Integration Exercise A, Question 1

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

 x^5

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^5$$

$$y = \frac{x^6}{6} + c$$

Integration Exercise A, Question 2

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

 $10x^{4}$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 10x^4$$

$$y = 10 \ \frac{x^5}{5} + c$$

$$y = 2x^5 + c$$

Integration Exercise A, Question 3

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

 $3x^2$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$$

$$y = 3 \frac{x^3}{3} + c$$

$$y = x^3 + c$$

Integration Exercise A, Question 4

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$-x^{-2}$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -x^{-2}$$

$$y = -\frac{x^{-1}}{-1} + c$$

$$y = x^{-1} + c$$
 or

$$y = \frac{1}{x} + c$$

Integration Exercise A, Question 5

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$-4x^{-3}$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -4x^{-3}$$

$$y = -4 \frac{x^{-2}}{-2} + c$$

$$y = 2x^{-2} + c$$
 or

$$y = \frac{2}{x^2} + c$$

Integration Exercise A, Question 6

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

 $x^{\frac{2}{3}}$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{\frac{2}{3}}$$

$$y = \frac{x\frac{5}{3}}{\frac{5}{3}} + c$$

$$y = \frac{3}{5}x^{\frac{5}{3}} + c$$

Integration Exercise A, Question 7

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

 $4x^{\frac{1}{2}}$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{\frac{1}{2}}$$

$$y = 4 \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$y = \frac{8}{3}x^{\frac{3}{2}} + c$$

Integration Exercise A, Question 8

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$-2x^{6}$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2x^6$$

$$y = -2 \frac{x^7}{7} + c$$

$$y = -\frac{2}{7}x^7 + c$$

Integration Exercise A, Question 9

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

 $3x^{5}$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^5$$

$$y = 3 \frac{x^6}{6} + c$$

$$y = \frac{1}{2}x^6 + c$$

Integration Exercise A, Question 10

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$3x - 4$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^{-4}$$

$$y = 3 \, \frac{x^{-3}}{-3} + c$$

$$y = -x^{-3} + c$$
 or

$$y = -\frac{1}{x^3} + c$$

Integration Exercise A, Question 11

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$x^{-\frac{1}{2}}$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-\frac{1}{2}}$$

$$y = \frac{x + \frac{1}{2}}{\frac{1}{2}} + c$$

$$y = 2x^{\frac{1}{2}} + c \text{ or}$$
$$y = 2\sqrt{x + c}$$

Integration Exercise A, Question 12

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$5x - \frac{3}{2}$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x^{-\frac{3}{2}}$$

$$y = 5 \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + c$$

$$y = -10x^{-\frac{1}{2}} + c$$
 or

$$y = \frac{-10}{\sqrt{x}} + c$$

Integration Exercise A, Question 13

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$-2x^{-\frac{3}{2}}$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2x^{-\frac{3}{2}}$$

$$y = -2 \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + c$$

$$y = 4x^{-\frac{1}{2}} + c$$
 or

$$y = \frac{4}{\sqrt{x}} + c$$

Integration Exercise A, Question 14

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

 $6x^{\frac{1}{3}}$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^{\frac{1}{3}}$$

$$y = 6 \frac{x \frac{4}{3}}{\frac{4}{3}} + c$$

$$y = \frac{18}{4}x^{\frac{4}{3}} + c$$

$$y = \frac{9}{2}x^{\frac{4}{3}} + c$$

Integration Exercise A, Question 15

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

 $36x^{11}$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 36x^{11}$$

$$y = 36 \frac{x^{12}}{12} + c$$

$$y = 3x^{12} + c$$

Integration Exercise A, Question 16

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$-14x^{-8}$$

Integration Exercise A, Question 17

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$-3x^{-\frac{2}{3}}$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -3x^{-\frac{2}{3}}$$

$$y = -3 \frac{x \frac{1}{3}}{\frac{1}{3}} + c$$

$$y = -9x^{\frac{1}{3}} + c$$

Integration Exercise A, Question 18

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

- 5

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -5 = -5x^0$$

$$y = -5 \frac{x^1}{1} + c$$

$$y = -5x + c$$

Integration Exercise A, Question 19

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

6*x*

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x$$

$$y = 6 \frac{x^2}{2} + c$$

$$y = 3x^2 + c$$

Integration Exercise A, Question 20

Question:

Find an expression for y when $\frac{dy}{dx}$ is:

$$2x - 0.4$$

Solution:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{-0.4}$$

$$y = 2 \frac{x^{0.6}}{0.6} + c$$

$$y = \frac{20}{6}x^{0.6} + c$$

$$y = \frac{10}{3}x^{0.6} + c$$

Integration Exercise B, Question 1

Question:

Find y when $\frac{dy}{dx}$ is given by the following expressions. In each case simplify your answer:

(a)
$$4x - x^{-2} + 6x^{\frac{1}{2}}$$

(b)
$$15x^2 + 6x^{-3} - 3x^{-\frac{5}{2}}$$

(c)
$$x^3 - \frac{3}{2}x^{-\frac{1}{2}} - 6x^{-2}$$

(d)
$$4x^3 + x^{-\frac{2}{3}} - x^{-2}$$

(e)
$$4 - 12x^{-4} + 2x^{-\frac{1}{2}}$$

(f)
$$5x^{\frac{2}{3}} - 10x^4 + x^{-3}$$

(g)
$$-\frac{4}{3}x^{-\frac{4}{3}} - 3 + 8x$$

(h)
$$5x^4 - x^{-\frac{3}{2}} - 12x^{-5}$$

Solution:

(a)
$$\frac{dy}{dx} = 4x - x^{-2} + 6x^{\frac{1}{2}}$$

$$y = 4 \frac{x^2}{2} - \frac{x^{-1}}{-1} + 6 \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$y = 2x^2 + x^{-1} + 4x^{\frac{3}{2}} + c$$

(b)
$$\frac{dy}{dx} = 15x^2 + 6x^{-3} - 3x^{-\frac{5}{2}}$$

$$y = 15 \frac{x^3}{3} + 6 \frac{x^{-2}}{-2} - 3 \frac{x^{-\frac{3}{2}}}{-\frac{3}{2}} + c$$

$$y = 5x^3 - 3x^{-2} + 2x^{-\frac{3}{2}} + c$$

(c)
$$\frac{dy}{dx} = x^3 - \frac{3}{2}x^{-\frac{1}{2}} - 6x^{-2}$$

$$y = \frac{x^4}{4} - \frac{3}{2} \frac{x^{+} \frac{1}{2}}{\frac{1}{2}} - 6 \frac{x^{-1}}{-1} + c$$

$$y = \frac{1}{4}x^4 - 3x^{\frac{1}{2}} + 6x^{-1} + c$$

(d)
$$\frac{dy}{dx} = 4x^3 + x^{-\frac{2}{3}} - x^{-2}$$

$$y = 4 \frac{x^4}{4} + \frac{x \frac{1}{3}}{\frac{1}{3}} - \frac{x^{-1}}{-1} + c$$

$$y = x^4 + 3x^{\frac{1}{3}} + x^{-1} + c$$

(e)
$$\frac{dy}{dx} = 4 - 12x^{-4} + 2x^{-\frac{1}{2}}$$

$$y = 4x - 12 \frac{x^{-3}}{-3} + 2 \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$$

$$y = 4x + 4x^{-3} + 4x^{\frac{1}{2}} + c$$

(f)
$$\frac{dy}{dx} = 5x^{\frac{2}{3}} - 10x^4 + x^{-3}$$

$$y = 5 \frac{x^{\frac{5}{3}}}{\frac{5}{3}} - 10 \frac{x^5}{5} + \frac{x^{-2}}{-2} + c$$

$$y = 3x^{\frac{5}{3}} - 2x^5 - \frac{1}{2}x^{-2} + c$$

(g)
$$\frac{dy}{dx} = -\frac{4}{3}x^{-\frac{4}{3}} - 3 + 8x$$

$$y = -\frac{4}{3} \frac{x^{-\frac{1}{3}}}{-\frac{1}{3}} - 3x + 8 \frac{x^{2}}{2} + c$$

$$y = 4x^{-\frac{1}{3}} - 3x + 4x^2 + c$$

(h)
$$\frac{dy}{dx} = 5x^4 - x^{-\frac{3}{2}} - 12x^{-5}$$

$$y = 5 \frac{x^5}{5} - \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} - 12 \frac{x^{-4}}{-4} + c$$

$$y = x^5 + 2x^{-\frac{1}{2}} + 3x^{-4} + c$$

Solutionbank C1

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise B, Question 2

Question:

Find f(x) when f'(x) is given by the following expressions. In each case simplify your answer:

(a)
$$12x + \frac{3}{2}x^{-\frac{3}{2}} + 5$$

(b)
$$6x^5 + 6x^{-7} - \frac{1}{6}x^{-\frac{7}{6}}$$

(c)
$$\frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2}x^{-\frac{3}{2}}$$

(d)
$$10x + 8x^{-3}$$

(e)
$$2x - \frac{1}{3} + 4x - \frac{5}{3}$$

(f)
$$9x^2 + 4x^{-3} + \frac{1}{4}x^{-\frac{1}{2}}$$

(g)
$$x^2 + x^{-2} + x^{\frac{1}{2}}$$

(h)
$$-2x^{-3}-2x+2x^{\frac{1}{2}}$$

Solution:

(a)
$$f'(x) = 12x + \frac{3}{2}x^{-\frac{3}{2}} + 5$$

$$f(x) = 12 \frac{x^2}{2} + \frac{3}{2} \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + 5x + c$$

$$f(x) = 6x^2 - 3x^{-\frac{1}{2}} + 5x + c$$

(b)
$$f'(x) = 6x^5 + 6x^{-7} - \frac{1}{6}x^{-\frac{7}{6}}$$

$$f(x) = 6 \frac{x^6}{6} + 6 \frac{x^{-6}}{-6} - \frac{1}{6} \frac{x^{-\frac{1}{6}}}{-\frac{1}{6}} + c$$

$$f(x) = x^6 - x^{-6} + x^{-\frac{1}{6}} + c$$

(c)
$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2}x^{-\frac{3}{2}}$$

$$f(x) = \frac{1}{2} \frac{x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{1}{2} \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + c$$

$$f(x) = x^{\frac{1}{2}} + x^{-\frac{1}{2}} + c$$

(d)
$$f'(x) = 10x + 8x^{-3}$$

$$f(x) = 10 \frac{x^2}{2} + 8 \frac{x^{-2}}{2} + c$$

$$f(x) = 5x^2 - 4x^{-2} + c$$

(e)
$$f'(x) = 2x^{-\frac{1}{3}} + 4x^{-\frac{5}{3}}$$

$$f(x) = 2 \frac{x^{\frac{2}{3}}}{\frac{2}{3}} + 4 \frac{x^{-\frac{2}{3}}}{\frac{2}{3}} + c$$

$$f(x) = 3x^{\frac{2}{3}} - 6x^{-\frac{2}{3}} + c$$

(f)
$$f'(x) = 9x^2 + 4x^{-3} + \frac{1}{4}x^{-\frac{1}{2}}$$

$$f(x) = 9 \frac{x^3}{3} + 4 \frac{x^{-2}}{-2} + \frac{1}{4} \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$$

$$f(x) = 3x^3 - 2x^{-2} + \frac{1}{2}x^{\frac{1}{2}} + c$$

(g)
$$f'(x) = x^2 + x^{-2} + x^{\frac{1}{2}}$$

$$f(x) = \frac{x^3}{3} + \frac{x^{-1}}{-1} + \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$f(x) = \frac{1}{3}x^3 - x^{-1} + \frac{2}{3}x^{\frac{3}{2}} + c$$

(h)
$$f'(x) = -2x^{-3} - 2x + 2x^{\frac{1}{2}}$$

$$f(x) = -2 \frac{x^{-2}}{-2} - 2 \frac{x^{2}}{2} + 2 \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$f(x) = x^{-2} - x^2 + \frac{4}{3}x^{\frac{3}{2}} + c$$

Integration Exercise C, Question 1

Question:

Find the following integral:

$$\int (x^3 + 2x) dx$$

Solution:

$$\int (x^3 + 2x) dx$$

$$= \frac{x^4}{4} + 2 \frac{x^2}{2} + c$$

$$= \frac{1}{4}x^4 + x^2 + c$$

Integration Exercise C, Question 2

Question:

Find the following integral: $\int (2x^{-2} + 3) dx$

Solution:

$$\int (2x^{-2} + 3) dx$$

$$= 2 \frac{x^{-1}}{-1} + 3x + c$$

$$= -2x^{-1} + 3x + c$$

Integration Exercise C, Question 3

Question:

Find the following integral:

$$\int \left(5x^{\frac{3}{2}} - 3x^2 \right) dx$$

Solution:

$$\int \left(5x^{\frac{3}{2}} - 3x^2 \right) dx$$

$$= 5 \frac{x^{\frac{5}{2}}}{\frac{5}{2}} - 3 \frac{x^3}{3} + c$$

$$=2x^{\frac{5}{2}}-x^3+a$$

Integration Exercise C, Question 4

Question:

Find the following integral:

$$\int \left(2x^{\frac{1}{2}} - 2x^{-\frac{1}{2}} + 4 \right) dx$$

Solution:

$$\int \left(2x^{\frac{1}{2}} - 2x^{-\frac{1}{2}} + 4 \right) dx$$

$$=2\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+4x+c$$

$$= \frac{4}{3}x^{\frac{3}{2}} - 4x^{\frac{1}{2}} + 4x + c$$

Integration Exercise C, Question 5

Question:

Find the following integral: $\int (4x^3 - 3x^{-4} + r) dx$

Solution:

$$\int (4x^3 - 3x^{-4} + r) dx$$

$$= 4 \frac{x^4}{4} - 3 \frac{x^{-3}}{-3} + rx + c$$

$$= x^4 + x^{-3} + rx + c$$

Integration Exercise C, Question 6

Question:

Find the following integral:

$$\int (3t^2 - t^{-2}) dt$$

Solution:

$$\int (3t^2 - t^{-2}) dt$$

$$= 3 \frac{t^3}{3} - \frac{t^{-1}}{-1} + c$$

$$= t^3 + t^{-1} + c$$

Integration Exercise C, Question 7

Question:

Find the following integral:

$$\int \left(2t^2-3t^{-\frac{3}{2}}+1\right) dt$$

Solution:

$$\int \left(2t^2-3t^{-\frac{3}{2}}+1\right) dt$$

$$=2\frac{t^3}{3}-3\frac{t^{-\frac{1}{2}}}{-\frac{1}{2}}+t+c$$

$$= \frac{2}{3}t^3 + 6t^{-\frac{1}{2}} + t + c$$

Integration Exercise C, Question 8

Question:

Find the following integral:

$$\int \left(x + x^{-\frac{1}{2}} + x^{-\frac{3}{2}} \right) dx$$

Solution:

$$\int \left(x + x^{-\frac{1}{2}} + x^{-\frac{3}{2}} \right) dx$$

$$= \frac{x^2}{2} + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{x^{-\frac{1}{2}}}{\frac{1}{2}} + c$$

$$= \frac{1}{2}x^2 + 2x^{\frac{1}{2}} - 2x^{-\frac{1}{2}} + c$$

Integration Exercise C, Question 9

Question:

Find the following integral:

$$\int (px^4 + 2t + 3x^{-2}) dx$$

Solution:

$$\int (px^4 + 2t + 3x^{-2}) dx$$

$$= p \frac{x^5}{5} + 2tx + 3 \frac{x^{-1}}{-1} + c$$

$$= \frac{p}{5}x^5 + 2tx - 3x^{-1} + c$$

Integration Exercise C, Question 10

Question:

Find the following integral:

$$\int (pt^3 + q^2 + px^3) dt$$

Solution:

$$\int (pt^{3} + q^{2} + px^{3}) dt$$
$$= p \frac{t^{4}}{4} + q^{2}t + px^{3}t + c$$

Edexcel Modular Mathematics for AS and A-Level

Integration Exercise D, Question 1

Question:

Find the following integrals:

(a)
$$\int (2x + 3) x^2 dx$$

(b)
$$\int \frac{(2x^2+3)}{x^2} dx$$

(c)
$$\int (2x+3)^2 dx$$

(d)
$$\int (2x+3)(x-1) dx$$

(e)
$$\int (2x+3) \sqrt{x} dx$$

Solution:

(a)
$$\int (2x+3) x^2 dx$$

= $\int (2x^3 + 3x^2) dx$
= $2 \frac{x^4}{4} + 3 \frac{x^3}{3} + c$

$$= \frac{1}{2}x^4 + x^3 + c$$

(b)
$$\int \frac{(2x^2+3)}{x^2} dx$$

$$= \int \left(\frac{2x^2}{x^2} + \frac{3}{x^2} \right) dx$$

$$=\int (2+3x^{-2}) dx$$

$$= 2x + 3 \frac{x^{-1}}{-1} + c$$

$$=2x-3x^{-1}+c$$

or
$$=2x-\frac{3}{x}+c$$

(c)
$$\int (2x+3)^2 dx$$

= $\int (4x^2 + 12x + 9) dx$

$$=4\frac{x^3}{3}+12\frac{x^2}{2}+9x+c$$

$$= \frac{4}{3}x^3 + 6x^2 + 9x + c$$

(d)
$$\int (2x+3) (x-1) dx$$

= $\int (2x^2 + x - 3) dx$

$$=2\frac{x^3}{3}+\frac{x^2}{2}-3x+c$$

$$= \frac{2}{3}x^3 + \frac{1}{2}x^2 - 3x + c$$

(e)
$$\int (2x+3) \sqrt{x} dx$$
$$= \int \left(2x+3\right) x^{\frac{1}{2}} dx$$
$$= \int \left(2x^{\frac{3}{2}} + 3x^{\frac{1}{2}}\right) dx$$

$$= 2 \frac{x \frac{5}{2}}{\frac{5}{2}} + 3 \frac{x \frac{3}{2}}{\frac{3}{2}} + c$$
$$= \frac{4}{5} x \frac{5}{2} + 2x \frac{3}{2} + c$$

or =
$$\frac{4}{5}\sqrt{x^5} + 2\sqrt{x^3} + c$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise D, Question 2

Question:

Find $\int f(x)dx$ when f(x) is given by the following:

(a)
$$(x+2)^2$$

(b)
$$\left(x + \frac{1}{x}\right)^2$$

(c)
$$(\sqrt{x+2})^2$$

(d)
$$\sqrt{x}(x+2)$$

(e)
$$\left(\begin{array}{c} \frac{x+2}{\sqrt{x}} \end{array}\right)$$

(f)
$$\left(\frac{1}{\sqrt{x}} + 2\sqrt{x} \right)$$

Solution:

(a)
$$\int (x+2)^2 dx$$

= $\int (x^2 + 4x + 4) dx$
= $\frac{1}{3}x^3 + \frac{4}{2}x^2 + 4x + c$
= $\frac{1}{3}x^3 + 2x^2 + 4x + c$

(b)
$$\int \left(x + \frac{1}{x} \right)^2 dx$$

$$= \int \left(x^2 + 2 + \frac{1}{x^2} \right) dx$$

$$= \int (x^2 + 2 + x^{-2}) dx$$

$$= \frac{1}{3}x^3 + 2x + \frac{x^{-1}}{-1} + c$$

$$= \frac{1}{3}x^3 + 2x - x^{-1} + c$$
or
$$= \frac{1}{3}x^3 + 2x - \frac{1}{x} + c$$

(c)
$$\int (\sqrt{x+2})^2 dx$$

= $\int (x+4\sqrt{x+4}) dx$

$$= \int \left(x + 4x^{\frac{1}{2}} + 4 \right) dx$$

$$= \frac{1}{2}x^2 + 4\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 4x + c$$

$$= \frac{1}{2}x^2 + \frac{8}{3}x^{\frac{3}{2}} + 4x + c$$

(d)
$$\int \sqrt{x} (x+2) dx$$
$$= \int \left(x^{\frac{3}{2}} + 2x^{\frac{1}{2}} \right) dx$$

$$= \frac{x\frac{5}{2}}{\frac{5}{2}} + 2\frac{x\frac{3}{2}}{\frac{3}{2}} + c$$

$$= \frac{2}{5}x^{\frac{5}{2}} + \frac{4}{3}x^{\frac{3}{2}} + c$$

or =
$$\frac{2}{5}\sqrt{x^5} + \frac{4}{3}\sqrt{x^3} + c$$

(e)
$$\int \left(\frac{x+2}{\sqrt{x}} \right) dx$$

$$= \int \left(\frac{x}{x \frac{1}{2}} + \frac{2}{x \frac{1}{2}} \right) dx$$

$$= \int \left(x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \right) dx$$

$$= \frac{x\frac{3}{2}}{\frac{3}{2}} + 2\frac{x\frac{1}{2}}{\frac{1}{2}} + c$$

$$= \frac{2}{3}x^{\frac{3}{2}} + 4x^{\frac{1}{2}} + c$$

or =
$$\frac{2}{3}\sqrt{x^3} + 4\sqrt{x} + c$$

(f)
$$\int \left(\frac{1}{\sqrt{x}} + 2\sqrt{x} \right) dx$$

$$= \int \left(x^{-\frac{1}{2}} + 2x^{\frac{1}{2}} \right) dx$$

$$= \frac{x\frac{1}{2}}{\frac{1}{2}} + 2\frac{x\frac{3}{2}}{\frac{3}{2}} + c$$

$$=2x^{\frac{1}{2}}+\frac{4}{3}x^{\frac{3}{2}}+c$$

or =
$$2\sqrt{x} + \frac{4}{3}\sqrt{x^3} + c$$

Edexcel Modular Mathematics for AS and A-Level

Integration Exercise D, Question 3

Question:

Find the following integrals:

(a)
$$\int \left(3\sqrt{x} + \frac{1}{x^2} \right) dx$$

(b)
$$\int \left(\frac{2}{\sqrt{x}} + 3x^2 \right) dx$$

(c)
$$\int \left(x^{\frac{2}{3}} + \frac{4}{x^3} \right) dx$$

(d)
$$\int \left(\frac{2+x}{x^3} + 3 \right) dx$$

(e)
$$\int (x^2 + 3) (x - 1) dx$$

(f)
$$\left(\frac{2}{\sqrt{x}} + 3x \sqrt{x} \right) dx$$

(g)
$$\int (x-3)^2 dx$$

$$(h) \int \frac{(2x+1)^2}{\sqrt{x}} dx$$

(i)
$$\int \left(3 + \frac{\sqrt{x + 6x^3}}{x}\right) dx$$

(j)
$$\int \sqrt{x} (\sqrt{x+3})^2 dx$$

Solution:

(a)
$$\int \left(3\sqrt{x} + \frac{1}{x^2} \right) dx$$
$$= \int \left(3x^{\frac{1}{2}} + x^{-2} \right) dx$$

$$=3\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{-1}}{-1}+c$$

$$= 2x^{\frac{3}{2}} - x^{-1} + c$$
or
$$= 2\sqrt{x^3} - \frac{1}{x} + c$$

(b)
$$\int \left(\frac{2}{\sqrt{x}} + 3x^2 \right) dx$$
$$= \int \left(2x^{-\frac{1}{2}} + 3x^2 \right) dx$$

$$=2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+\frac{3}{3}x^3+c$$

$$= 4x^{\frac{1}{2}} + x^3 + c$$

or =
$$4 \sqrt{x + x^3 + c}$$

(c)
$$\int \left(x^{\frac{2}{3}} + \frac{4}{x^3} \right) dx$$
$$= \int \left(x^{\frac{2}{3}} + 4x^{-3} \right) dx$$

$$= \frac{x\frac{5}{3}}{\frac{5}{3}} + 4\frac{x^{-2}}{-2} + c$$

$$= \frac{3}{5}x^{\frac{5}{3}} - 2x^{-2} + c$$

or =
$$\frac{3}{5}x^{\frac{5}{3}} - \frac{2}{x^2} + c$$

(d)
$$\int \left(\frac{2+x}{x^3} + 3\right) dx$$

$$= \int \left(2x^{-3} + x^{-2} + 3\right) dx$$

$$= 2\frac{x^{-2}}{-2} + \frac{x^{-1}}{-1} + 3x + c$$

$$= -x^{-2} - x^{-1} + 3x + c$$
or
$$= -\frac{1}{x^2} - \frac{1}{x} + 3x + c$$

(e)
$$\int (x^2 + 3) (x - 1) dx$$

= $\int (x^3 - x^2 + 3x - 3) dx$
= $\frac{1}{4}x^4 - \frac{1}{3}x^3 + \frac{3}{2}x^2 - 3x + c$

(f)
$$\int \left(\frac{2}{\sqrt{x}} + 3x \sqrt{x} \right) dx$$

$$= \int \left(2x^{-\frac{1}{2}} + 3x^{\frac{3}{2}}\right) dx$$

$$=2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+3\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+c$$

$$=4x^{\frac{1}{2}}+\frac{6}{5}x^{\frac{5}{2}}+c$$

or =
$$4\sqrt{x} + \frac{6}{5}x^2\sqrt{x} + c$$

(g)
$$\int (x-3)^2 dx$$

= $\int (x^2 - 6x + 9) dx$
= $\frac{1}{3}x^3 - \frac{6}{2}x^2 + 9x + c$
= $\frac{1}{3}x^3 - 3x^2 + 9x + c$

(h)
$$\int \frac{(2x+1)^2}{\sqrt{x}} dx$$

$$= \int x^{-\frac{1}{2}} \left(4x^2 + 4x + 1 \right) dx$$

$$= \int \left(4x^{\frac{3}{2}} + 4x^{\frac{1}{2}} + x^{-\frac{1}{2}} \right) dx$$

$$=4\frac{x\frac{5}{2}}{\frac{5}{2}}+4\frac{x\frac{3}{2}}{\frac{3}{2}}+\frac{x\frac{1}{2}}{\frac{1}{2}}+c$$

$$= \frac{8}{5}x^{\frac{5}{2}} + \frac{8}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + c$$

or =
$$\frac{8}{5}\sqrt{x^5} + \frac{8}{3}\sqrt{x^3} + 2\sqrt{x} + c$$

(i)
$$\int \left(3 + \frac{\sqrt{x+6x^3}}{x}\right) dx$$

$$= \int \left(3 + x^{-\frac{1}{2}} + 6x^2\right) dx$$

$$= 3x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{6}{3}x^3 + c$$

$$= 3x + 2x^{\frac{1}{2}} + 2x^3 + c$$

or =
$$3x + 2\sqrt{x + 2x^3 + c}$$

(j)
$$\int \sqrt{x} (\sqrt{x+3})^2 dx$$

$$= \int x^{\frac{1}{2}} \left(x + 6x^{\frac{1}{2}} + 9 \right) dx$$

$$= \int \left(x^{\frac{3}{2}} + 6x + 9x^{\frac{1}{2}} \right) dx$$

$$= \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + \frac{6}{2}x^2 + 9\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$= \frac{2}{5}x^{\frac{5}{2}} + 3x^2 + 6x^{\frac{3}{2}} + c$$
or
$$= \frac{2}{5}\sqrt{x^5} + 3x^2 + 6\sqrt{x^3} + c$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 1

Question:

Find the equation of the curve with the given $\frac{dy}{dx}$ that passes through the given point:

(a)
$$\frac{dy}{dx} = 3x^2 + 2x$$
; point (2, 10)

(b)
$$\frac{dy}{dx} = 4x^3 + \frac{2}{x^3} + 3$$
; point (1, 4)

(c)
$$\frac{dy}{dx} = \sqrt{x + \frac{1}{4}x^2}$$
; point (4, 11)

(d)
$$\frac{dy}{dx} = \frac{3}{\sqrt{x}} - x$$
; point (4, 0)

(e)
$$\frac{dy}{dx} = (x+2)^2$$
; point (1,7)

(f)
$$\frac{dy}{dx} = \frac{x^2 + 3}{\sqrt{x}}$$
; point (0, 1)

Solution:

(a)
$$\frac{dy}{dx} = 3x^2 + 2x$$

$$\Rightarrow y = \frac{3}{3}x^3 + \frac{2}{2}x^2 + c$$

So
$$y = x^3 + x^2 + c$$

So
$$y = x^3 + x^2 + c$$

 $x = 2, y = 10 \implies 10 = 8 + 4 + c$

So
$$c = -2$$

So equation is $y = x^3 + x^2 - 2$

(b)
$$\frac{dy}{dx} = 4x^3 + \frac{2}{3} + 3$$

$$\Rightarrow y = \frac{4}{4}x^4 - \frac{2}{2}x^{-2} + 3x + c$$

So
$$y = x^4 - x^{-2} + 3x + c$$

So
$$y = x^3 - x^2 + 3x + c$$

 $x = 1, y = 4 \implies 4 = 1 - 1 + 3 + c$

So
$$c = 1$$

So equation is
$$y = x^4 - x^{-2} + 3x + 1$$

(c)
$$\frac{dy}{dx} = \sqrt{x + \frac{1}{4}x^2}$$

$$\Rightarrow y = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{1}{4} \frac{x^3}{3} + c$$

So
$$y = \frac{2}{3}x^{\frac{3}{2}} + \frac{1}{12}x^3 + c$$

$$x = 4, y = 11 \implies 11 = \frac{2}{3} \times 2^3 + \frac{1}{12} \times 4^3 + c$$

So
$$c = \frac{33}{3} - \frac{32}{3} = \frac{1}{3}$$

So equation is $y = \frac{2}{3}x^{\frac{3}{2}} + \frac{1}{12}x^3 + \frac{1}{3}$

(d)
$$\frac{dy}{dx} = \frac{3}{\sqrt{x}} - x$$

$$\Rightarrow y = 3 \frac{x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{1}{2}x^{2} + c$$

So
$$y = 6 \sqrt{x - \frac{1}{2}x^2 + c}$$

$$x = 4, y = 0 \implies 0 = 6 \times 2 - \frac{1}{2} \times 16 + c$$

So
$$c = -4$$

So equation is $y = 6 \sqrt{x - \frac{1}{2}x^2 - 4}$

(e)
$$\frac{dy}{dx} = (x+2)^2 = x^2 + 4x + 4$$

$$\Rightarrow \quad y = \frac{1}{3}x^3 + 2x^2 + 4x + c$$

$$x = 1, y = 7 \implies 7 = \frac{1}{3} + 2 + 4 + c$$

So
$$c = \frac{2}{3}$$

So equation is
$$y = \frac{1}{3}x^3 + 2x^2 + 4x + \frac{2}{3}$$

(f)
$$\frac{dy}{dx} = \frac{x^2 + 3}{\sqrt{x}} = x^{\frac{3}{2}} + 3x^{-\frac{1}{2}}$$

$$\Rightarrow y = \frac{x\frac{5}{2}}{\frac{5}{2}} + 3\frac{x\frac{1}{2}}{\frac{1}{2}} + c$$

So
$$y = \frac{2}{5}x^{\frac{5}{2}} + 6x^{\frac{1}{2}} + c$$

$$x = 0, y = 1 \implies 1 = \frac{2}{5} \times 0 + 6 \times 0 + c$$

So
$$c = 1$$

So equation of curve is
$$y = \frac{2}{5}x^{\frac{5}{2}} + 6x^{\frac{1}{2}} + 1$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 2

Question:

The curve *C*, with equation y = f(x), passes through the point (1, 2) and $f'(x) = 2x^3 - \frac{1}{x^2}$. Find the equation of *C* in the form y = f(x).

Solution:

$$f'(x) = 2x^3 - \frac{1}{x^2} = 2x^3 - x^{-2}$$

So
$$f(x) = \frac{2}{4}x^4 - \frac{x^{-1}}{-1} + c = \frac{1}{2}x^4 + \frac{1}{x} + c$$

But
$$f(1) = 2$$

So
$$2 = \frac{1}{2} + 1 + c$$

$$\Rightarrow$$
 $c = \frac{1}{2}$

So
$$f(x) = \frac{1}{2}x^4 + \frac{1}{x} + \frac{1}{2}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 3

Question:

The gradient of a particular curve is given by $\frac{dy}{dx} = \frac{\sqrt{x+3}}{x^2}$. Given that the curve passes through the point (9,0), find an equation of the curve.

Solution:

$$\frac{dy}{dx} = \frac{\sqrt{x+3}}{x^2} = x^{-\frac{3}{2}} + 3x^{-2}$$

$$\Rightarrow y = \frac{x - \frac{1}{2}}{-\frac{1}{2}} + 3 \frac{x - 1}{-1} + c$$

So
$$y = -2x^{-\frac{1}{2}} - 3x^{-1} + c = -\frac{2}{\sqrt{x}} - \frac{3}{x} + c$$

$$x = 9, y = 0 \implies 0 = -\frac{2}{3} - \frac{3}{9} + c$$

So
$$c = \frac{2}{3} + \frac{1}{3} = 1$$

So equation is
$$y = 1 - \frac{2}{\sqrt{x}} - \frac{3}{x}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 4

Question:

A set of curves, that each pass through the origin, have equations $y = f_1(x)$, $y = f_2(x)$, $y = f_3(x)$... where $f_n'(x) = f_{n-1}(x)$ and $f_1(x) = x^2$.

- (a) Find $f_2(x)$, $f_3(x)$.
- (b) Suggest an expression for $f_n(x)$.

Solution:

(a)
$$f_2'(x) = f_1(x) = x^2$$

So
$$f_2(x) = \frac{1}{3}x^3 + c$$

The curve passes through (0 , 0) so \mathbf{f}_2 (0) $\,=0\,$ $\,\Rightarrow\,$ $\,$ c=0 .

So
$$f_2(x) = \frac{1}{3}x^3$$

$$f_3'(x) = \frac{1}{3}x^3$$

$$f_3(x) = \frac{1}{12}x^4 + c$$
, but $c = 0$ since $f_3(0) = 0$.

So
$$f_3(x) = \frac{1}{12}x^4$$

(b)
$$f_2(x) = \frac{x^3}{3}$$
, $f_3(x) = \frac{x^4}{3 \times 4}$

So power of x is n + 1 for $f_n(x)$, denominator is $3 \times 4 \times ...$ up to n + 1:

$$f_n(x) = \frac{x^{n+1}}{3 \times 4 \times 5 \times ... \times (n+1)}$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise E, Question 5

Question:

A set of curves, with equations $y = f_1(x)$, $y = f_2(x)$, $y = f_3(x)$... all pass through the point (0, 1) and they are related by the property $f_n'(x) = f_{n-1}(x)$ and $f_1(x) = 1$.

Find $f_2(x)$, $f_3(x)$, $f_4(x)$.

Solution:

$$\begin{aligned} \mathbf{f_2'}(x) &= \mathbf{f_1}(x) = 1 \\ \Rightarrow &\mathbf{f_2}(x) = x + c \\ \mathbf{But} \ \mathbf{f_2} \ (0) &= 1 \Rightarrow 1 = 0 + c \Rightarrow c = 1 \\ \mathbf{So} \ \mathbf{f_2}(x) &= x + 1 \end{aligned}$$

$$f_3'(x) = f_2(x) = x + 1$$

 $\Rightarrow f_3(x) = \frac{1}{2}x^2 + x + c$
But $f_3(0) = 1 \Rightarrow 1 = 0 + c \Rightarrow c = 1$
So $f_3(x) = \frac{1}{2}x^2 + x + 1$

$$f_4'(x) = f_3(x) = \frac{1}{2}x^2 + x + 1$$

$$\Rightarrow f_4(x) = \frac{1}{6}x^3 + \frac{1}{2}x^2 + x + c$$
But $f_4(0) = 1 \Rightarrow 1 = 0 + c \Rightarrow c = 1$
So $f_4(x) = \frac{1}{6}x^3 + \frac{1}{2}x^2 + x + 1$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 1

Question:

Find:

(a)
$$\int (x+1) (2x-5) dx$$

(b)
$$\int \left(x^{\frac{1}{3}} + x^{-\frac{1}{3}} \right) dx.$$

Solution:

(a)
$$\int (x+1) (2x-5) dx$$

= $\int (2x^2 - 3x - 5) dx$
= $2 \frac{x^3}{3} - 3 \frac{x^2}{2} - 5x + c$
= $\frac{2}{3}x^3 - \frac{3}{2}x^2 - 5x + c$

(b)
$$\int \left(x^{\frac{1}{3}} + x^{-\frac{1}{3}} \right) dx$$

$$= \frac{x\frac{4}{3}}{\frac{4}{3}} + \frac{x\frac{2}{3}}{\frac{2}{3}} + c$$
$$= \frac{3}{4}x^{\frac{4}{3}} + \frac{3}{2}x^{\frac{2}{3}} + c$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 2

Question:

The gradient of a curve is given by $f'(x) = x^2 - 3x - \frac{2}{x^2}$. Given that the curve passes through the point (1, 1), find the equation of the curve in the form y = f(x).

Solution:

$$f'(x) = x^2 - 3x - \frac{2}{x^2} = x^2 - 3x - 2x^{-2}$$

So
$$f(x) = \frac{x^3}{3} - 3 \frac{x^2}{2} - 2 \frac{x^{-1}}{-1} + c$$

So
$$f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + \frac{2}{x} + c$$

But f
$$\left(\begin{array}{c}1\end{array}\right) = 1 \Rightarrow \frac{1}{3} - \frac{3}{2} + 2 + c = 1$$

So
$$c = \frac{1}{6}$$

So the equation is $y = \frac{1}{3}x^3 - \frac{3}{2}x^2 + \frac{2}{x} + \frac{1}{6}$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 3

Question:

Find

(a)
$$\int (8x^3 - 6x^2 + 5) dx$$

(b)
$$\int \left(5x+2\right) x^{\frac{1}{2}} dx.$$

Solution:

(a)
$$\int (8x^3 - 6x^2 + 5) dx$$

= $8\frac{x^4}{4} - 6\frac{x^3}{3} + 5x + c$
= $2x^4 - 2x^3 + 5x + c$

(b)
$$\int \left(5x + 2 \right) x^{\frac{1}{2}} dx$$

$$= \int \left(5x^{\frac{3}{2}} + 2x^{\frac{1}{2}} \right) dx$$

$$= 5 \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + 2 \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$=2x^{\frac{5}{2}}+\frac{4}{3}x^{\frac{3}{2}}+c$$

Integration Exercise F, Question 4

Question:

Given
$$y = \frac{(x+1)(2x-3)}{\sqrt{x}}$$
, find $\int y dx$.

Solution:

$$y = \frac{(x+1)(2x-3)}{\sqrt{x}}$$

$$y = \left(2x^2 - x - 3\right)x^{-\frac{1}{2}}$$

$$y = 2x^{\frac{3}{2}} - x^{\frac{1}{2}} - 3x^{-\frac{1}{2}}$$

$$\int y dx = \int \left(2x^{\frac{3}{2}} - x^{\frac{1}{2}} - 3x^{-\frac{1}{2}}\right) dx$$

$$= 2\frac{x^{\frac{5}{2}}}{\frac{5}{2}} - \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - 3\frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$$

$$= \frac{4}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + c$$

Integration

Exercise F, Question 5

Question:

Given that $\frac{dx}{dt} = 3t^2 - 2t + 1$ and that x = 2 when t = 1, find the value of x when t = 2.

Solution:

$$\frac{dx}{dt} = 3t^2 - 2t + 1$$

$$\Rightarrow x = 3\frac{t^3}{3} - 2\frac{t^2}{2} + t + c$$
So $x = t^3 - t^2 + t + c$
But when $t = 1, x = 2$.
So $2 = 1 - 1 + 1 + c$

$$\Rightarrow c = 1$$
So $x = t^3 - t^2 + t + 1$
When $t = 2, x = 8 - 4 + 2 + 1$
So $x = 7$

Integration Exercise F, Question 6

Question:

Given
$$y = 3x^{\frac{1}{2}} + 2x^{-\frac{1}{2}}$$
, $x > 0$, find $\int y dx$.

Solution:

$$\int y dx = \int \left(3x^{\frac{1}{2}} + 2x^{-\frac{1}{2}} \right) dx$$

$$= 3 \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 2 \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c$$

$$=2x^{\frac{3}{2}}+4x^{\frac{1}{2}}+a$$

Integration

Exercise F, Question 7

Question:

Given that $\frac{dx}{dt} = (t+1)^2$ and that x = 0 when t = 2, find the value of x when t = 3.

Solution:

$$\frac{dx}{dt} = (t+1)^{2} = t^{2} + 2t + 1$$

$$\Rightarrow x = \frac{t^{3}}{3} + 2\frac{t^{2}}{2} + t + c$$

But
$$x = 0$$
 when $t = 2$.

So
$$0 = \frac{8}{3} + 4 + 2 + c$$

$$\Rightarrow \quad c = - \frac{26}{3}$$

So
$$x = \frac{1}{3}t^3 + t^2 + t - \frac{26}{3}$$

When
$$t = 3$$
, $x = \frac{27}{3} + 9 + 3 - \frac{26}{3}$

So
$$x = 12 \frac{1}{3}$$
 or $\frac{37}{3}$

Integration Exercise F, Question 8

Question:

Given that $y^{\frac{1}{2}} = x^{\frac{1}{3}} + 3$:

- (a) Show that $y = x^{\frac{2}{3}} + Ax^{\frac{1}{3}} + B$, where A and B are constants to be found.
- (b) Hence find $\int y dx$. **[E]**

Solution:

(a)
$$y^{\frac{1}{2}} = x^{\frac{1}{3}} + 3$$

So $y = \left(x^{\frac{1}{3}} + 3\right)^2$
So $y = \left(x^{\frac{1}{3}} + 3\right)^2 + 6x^{\frac{1}{3}} + 9$
So $y = x^{\frac{2}{3}} + 6x^{\frac{1}{3}} + 9$
 $(A = 6, B = 9)$

(b)
$$\int y dx = \int \left(x^{\frac{2}{3}} + 6x^{\frac{1}{3}} + 9 \right) dx$$

$$= \frac{x\frac{5}{3}}{\frac{5}{3}} + 6\frac{x\frac{4}{3}}{\frac{4}{3}} + 9x + c$$
$$= \frac{3}{5}x\frac{5}{3} + \frac{9}{2}x\frac{4}{3} + 9x + c$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 9

Question:

Given that $y = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}} \left(x > 0 \right)$:

- (a) Find $\frac{dy}{dx}$.
- (b) Find $\int y dx$. **[E]**

Solution:

$$y = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}$$

(a)
$$\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} - 4 \times \left(-\frac{1}{2}\right)x^{-\frac{3}{2}}$$

So
$$\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + 2x^{-\frac{3}{2}}$$

(b)
$$\int y dx = \int \left(3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}} \right) dx$$

$$=3\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-4\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c$$

$$=2x^{\frac{3}{2}}-8x^{\frac{1}{2}}+c$$

Edexcel Modular Mathematics for AS and A-Level

Integration

Exercise F, Question 10

Question:

Find
$$\int \left(x^{\frac{1}{2}}-4\right)\left(x^{-\frac{1}{2}}-1\right) dx$$
. **[E]**

Solution:

$$\int \left(x^{\frac{1}{2}} - 4\right) \left(x^{-\frac{1}{2}} - 1\right) dx$$

$$= \int \left(1 - 4x^{-\frac{1}{2}} - x^{\frac{1}{2}} + 4\right) dx$$

$$= \int \left(5 - 4x^{-\frac{1}{2}} - x^{\frac{1}{2}}\right) dx$$

$$= 5x - 4 \frac{x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$$

$$= 5x - 8x^{\frac{1}{2}} - \frac{2}{3}x^{\frac{3}{2}} + c$$