{2}te^{t}dt$ | | | | | | | | \int_{1}^{2} 3 | J 1 | 3 | | | | | | | i.e. a = | =1, b=4 | and k | $=\frac{2}{2}$. | | | | | | | d | | | 3 | | | | | | | u = | $\frac{2}{3}t \Rightarrow$ | $\frac{du}{du} = \frac{2}{u}$ | • | | | Let a | $u = \frac{2}{3}$ | t and $\frac{dv}{dt} = e^t$ | | | 3 | Gi 5 | | | | 75.535.55 | 3 | d <i>t</i> | | ν = | $e^t \Leftarrow \cdot$ | $\frac{dv}{dt} = e^t$ | • | | | - Com | plete | the table for | | | | αı | | | | u, v | du ar | $\frac{dv}{dt}$. | | . 7 | [2] | 7 1 ⁴ C | 42 , , | | | 505 | d <i>t</i> | dt | | .`.I = | $\frac{1}{3}$ | $\begin{bmatrix} e \\ 1 \end{bmatrix}_1 - J_1$ | $\frac{4}{3}e^t dt$ | | | | | | | _ | $=\frac{8}{3}e$ | 4 _ 2 | $[2_{a^t}]^4$ | | | | | | | 167 | 3 | 3 | $\begin{bmatrix} \overline{3}^{c} \end{bmatrix}_{1}$ | | | ΙΑ . | | | | = | $=\frac{8}{-}e^4$ | $-\frac{2}{e} - \frac{2}{e}$ | $\frac{2}{3}e^4 + \frac{2}{3}e$ | • | | - Appl | | limits to both | | | 100 | 3 3
2e ⁴ | 3 3 | | | | | | | = | | 2e 1
109.2 (4 | c f) | | | | | | | - | | 109.2 (4 | 5.1.) | | | | | | # **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 52 # **Question:** The following is a table of values for $y = \sqrt{(1+\sin x)}$, where x is in radians. | x | 0 | 0.5 | 1 | 1.5 | 2 | |---|---|-------|---|-------|---| | y | 1 | 1.216 | р | 1.413 | q | a Find the value of p and the value of q. b Use the trapezium rule and all the values of y in the completed table to obtain an estimate of I, where $$I = \int_0^2 \sqrt{(1+\sin x)} \, dx. \qquad E$$ #### **Solution:** a $$p = 1.357 (3 \text{ d.p.})$$ Your calculator should be in radian mode. b Using the trapezium rule $$I = \frac{1}{2} \times 0.5 [1 + 2(1.216 + 1.357 + 1.413) + 1.382]$$ $$= 0.25 \times 10.354$$ $$= 2.5885$$ $$= 2.589 (4 s.f.)$$ # **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 53 # **Question:** The figure shows a sketch of the curve with equation $y = (x-1) \ln x, x > 0$. a Copy and complete the table with the values of y corresponding to x = 1.5 and x = 2.5. | x | 1 | 1.5 | 2 | 2.5 | 3 | |---|---|-----|------|-----|--------| | y | 0 | | In 2 | | 2 ln 3 | Given that $I = \int_1^3 (x-1) \ln x \, dx$, b Use the trapezium rule - with values of y at x = 1,2 and 3 to find an approximate value for I to 4 significant figures, - ii with values of y at x = 1,1.5,2,2.5 and 3 to find another approximate value for I to 4 significant figures. - c Explain, with reference to the figure, why an increase in the number of values improves the accuracy of the approximation. - d Show, by integration, that the exact value of $\int_1^3 (x-1) \ln x \, dx$ is $$\frac{3}{2}\ln 3$$. E | a | х | 1 | 1.5 | 2 | 2.5 | 3 | 7 | |---|----------------------|---|--|---|---------------|-------------|---| | | у | 0 | 0.5 ln 1.5 | In 2 | 1.5 ln 2.5 | 2 ln 3 | | | b | | i
110 | Trapezium ru | | strips | | You may leave your answers in terms of ln at this stage. | | 1 | = - | $\frac{-\times1}{2}^{0}$ | $+2\times\ln 2+2\ln 2$ | 1.5] | | | | | | = | $\frac{1}{2}$ | ×3.5835 | | | | | | | = | 1. | 792 (4 s.f.) | | | | | | | | ii | Trapezium ru | le with 4 | strips: | | | | I | = - | $\frac{1}{2}$ × 0.5 | $0+2(0.5 \ln 1.00)$ | 5+ln2+ | | 2 ln 3] ← | Show all your working. | | | = | | 1.68 | 84 (4 s.f.) | | | | | c | | The tra | pezia are clos | er to the i | required area | when there | are more strips. | | | | 0 | | × | • | | A diagram can help
you to explain. | | d | | Let <i>I</i> = | $= \int_{1}^{3} (x-1) \ln x dx$ | k. | • | | $u = \ln x$ and | | u | = | $\ln x \Rightarrow$ | $\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x}$ | | | | = x -1. | | ν | $=\frac{\lambda}{2}$ | $\frac{x^2}{2} - x \Leftarrow$ | $=\frac{\mathrm{d}v}{\mathrm{d}x}=x-1$ | • | | | Example the table for $\frac{du}{dx}$ and $\frac{dv}{dx}$. | | | .I = | $\left[\left(\frac{x^2}{2}\right)\right]$ | $-x\bigg]\ln x\bigg]_{1}^{3}-\int_{1}^{3}$ | $\frac{1}{x} \cdot \left(\frac{x^2}{2}\right)$ | x dx | | | | | = | | $\frac{3}{2}\ln 3 - \int_{1}^{3} \left(\frac{3}{2}\right)^{3}$ | $\left(\frac{x}{2}-1\right)dx$ | | (7) (7) (7) | he limits to the uv term
he integral term. | | | = | | $\frac{3}{2}\ln 3 - \left[\frac{x^2}{4}\right]$ | $-x\Big]_1^3$ | | | | | | = | $\frac{3}{2}$ | $\frac{9}{2}\ln 3 - \left[\left(\frac{9}{4} - 3\right)\right]$ | $\left - \left(\frac{1}{4} - 1 \right) \right $ | | | | | | = | | $\frac{3}{2}\ln 3$ | | | | | ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 54 # **Question:** The figure shows part of the curve with equation $\sqrt{(\tan x)}$. The finite region R, which is bounded by the curve, the x-axis and the line $x = \frac{\pi}{4}$, is shown shaded in the figure. a Given that $y = \sqrt{(\tan x)}$, copy and complete the table with the values of y corresponding to $x = \frac{\pi}{16}, \frac{\pi}{8}$ and $\frac{3\pi}{16}$, giving your answers to 5 decimal places. | х | 0 | π | π | 3π | π | |---|---|----|---|--------|---| | | | 16 | 8 | 16 | 4 | | v | 0 | | | | 1 | b Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of the shaded region R, giving your answer to 4 decimal places. The region R is rotated through 2π radians around the x-axis to generate a solid of revolution. c Use integration to find an exact value for the volume of the solid generated. E a | x | 0 | π | π | 3π | π | |---|---|---------|---------|---------|-------| | | | 16 | 8 | 16 | 4 | | у | 0 | 0.44600 | 0.64360 | 0.81742 | 1 | b From the trapezium rule Area $\approx \frac{1}{2} \times \frac{\pi}{16} [0 + 2(0.44600 + 0.64360 + 0.81742) + 1]$ $\approx \frac{\pi}{32} \times 4.81404$ = 0.4726 c Volume Use the formula $v = \pi \int y^2 dx.$ Ensure that your mode. calculator is in radian $= \pi \int_{0}^{\frac{\pi}{4}} \tan x \, dx$ $= \pi \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} \, dx$ $= \pi \int_{2}^{\frac{\pi}{4}} (\sqrt{\tan x})^2 dx$ • $\int \tan x \, dx = \ln |\cos x| - \frac{1}{2}$ is given in your formula book. or $\pi[\operatorname{Insec} x]_0^{\frac{\pi}{4}}$ $= \pi \left[-\ln \cos x\right]_0^{\frac{\pi}{4}}$ $= \pi \left[-\ln \frac{1}{\sqrt{2}}\right]$ $= \pi \ln \sqrt{2} \text{ or } \frac{1}{2}\pi \ln 2$ # **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 55 #### **Question:** Using the substitution $u^2 = 2x - 1$, or otherwise, find the exact value of $$\int_1^5 \frac{3x}{\sqrt{(2x-1)}} \, \mathrm{d}x. \qquad E$$ #### **Solution:** So replace dx with u du and $x = \frac{u^2 + 1}{2}$ Also $$\frac{1}{\sqrt{(2x-1)}}
= \frac{1}{u}$$ | 4 | и | x | |---|---|---| | | 1 | 1 | | | 3 | 5 | Change the limits. When $$x = 1$$, $u^2 = 1$ and when $x = 5, u^2 = 9$. So $$I = \int_{1}^{3} \frac{3(u^{2}+1)}{2} \times u du$$ $$= \int_{1}^{3} \left(\frac{3}{2}u^{2} + \frac{3}{2}\right) du.$$ $$= \left[\frac{1}{2}u^{3} + \frac{3}{2}u\right]_{1}^{3}$$ $$= \left(\frac{27}{2} + \frac{9}{2}\right) - \left(\frac{1}{2} + \frac{3}{2}\right)$$ $$= 18 - 2$$ $$= 16$$ Simplify and integrate. Evaluate the integral using the new u limits. #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 56 #### **Question:** The figure shows the finite region R, which is bounded by the curve $y = xe^x$, the line x = 1, the line x = 3 and the x-axis. The region R is rotated through 360 degrees about the x-axis. Use integration by parts to find an exact value for the volume of the solid generated. E #### **Solution:** Use $$V = \pi \int y^2 dx$$ $$= \pi \int_1^3 x^2 e^{2x} dx$$ $$u = x^2 \Rightarrow \frac{du}{dx} = 2x$$ $$v = \frac{1}{2} e^{2x} \Leftarrow \frac{dv}{dx} = e^{2x}$$ $$\therefore V = \pi \left[x^2 \cdot \frac{1}{2} e^{2x} \right]_1^3 - \pi \int_1^3 \frac{1}{2} e^{2x} \cdot 2x \, dx.$$ i.e. $$V = \pi \left[\frac{9}{2} e^6 - \frac{1}{2} e^2 \right] - \pi \int_1^3 x e^{2x} \, dx.$$ $$\therefore V = \pi \left[\frac{9}{2} e^6 - \frac{1}{2} e^2 \right] - \pi \int_1^3 x e^{2x} \, dx.$$ This integral is simpler than V but still not one you can write down. Use integration by parts again with $u = x$ and $\frac{dv}{dx} = e^{2x}$. $$\therefore V = \pi \left[\frac{9}{2} e^6 - \frac{1}{2} e^2 \right] - \pi \left[x \cdot \frac{1}{2} e^{2x} \right]_1^3 + \pi \int_1^3 \frac{1}{2} e^{2x} \cdot 1 \, dx$$ $$= \pi \left[\frac{9}{2} e^6 - \frac{1}{2} e^2 \right] - \pi \left[\frac{3}{2} e^6 - \frac{1}{2} e^2 \right] + \pi \left[\frac{1}{4} e^{2x} \right]_1^3$$ $$= \frac{13}{4} \pi e^6 - \frac{\pi}{4} e^2$$ Complete the table for $u, v, \frac{du}{dx}$ $$= \frac{dv}{dx}$$ This integral is simpler than V but still not one you can write down. Use integration by parts again with $u = x$ and $\frac{dv}{dx} = e^{2x}$. $$\therefore V = \pi \left[\frac{9}{2} e^6 - \frac{1}{2} e^2 \right] - \pi \left[x \cdot \frac{1}{2} e^{2x} \right]_1^3 + \pi \int_1^3 \frac{1}{2} e^{2x} \cdot 1 \, dx$$ $$= \pi \left[\frac{9}{2} e^6 - \frac{1}{2} e^2 \right] - \pi \left[\frac{3}{2} e^6 - \frac{1}{2} e^2 \right] + \pi \left[\frac{1}{4} e^{2x} \right]_1^3$$ Apply the integration by parts formula a second time. #### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 57 #### **Question:** The curve with equation $y = 3\sin\frac{x}{2}, 0 \le x \le 2\pi$, is shown in the figure. The finite region enclosed by the curve and the x-axis is shaded. a Find, by integration, the area of the shaded region. This region is rotated through 2π radians about the x-axis. b Find the volume of the solid generated. #### **Solution:** ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 58 #### **Question:** Use integration by parts to find the exact value of $\int_{1}^{3} x^{2} \ln x \, dx$. #### **Solution:** ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 59 #### **Question:** Use the substitution $u = 1 - x^2$ to find the exact value of $$\int_0^{\frac{1}{2}} \frac{x^3}{(1-x^2)^{\frac{1}{2}}} \, \mathrm{d}x.$$ #### **Solution:** Let $$u = 1 - x^2$$ Then $\frac{du}{dx} = -2x$ and $x^2 = 1 - u$ so $\int \frac{x^3}{(1 - x^2)^{\frac{1}{2}}} dx = \int \frac{x^2}{(1 - x^2)^{\frac{1}{2}}} x dx = \int \frac{1 - u}{u^{\frac{1}{2}}} (-\frac{du}{2})$ $$= -\frac{1}{2} \int \frac{1 - u}{u^{\frac{1}{2}}} du = -\frac{1}{2} \int u^{-\frac{1}{2}} - u^{\frac{1}{2}} du = \left[-u^{\frac{1}{2}} + \frac{1}{3}u^{\frac{3}{2}} \right]$$ Simplify and integrate As limits for x were 0 and $\frac{1}{2}$, limits for u are 1 and $\frac{3}{4}$ So evaluate $\left[-u^{\frac{1}{2}} + \frac{1}{3}u^{\frac{3}{2}} \right]_1^{\frac{3}{4}} = (-\frac{\sqrt{3}}{2} + \times \frac{3\sqrt{3}}{3 \times 4\sqrt{4}}) - (-1 + \frac{1}{3})$ $$= (-\frac{3\sqrt{3}}{8}) - (-\frac{2}{3})$$ Use the new limits to evaluate the answer. Use $x^3 = x^2x$ and $x^2 = 1 - u$ with $x dx = -\frac{du}{2}$. Simplify and integrate We then the variable has changed, so must the limits. So use $u = 1 - x^2$ to find the new limits. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 60 ## **Question:** a Express $$\frac{5x+3}{(2x-3)(x+2)}$$ in partial fractions. b Hence find the exact value of $$\int_2^6 \frac{5x+3}{(2x-3)(x+2)} dx$$, giving your answer as a single logarithm. #### **Solution:** $$\frac{5x+3}{(2x-3)(x+2)} \equiv \frac{A}{(2x-3)} + \frac{B}{(x+2)}$$ $$\equiv \frac{A(x+2) + B(2x-3)}{(2x-3)(x+2)}$$ $$\therefore 5x+3 \equiv A(x+2) + B(2x-3)$$ Put $x = -2$, then $-7 = 0 - 7B \Rightarrow B = 1$ Put $x = \frac{3}{2}$, then $\frac{21}{2} = \frac{7}{2}A \Rightarrow A = 3$ $$\therefore \frac{5x+3}{(2x-3)(x+2)} \equiv \frac{3}{2x-3} + \frac{1}{x+2}$$ b $$\int_{2}^{6} \frac{5x+3}{(2x-3)(x+2)} dx = \int_{2}^{6} \frac{3}{2x-3} dx + \int_{2}^{6} \frac{1}{x+2} dx$$ Rewrite the integral using partial fractions. $$= \left[\frac{3}{2}\ln(2x-3) + \ln(x+2)\right]_{2}^{6}$$ Rewrite the integral using partial fractions. $$= \left[\frac{3}{2}\ln(2x-3) + \ln(x+2)\right]_{2}^{6}$$ Rewrite the integral using partial fractions. $$= \left[\frac{3}{2}\ln(2x-3) + \ln(x+2)\right]_{2}^{6}$$ Rewrite the integral using partial fractions. $$= \left[\frac{3}{2}\ln(2x-3) + \ln(x+2)\right]_{2}^{6}$$ Substitute the limits noting $\ln 1 = 0$. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 61 ## **Question:** a Use integration by parts to find $$\int x \cos 2x \, dx$$. b Prove that the answer to part a may be expressed as $$\frac{1}{2}\sin x(2x\cos x - \sin x) + C,$$ where C is an arbitrary constant. \boldsymbol{E} #### **Solution:** Let $$I = \int x \cos 2x dx$$ $$u = x \Rightarrow \frac{du}{dx} = 1$$ $$v = \frac{1}{2} \sin 2x \Leftarrow \frac{dv}{dx} = \cos 2x$$ Complete the table for $u, v, \frac{du}{dx}$ and $\frac{dv}{dx}$. $$\therefore I = \frac{1}{2} x \sin 2x - \int \frac{1}{2} \sin 2x \cdot 1 dx$$ $$= \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + c$$ This integral can now be integrated directly. b $$\therefore I = \frac{1}{2} x \cdot 2 \sin x \cos x + \frac{1}{4} (1 - 2 \sin^2 x) + c$$ $$= \frac{1}{2} \sin x (2x \cos x - \sin x) + \frac{1}{4} + c$$ Use double angle formulae: $\sin 2x = 2 \sin x \cos x$ and $\cos 2x = 1 - 2 \sin^2 x$. Where $c' = \frac{1}{4} + c$. # **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 62 ## **Question:** Use the substitution $u = 2^x$ to find the exact value of $$\int_0^1 \frac{2^x}{(2^x + 1)} \, \mathrm{d}x.$$ E #### **Solution:** Let $$I = \int_0^1 \frac{2^x}{2^x + 1} dx$$. Let $u = 2^x$ $$\frac{du}{dx} = 2^x \cdot \ln 2$$ You need to replace each 'x' term with a corresponding 'u' term. Replace $2^x dx$ by $\frac{1}{\ln 2} du$. $$\frac{x}{0} \frac{u}{1}$$ $$\frac{x}{1} \frac{u}{1}$$ Change the limits: when $x = 0, u = 2^0 = 1$ $$x = 1, u = 2^1 = 2$$. Then $$I = \int_{1}^{2} \frac{1}{u+1} \cdot \frac{1}{\ln 2} du$$. $$= \frac{1}{\ln 2} [\ln(u+1)]_1^2$$ $$= \frac{1}{\ln 2} [\ln 3 - \ln 2]$$ $$= \frac{1}{\ln 2} \ln \frac{3}{2}.$$ Use the limits for u to evaluate the integral. # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics **Review Exercise** Exercise A, Question 63 ## **Question:** The figure shows a graph of $y = x\sqrt{\sin x}$, $0 < x < \pi$. The finite region enclosed by the curve and the x-axis is shaded as shown in the figure. A solid body S is generated by rotating this region through 2π radians about the x-axis. Find the exact value of the volume of S. E(adapted) ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 64 # **Question:** a Find $\int x \cos 2x \, dx$. **b** Hence, using the identity $\cos 2x = 2\cos^2 x - 1$, deduce $\int x \cos^2 x \, dx$. #### **Solution:** a Let $$I = \int x \cos 2x \, dx$$ use integration by parts and let $u = x$ and $\frac{dv}{dx} = \cos 2x$. $$u = x \Rightarrow \frac{du}{dx} = 1$$ $$\therefore v = \frac{1}{2} \sin 2x \Leftarrow \frac{dv}{dx} = \cos 2x$$ Complete the table for $u, v, \frac{du}{dx}$ $$\therefore I = \frac{1}{2} x \sin 2x - \int \frac{1}{2} \sin 2x \cdot 1 \, dx$$ $$= \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + c$$ Do not forget to add the constant. So $\int x \cos^2 x \, dx = \frac{1}{2} I + \frac{1}{2} \int x \, dx$. $$= \left(\frac{1}{4} x \sin 2x + \frac{1}{8} \cos 2x\right) + \frac{1}{4} x^2 + c$$ # **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 65 # **Question:** $$\frac{2(4x^2+1)}{(2x+1)(2x-1)} = A + \frac{B}{(2x+1)} + \frac{C}{(2x-1)}.$$ a Find the values of the constants A, B and C. b Hence show that the exact value of $$\int_1^2 \frac{2(4x^2+1)}{(2x+1)(2x-1)} \, \mathrm{d}x \text{ is } 2 + \ln k,$$ giving the value of the constant k. Ε $$f(x) = \frac{2(4x^2+1)}{(2x+1)(2x-1)}$$ $$= \frac{8x^2+2}{4x^2-1}$$ $$4x^2 - 1 \quad \sqrt{8x^2 + 2}$$ $$8x^2 - 2$$ Divide the denominator into the numerator. $$f(x) = 2 + \frac{4}{(2x+1)(2x-1)}$$ $$= 2 + \frac{A}{2x+1} + \frac{B}{2x-1}$$ Express as partial fractions, using denominators 2x+1 and 2x-1. where $\frac{4}{(2x+1)(2x-1)} = \frac{A(2x-1) + B(2x+1)}{(2x+1)(2x-1)}$ Equate numerators $$4 \equiv A(2x-1) + B(2x+1)$$ Put $$x = \frac{1}{2}; \ 4 = 2B \Rightarrow B = 2$$ $$x = -\frac{1}{2}; \ 4 = -2A \Rightarrow A = -2$$ $$\therefore \mathbf{f}(x) = 2 - \frac{2}{(2x+1)} + \frac{2}{(2x-1)}$$ or $A = 2, B = -2, C = 2$ $$\begin{array}{rcl} \mathbf{b} \\ \therefore \int_{1}^{2} \mathbf{f}(x) \, \mathrm{d}x & = & \int_{1}^{2} 2 - \frac{2}{2x+1} + \frac{2}{2x-1} \, \mathrm{d}x \\ & = & \left[2x - \ln|2x+1| + \ln|2x-1| \right]_{1}^{2} \\ & = & 4 - \ln 5 + \ln 3 - (2 - \ln 3) \\ & = &
2 - \ln 5 + 2\ln 3 \\ & = & 2 + \ln 9 - \ln 5 \\ & = & 2 + \ln \frac{9}{5}. \end{array}$$ Use the partial fractions from part a. Integrate each term using $\int \frac{\mathbf{f}'(x)}{\mathbf{f}(x)} dx = \ln |\mathbf{f}(x)|.$ Use the laws of lns to combine the log terms, noting that $2 \ln 3 = \ln 3^2 = \ln 9$. 3 i.e. $k = \frac{9}{5}$ or 1.8. # **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 66 ## **Question:** $$f(x) = (x^2 + 1) \ln x.$$ Find the exact value of $\int_1^e f(x) dx$. ## **Solution:** Let $$I = \int_{1}^{8} (x^{2} + 1) \ln x$$ Let Use integration by parts with $u = \ln x$ and so $\frac{dv}{dx} = x^{2} + 1$. Using integration by parts: $$I = \left[\left(\frac{x^{3}}{3} + x \right) \ln x \right]_{1}^{8} - \int_{1}^{8} \frac{1}{x} \left(\frac{x^{3}}{3} + x \right) dx$$ Complete the table for $u, v, \frac{du}{dx}$ and $\frac{dv}{dx}$. $$I = \left[\left(\frac{x^{3}}{3} + x \right) \ln x \right]_{1}^{8} - \int_{1}^{8} \frac{1}{x} \left(\frac{x^{3}}{3} + x \right) dx$$ Apply the limits to the uv term and to $\int v \frac{du}{dx} dx$. Evaluate the limits on uv and remember $\ln 1 = 0$. $$= \frac{e^{3}}{3} + e - \left[\frac{e^{3}}{9} + e - \frac{1}{9} - 1 \right]$$ $$= \frac{2e^{3}}{9} + \frac{10}{9}$$ $$= \frac{1}{9} (2e^{3} + 10)$$ This is an exact answer. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 67 ### **Question:** The curve C is described by the parametric equations $$x = 3\cos t, y = \cos 2t, 0 \le t \le \pi.$$ Find a Cartesian equation of the curve C. \boldsymbol{E} ### **Solution:** ### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 68 ### **Question:** The point P(a,4) lies on a curve C. C has parametric equations $x = 3t \sin t$, $y = 2 \sec t$, $0 \le t < \frac{\pi}{2}$. Find the exact value of a. ### **Solution:** # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics Review Exercise Exercise A, Question 69 ### **Question:** A curve has parametric equations $$x = 2 \cot t, y = 2 \sin^2 t, 0 \le t \le \frac{\pi}{2}.$$ - a Find an expression for $\frac{dy}{dx}$ in terms of the parameter t. - **b** Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$. - c Find a Cartesian equation of the curve in the form y = f(x). State the domain on which the curve is defined. a $$x = 2\cot t, y = 2\sin^2 t$$ $$\frac{dx}{dt} = -2\csc^2 t, \frac{dy}{dt} = 4\sin t \cos t$$ $$\therefore \frac{dy}{dx} = \frac{4\sin t \cos t}{-2\cos^2 t}$$ $$= -2\sin^3 t \cos t$$ Use $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$ $$= -2\sin^3 t \cos t$$ Simplify using $$\csc t = \frac{1}{\sin t}$$ b At $t = \frac{\pi}{4}$, gradient $= -2 \times \left(\frac{1}{\sqrt{2}}\right)^3 \times \left(\frac{1}{\sqrt{2}}\right)$ Find the value of the gradient of the curve at $t = \frac{\pi}{4}$. The coordinates of the point where $t = \frac{\pi}{4}$ are: $$x = 2, y = 2 \times \left(\frac{1}{\sqrt{2}}\right)^2 = 1$$ $$\therefore$$ The equation of the tangent is $$(y - 1) = -\frac{1}{2}(x - 2)$$ $$\therefore y = -\frac{1}{2}x + 2$$ The tangent has the same gradient as the curve. c As $x = 2 \cot t$, $\cot t = \frac{x}{2}$. Rearrange to make cott and $cosec^2 t$ the subjects of the Also as $y = 2\sin^2 t$, $\sin^2 t = \frac{y}{2}$ and $\csc^2 t = \frac{2}{v}$ use $1 + \cot^2 t = \csc^2 t$ Write down the relationship between $\cot^2 t$ and $\csc^2 t$. then $1 + \left(\frac{x}{2}\right)^2 = \left(\frac{2}{x}\right)$ Eliminate t to give a $\left(\frac{2}{x}\right) = \frac{4+x^2}{4}$ Cartesian equation. Take the reciprocal of each side of the equation. $\left(\frac{y}{2}\right) = \frac{4}{4+x^2}$ $y = \frac{8}{4 + v^2}$ As $0 \le t \le \frac{\pi}{2}$, $\cot t \ge 0$ As $x = 2\cot t, x \ge 0$ © Pearson Education Ltd 2009 This is the domain of the function. ### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 70 #### **Question:** A curve has parametric equations $$x = 7\cos t - \cos 7t, y = 7\sin t - \sin 7t.$$ $$\frac{\pi}{8} < t < \frac{\pi}{3}$$. a Find an expression for $\frac{dy}{dx}$ in terms of t. You need not simplify your answer. b Find an equation of the normal to the curve at the point where $$t = \frac{\pi}{6}$$. Give your answer in its simplest exact form. a $$x = 7\cos t - \cos 7t; y = 7\sin t - \sin 7t$$ $$\frac{dx}{dt} = -7\sin t + 7\sin 7t; \frac{dy}{dt} = 7\cos t - 7\cos 7t$$ using the chain rule: $$\frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t}$$ $$\frac{dy}{dt} = \frac{dy}{dt} \div \frac{dx}{dt}$$ b When $$t = \frac{\pi}{6}$$ $$\frac{dy}{dx} = \frac{7 \times \frac{\sqrt{3}}{2} + 7 \times \frac{\sqrt{3}}{2}}{-7 \times \frac{1}{2} - 7 \times \frac{1}{2}}$$ Substitute $t = \frac{\pi}{6}$ to find the gradient of the curve. $$= \frac{7\sqrt{3}}{-7}$$ $$= -\sqrt{3}$$: Gradient of the normal at the point -Use $mm^1 = -1$, the condition for perpendicular lines to where $t = \frac{\pi}{6}$ is $\frac{1}{\sqrt{3}}$. find the gradient of the normal. When $t = \frac{\pi}{6}$, $$x = 7\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = 4\sqrt{3}$$ $$y = 7 \times \frac{1}{2} + \frac{1}{2} = 4$$ Find the co-ordinates of the point on the curve when $$t = \frac{\pi}{6}.$$: Equation of the normal is $$y - 4 = \frac{1}{\sqrt{3}}(x - 4\sqrt{3})$$ $$\therefore y\sqrt{3} = x$$ Use $y - y_1 = m(x - x_1)$ for the equation of a straight line. # **Solutionbank C4**Edexcel AS and A Level Modular Mathematics #### Review Exercise Exercise A, Question 71 ### **Question:** A curve has parametric equations $$x = \tan^2 t, y = \sin t, 0 < t < \frac{\pi}{2}.$$ a Find an expression for $\frac{dy}{dx}$ in terms of t. You need not simplify your answer. b Find an equation of the tangent to the curve at the point where π Give your answer in the form y = ax + b, where a and b are constants to be determined. Find a Cartesian equation of the curve in the form $y^2 = f(x)$. E $$x = \tan^2 t, y = \sin t$$ $$\frac{dx}{dt} = 2 \tan t \sec^2 t, \frac{dy}{dt} = \cos t$$ using the chain rule: $$\frac{dy}{dx} = \frac{\cos t}{2 \tan t \sec^2 t}$$ $$\frac{dy}{dx} = \frac{1}{2 \times 1 \times (\sqrt{2})^2}$$ $$= \frac{1}{4 \sqrt{2}}$$ $$\therefore \text{ Gradient of the tangent where } t = \frac{\pi}{4} \text{ is } \frac{1}{4 \sqrt{2}}.$$ Find the co-ordinates of the point on the curve. $$x = \frac{1}{4} + \frac{3}{4 \sqrt{2}} = \frac{\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}$$ $$x = \frac{1}{4 \sqrt{2}} + \frac{3}{4 \sqrt{2}} = \frac{\sqrt{2}}{2} + \frac{3\sqrt{2}}{2} = \frac{\sqrt{2}}{2} + \frac{3\sqrt{2}}{2} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \frac{2$$ ### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 72 ### **Question:** The curve shown in the figure has parametric equations $$x = \sin t, y = \sin\left(t + \frac{\pi}{6}\right), -\frac{\pi}{2} < t < \frac{\pi}{2}.$$ Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}$. b Show that a Cartesian equation of the curve is $$y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}, -1 < x < 1.$$ $$x = \sin t, y = \sin\left(t + \frac{\pi}{6}\right)$$ $$\frac{\mathrm{d}x}{\mathrm{d}t} = \cos t, \frac{\mathrm{d}y}{\mathrm{d}t} = \cos\left(t + \frac{\pi}{6}\right)$$ using the chain rule: $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos(t + \frac{\pi}{6})}{\cos t}$$ At the point where $t = \frac{\pi}{6}$, $$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}.$$ Substitute $t = \frac{\pi}{6}$ to find the gradient of the curve which is also the gradient of the tangent. \therefore Gradient of the tangent at $t = \frac{\pi}{6}$ is $\frac{1}{\sqrt{3}}$. Also at $t = \frac{\pi}{6}, x = \frac{1}{2}, y = \frac{\sqrt{3}}{2}$ Find the values of x and ywhen $t = \frac{\pi}{6}$ Equation of the tangent is: $$y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}} \left(x - \frac{1}{2} \right)$$ $$\therefore y = \frac{1}{\sqrt{3}}x - \frac{1}{2\sqrt{3}} + \frac{\sqrt{3}}{2}$$ i.e. $$y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{3}$$ Use $y - y_1 = m(x - x_1)$ for the equation of a straight $$y = \sin(t + \frac{\pi}{6})$$ $$= \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6}$$ $$= \frac{\sqrt{3} \sin t + \frac{1}{2} \cos t}{\sin t + \frac{1}{2} \cos t}$$ $= \sin t \cos \frac{\pi}{6} + \cos t \sin \frac{\pi}{6}.$ $= \frac{\sqrt{3} \sin t + \frac{1}{2} \cos t}{\operatorname{Expand, using addition formula.}}$ Replace $\cos \frac{\pi}{6}$ by $\frac{\sqrt{3}}{2}$ and $\sin \frac{\pi}{6}$ by $\frac{1}{2}$. As $x = \sin t$, using $\cos^2 t = 1 - \sin^2 t$ means that $\cos t = \sqrt{1-x^2}$ $$\therefore y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{(1-x^2)}$$ As $-1 \le \sin t \le 1 \Rightarrow -1 \le x \le 1$. Eliminate t by using $\sin t = x$ and $\cos t = \sqrt{(1-x^2)}.$ ### **Edexcel AS and A Level Modular Mathematics** **Review Exercise** Exercise A, Question 73 ### **Question:** The curve C has parametric equations $$x = \frac{1}{1+t}, y = \frac{1}{1-t}, -1 \le t \le 1.$$ The line l is a tangent to C at the point where $t = \frac{1}{2}$. - a Find an equation for the line l. - **b** Show that a Cartesian equation for the curve C is $y = \frac{x}{2x-1}$. E Differentiate $$(1+t)^{-1}$$ and $(1-t)^{-1}$ using the chain rule. $$\frac{dx}{dt} = \frac{-1}{(1+t)^2}, \frac{dy}{dt} = \frac{1}{(1-t)^2}$$ $$\therefore \frac{dy}{dx} = -\frac{(1+t)^2}{(1-t)^2}$$ Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$. At the point where $t = \frac{1}{2}$, $$\frac{dy}{dx} = -\frac{\frac{9}{4}}{\frac{1}{4}}$$ $$= -9$$ Substitute $t = \frac{1}{2}$ to find the gradient of the curve and thus the tangent. Gradient of tangent, where $t = \frac{1}{2}$, is -9. Also $$x = \frac{2}{3}$$ and $y = 2$ where $t = \frac{1}{2}$. Find the values of x and y : Equation of tangent is $$y-2=-9\left(x-\frac{2}{3}\right)$$ Use $y - y_1 = m(x - x_1)$. i.e. $$y = -9x + 8$$. **b** As $$x = \frac{1}{1+t}$$ $$1+t = \frac{1}{x}$$ $$\therefore t =
\frac{1}{x} - 1$$ Rearrange to make t the subject of the formula. Substitute into $y = \frac{1}{1-t}$ $$\therefore y = \frac{1}{1 - \left(\frac{1}{x} - 1\right)}$$ $$= \frac{1}{2 - \frac{1}{x}}$$ $$= \frac{x}{2x - 1}$$ Eliminate t and simplify the fraction multiplying numerator and denominator ### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 74 ### **Question:** The curve shown has parametric equations $$x = t + \frac{1}{t}$$, $y = t - 1$ for $t > 0$. Find the value of the parameter t at each of the points where $x = 2\frac{1}{2}$. b Find the gradient of the curve at each of these points. Find the area of the finite region enclosed between the curve and the line $x = 2\frac{1}{2}$. a $$x = t + \frac{1}{t}$$, $y = t - 1$ for $t > 0$ As $x = 2\frac{1}{2}$, $t + \frac{1}{t} = 2\frac{1}{2}$ $$\therefore t^2 - 2\frac{1}{2}t + 1 = 0$$ i.e. $2t^2 - 5t + 2 = 0$ $$\therefore (2t - 1)(t - 2) = 0$$ $$\Rightarrow t = \frac{1}{2}$$ or 2 Multiply both sides of this equation by t and collect the terms to give a quadratic equation. $$\frac{dx}{dt} = 1 - \frac{1}{t^2}, \frac{dy}{dt} = 1$$ $$\therefore \frac{dy}{dx} = 1 - \frac{1}{t^3} = \frac{t^2}{t^2 - 1}$$ Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ and use the chain rule $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ When $$t = \frac{1}{2}$$, gradient $= \frac{\frac{1}{4}}{\frac{1}{4} - 1} = \frac{-1}{3}$ Substitute the values of t found in part a. $$t = 2$$, gradient = $\frac{4}{4-1} = \frac{4}{3}$. c Area = $$\int y \frac{dx}{dt} dt$$ = $$\int_{\frac{1}{2}}^{2} (t-1) \left(1 - \frac{1}{t^2}\right) dt$$ = $$\int_{\frac{1}{2}}^{2} t - 1 - \frac{1}{t} + \frac{1}{t^2} dt$$ = $$\left[\frac{t^2}{2} - t - \ln t - \frac{1}{t}\right]_{\frac{1}{2}}^{2}$$ Expand the brackets. Integrate each term. use of limits t=2 and $t=\frac{1}{2}$ to give area = $$-\ln 2 - \frac{1}{2} - \left(\frac{1}{8} - \frac{1}{2} - \ln \frac{1}{2} - 2\right)$$ = $1\frac{7}{8} - 2\ln 2 = 0.4887$ Substitute t = 2 and $t = \frac{1}{2}$ then subtract. ## **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 75 ### **Question:** The curve shown in the figure has parametric equations $$x = t - 2\sin t, y = 1 - 2\cos t,$$ $$0 \le t \le 2\pi.$$ a Show that the curve crosses the x-axis where $t = \frac{\pi}{3}$ and $t = \frac{5\pi}{3}$. The finite region R is enclosed by the curve and the x-axis, as shown shaded in the figure b Show that the area R is given by the integral $$\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)^2 dt.$$ c Use this integral to find the exact value of the shaded area. a The curve crosses the x-axis when y = 0. As $$y = 1 - 2\cos t$$, when $y = 0$ $$\cos t = \frac{1}{2}$$ $$\therefore t = \frac{\pi}{3} \text{ or } \frac{5\pi}{3}.$$ **b** Area of *R* is given by $\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} y \frac{dx}{dt} dt$ As $$x = t - 2\sin t$$. $$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - 2\cos t$$ $$\therefore \text{Area} = \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)(1 - 2\cos t) dt$$ $$= \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)^2 dt.$$ Substitute $y = 1 - 2\cos t$ and $\frac{dx}{dt} = 1 - 2\cos t$ into the integral. C $$\therefore \text{Area} = \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 4\cos t + 4\cos^2 t) \, dt$$ $$= \left[t - 4\sin t\right]_{\frac{\pi}{3}}^{\frac{5\pi}{3}} + 2\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (\cos 2t + 1) \, dt$$ $$= \left[t - 4\sin t\right]_{\frac{\pi}{3}}^{\frac{5\pi}{3}} + \left[\sin 2t + 2t\right]_{\frac{\pi}{3}}^{\frac{5\pi}{3}}$$ $$= \left[3t - 4\sin t + \sin 2t\right]_{\frac{\pi}{3}}^{\frac{5\pi}{3}}$$ $$= \left[3t - 4\sin t + \sin 2t\right]_{\frac{\pi}{3}}^{\frac{5\pi}{3}}$$ Use double angle formula $$\cos 2t = 2\cos^2 t - 1 \text{ to replace } 4\cos^2 t \text{ with } 2(\cos 2t + 1).$$ Now integrate $(2\cos 2t + 1)$. Now integrate $(2\cos 2t + 2)$. Collect the terms. $$= 4\pi + 4\sqrt{3} - \sqrt{3}$$ Use the limits to find an $4\pi + 3\sqrt{3}$ ### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 76 ### **Question:** The curve shown in the figure has parametric equations $$x = a\cos 3t, y = a\sin t, -\frac{\pi}{6} \le t \le \frac{\pi}{6}.$$ The curve meets the axes at points A, B and C, as shown. The straight lines shown are tangents to the curve at the points A and C and meet the x-axis at point D. Find, in terms of a a the equation of the tangent to A, b the area of the finite region between the curve, the tangent at A and the x-axis, shown shaded in the figure. Given that the total area of the finite region between the two tangents and the curve is $10\,\mathrm{cm}^2$ c find the value of a. E a At point A, x = 0 $$\therefore a\cos 3t = 0 \Rightarrow 3t = \frac{\pi}{2}$$ $\therefore t = \frac{\pi}{6}$. Find the co-ordinates of the But $y = a \sin t$ At $$t = \frac{\pi}{6}, y = \frac{a}{2}$$. \therefore A is the point $(0, \frac{a}{2})$ $$x = a\cos 3t, y = a\sin t$$ $$\frac{dx}{dt} = -3a\sin 3t, \frac{dy}{dt} = a\cos t$$ $$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\cos t}{3\sin 3t}$$ Find the gradient at the point A when $$t = \frac{\pi}{6}$$, $\frac{dy}{dx} = -\frac{\frac{\sqrt{3}}{2}}{3} = -\frac{\sqrt{3}}{6}$. $\therefore \text{ Equation of the tangent at } A \text{ is } y - \frac{a}{2} = -\frac{\sqrt{3}}{6}(x - 0)$ Use $y - y_1 = m(x - x_1)$ $$\therefore y = \frac{-\sqrt{3}}{6}x + \frac{a}{2}$$ **b** This tangent meets the x-axis when y = 0, at the point D. $$\therefore \frac{\sqrt{3}}{6}x = \frac{a}{2}$$ $$\therefore x = \sqrt{3}a$$ Find the point where the tangent meets the x-axis. Area of triangle AOD is $\frac{1}{2} \times \sqrt{3}a \times \frac{a}{2}$ $$=\frac{1}{4}\sqrt{3}a^2$$ Use area of triangle $=\frac{1}{2}$ base \times height i.e. $\frac{1}{2}OD \times OA$. At the point B, t = 0 Area of region required = $\frac{1}{4}\sqrt{3}a^2 - \int y \frac{dx}{dt} dt$ $$\therefore$$ Area = $\frac{1}{4}\sqrt{3}a^2 - \int_{-16}^{0} a \sin t(-3a \sin 3t) dt$ area = area of triangle – area beneath the curve $= \frac{1}{4}\sqrt{3}a^2 + \frac{3a^2}{2}\int_{\pm}^{0}\cos 2t - \cos 4t \, dt$ $= \frac{1}{4}\sqrt{3}a^2 + \frac{3a^2}{2}\left[\frac{1}{2}\sin 2t - \frac{1}{4}\sin 4t\right]_{\pi}$ The $\frac{\pi}{6}$ limit corresponds to point $$= \frac{1}{4}\sqrt{3}a^2 + \frac{3a^2}{2}\left[0 - \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{8}\right]$$ $$= \frac{1}{4}\sqrt{3}a^2 - \frac{3}{16}\sqrt{3}a^2$$ Use $2 \sin t \sin 3t = \cos 2t - \cos 4t$ This is from the trigonometric 'factor formulae' - see C3. A and the 0 limit corresponds to point B. Use the limits and the result $\sin\frac{\pi}{3} = \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}$ to give an ### **Edexcel AS and A Level Modular Mathematics** Review Exercise Exercise A, Question 77 ### **Question:** A table top, in the shape of a parallelogram, is made from two types of wood. The design is shown in the figure. The area inside the ellipse is made from one type of wood, and the surrounding area is made from a second type of wood. The ellipse has parametric equations, $$x = 5\cos\theta$$, $y = 4\sin\theta$, $0 \le \theta \le 2\pi$. The parallelogram consists of four line segments, which are tangents to the ellipse at the points where $$\theta = \alpha$$, $\theta = -\alpha$, $\theta = \pi - \alpha$, $\theta = -\pi + \alpha$. - Find an equation of the tangent to the ellipse at $(5\cos\alpha, 4\sin\alpha)$, and show that it can be written in the form $5v\sin\alpha + 4x\cos\alpha = 20$. - b Find by integration the area enclosed by the ellipse. - Hence show that the area enclosed between the ellipse and the parallelogram is $$\frac{80}{\sin 2\alpha} - 20\pi$$. a $$x = 5\cos\theta, y = 4\sin\theta$$ $$\frac{dx}{d\theta} = -5\sin\theta, \frac{dy}{d\theta} = 4\cos\theta$$ From the chain rule The gradient of the tangent at $(5\cos\alpha, 4\sin\alpha) = \frac{-4}{5}\cot\alpha$ Substitute $\theta = \alpha$ to give gradient at particular point. : Equation of the tangent is $$y - 4\sin \alpha = -\frac{4}{5}\cot \alpha(x - 5\cos \alpha)$$ Use $y - y_1 = m(x - x_1)$. i.e. $$5y \sin \alpha - 20 \sin^2 \alpha = -4\cos \alpha \times x$$ $+20\cos^2 \alpha$ $$\therefore 5y \sin \alpha + 4x \cos \alpha = 20(\cos^2 \alpha + \sin^2 \alpha)$$ Multiply both sides of the equation by $\sin \alpha$. $$= 20 \times 1$$ Collect terms using $$= 20$$ $$= 20$$ Collect terms using $$\cos^2 \alpha + \sin^2 \alpha = 1$$ b Area = $$\int_{2\pi}^{0} y \frac{dx}{d\theta} d\theta$$ = $$\int_{2\pi}^{0} 4 \sin \theta (-5 \sin \theta) d\theta$$ = $$-10 \int_{2\pi}^{0} 2 \sin^{2} \theta d\theta$$ = $$10 \int_{2\pi}^{0} \cos 2\theta - 1 d\theta$$ = $$10 \left[\frac{1}{2} \sin 2\theta - \theta \right]_{2\pi}^{0}$$ Use limits 0 and 2π to obtain Substitute $y = 4 \sin \theta$ and $$\frac{dx}{d\theta} = -5 \sin \theta \text{ into integral.}$$ Use double angle formula $$\cos 2\theta = 1 - 2 \sin^{2} \theta.$$ Integrate and use appropriate limits. area = 20π c Area of triangle formed by tangent at $(5\cos\alpha, 4\sin\alpha)$ and the coordinate axes: Tangent meets x-axis at $$x = \frac{5}{\cos \alpha}$$ Tangent meets y-axis at $y = \frac{4}{\sin \alpha}$ Find the points where the tangent crosses the x- and y-axis. ∴ Area of triangle = $$\frac{1}{2} \times \frac{5}{\cos \alpha} \times \frac{4}{\sin \alpha}$$ = $\frac{10}{\sin \alpha \cos \alpha}$ = $\frac{20}{\sin 2\alpha}$. Use area of triangle = $\frac{1}{2}$ base×height. Parallelogram is made up of four such triangles. $$\therefore$$ Area of parallelogram = $\frac{80}{\sin 2\pi}$