| Paper Reference (complete below) Centre No. Surname                                                                                                                           | Init            | ial(s)   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|
| Candidate                                                                                                                                                                     |                 |          |
| No. Signature                                                                                                                                                                 |                 |          |
|                                                                                                                                                                               |                 |          |
| Paper Reference(s)                                                                                                                                                            |                 | 1        |
| 6663                                                                                                                                                                          | Examiner's use  | only     |
| Edexcel GCE                                                                                                                                                                   | Team Leader's u | ase only |
| Edeated GCE                                                                                                                                                                   |                 |          |
| Pure Mathematics C1                                                                                                                                                           |                 |          |
| Advanced Subsidiary                                                                                                                                                           | Question        | Leave    |
| ·                                                                                                                                                                             | Number          | Blank    |
| Specimen Paper                                                                                                                                                                | 1               |          |
|                                                                                                                                                                               | 2               |          |
| Time: 1 hour 30 minutes                                                                                                                                                       | 3               |          |
|                                                                                                                                                                               | 4               |          |
|                                                                                                                                                                               | 5               |          |
|                                                                                                                                                                               | 6               |          |
|                                                                                                                                                                               | 7               |          |
| Materials required for examination Answer Book (AB16)  Items included with question papers Nil                                                                                |                 |          |
| Mathematical Formulae (Lilac)                                                                                                                                                 | 8               |          |
| Graph Paper (ASG2)                                                                                                                                                            | 9               |          |
| Calculators may NOT be used in this examination.                                                                                                                              | 10              |          |
| Instructions to Candidates                                                                                                                                                    |                 |          |
| Tour candidate details are printed next to the bar code above. Check that these are correct                                                                                   |                 |          |
| and sign your name in the signature box above.                                                                                                                                |                 |          |
| If your candidate details are incorrect, or missing, then complete ALL the boxes above.                                                                                       |                 |          |
| When a calculator is used, the answer should be given to an appropriate degree of accuracy. You must write your answer for each question in the space following the question. |                 |          |
| If you need more space to complete your answer to any question, use additional answer                                                                                         |                 |          |
| sheets.                                                                                                                                                                       |                 |          |
| Information for Candidates                                                                                                                                                    |                 |          |
| A booklet 'mathematical Formulae and Statistical Tables' is provided                                                                                                          |                 | <u> </u> |

#### **Information for C**

A booklet 'mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

This paper has 10 questions.

#### Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit.

Turn over

Total



| ate $\sum_{r=1}^{20} (5+2r)$ . |
|--------------------------------|
| (3)                            |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |

| <b>(4)</b> |
|------------|
|            |
| ••••••     |
| <br>•••••• |
| •••••      |
| <br>•••••  |
|            |
| <br>       |
|            |
|            |
|            |
| <br>       |
|            |
|            |
| ••••••     |
| ••••••     |
| <br>•••••• |
| <br>       |
|            |
|            |
| •••••      |

| 3.   | (a)   | Express $\sqrt{80}$ in the form $a\sqrt{5}$ , where a is an integer.                 | Leave<br>blank |
|------|-------|--------------------------------------------------------------------------------------|----------------|
|      |       | (1)                                                                                  |                |
|      | (b)   | Express $(4 - \sqrt{5})^2$ in the form $b + c\sqrt{5}$ , where b and c are integers. |                |
|      |       | (3)                                                                                  |                |
|      |       |                                                                                      |                |
| •••• | ••••• |                                                                                      |                |
| •••• | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      |       |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      |       |                                                                                      |                |
|      |       |                                                                                      |                |
|      |       |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      |       |                                                                                      |                |
|      |       |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      | ••••• |                                                                                      |                |
|      |       |                                                                                      |                |
|      |       |                                                                                      |                |
|      |       |                                                                                      |                |

|         | Find an equation for $l$ , giving your answer in the form $ax + by + c = 0$ , where $a$ , $b$ and |
|---------|---------------------------------------------------------------------------------------------------|
|         | c are integers. (5)                                                                               |
| •••     |                                                                                                   |
| •••     |                                                                                                   |
| · • • · |                                                                                                   |
| •••     |                                                                                                   |
| •••     |                                                                                                   |
|         |                                                                                                   |
|         |                                                                                                   |
|         |                                                                                                   |
| •••     |                                                                                                   |
| ••••    |                                                                                                   |
| ••••    |                                                                                                   |
| •••     |                                                                                                   |
| •••     |                                                                                                   |
| ••••    |                                                                                                   |
| ••••    |                                                                                                   |
| ••••    |                                                                                                   |
| ••••    |                                                                                                   |
| • • • • |                                                                                                   |
| · • • • |                                                                                                   |
| •••     |                                                                                                   |
|         |                                                                                                   |
| · • • • |                                                                                                   |
|         |                                                                                                   |

5.

Figure 1

Leave blank



Figure 1 shows a sketch of the curve with equation y = f(x).

The curve crosses the coordinate axes at the points (0, 1) and (3, 0). The maximum point on the curve is (1, 2).

On separate diagrams in the space opposite, sketch the curve with equation

(a) 
$$y = f(x+1)$$
, (3)

(b) 
$$y = f(2x)$$
. (3)

On each diagram, show clearly the coordinates of the maximum point, and of each point at which the curve crosses the coordinate axes.

|               |                                                            | Leav |
|---------------|------------------------------------------------------------|------|
| <b>6.</b> (a) | Solve the simultaneous equations                           |      |
|               | y+2x=5,                                                    |      |
|               | $2x^2 - 3x - y = 16.$                                      |      |
| <i>a</i> >    | (6)                                                        |      |
| (b)           | Hence, or otherwise, find the set of values of x for which |      |
|               | $2x^2 - 3x - 16 > 5 - 2x. 	{3}$                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
| •••••         |                                                            |      |
| •••••         |                                                            |      |
| •••••         |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
| •••••         |                                                            |      |
| •••••         |                                                            |      |
| •••••         |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
| •••••         |                                                            |      |
| •••••         |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |
|               |                                                            |      |

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

| 7.    | Ahmed plans to save £250 in the year 2001, £300 in 2002, £350 in 2003, and so on us the year 2020. His planned savings form an arithmetic sequence with communiference £50. |      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       | (a) Find the amount he plans to save in the year 2011.                                                                                                                      |      |
|       |                                                                                                                                                                             | (2)  |
|       | (b) Calculate his total planned savings over the 20 year period from 2001 to 2020.                                                                                          | (3)  |
|       | Ben also plans to save money over the same 20 year period. He saves £A in the y 2001 and his planned yearly savings form an arithmetic sequence with communifierence £60.   |      |
|       | Given that Ben's total planned savings over the 20 year period are equal to Ahme total planned savings over the same period,                                                | d's  |
|       | (c) calculate the value of $A$ .                                                                                                                                            | (4)  |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
| ••••• |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
| ••••  |                                                                                                                                                                             | •••• |
| ••••• |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
| ••••  |                                                                                                                                                                             |      |
| ••••  |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
| ••••  |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |
| ••••• |                                                                                                                                                                             |      |
|       |                                                                                                                                                                             |      |

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

8. Given that

 $x^{2} + 10x + 36 \equiv (x + a)^{2} + b,$  where a and b are constants,

- (a) find the value of a and the value of b. (3)
- (b) Hence show that the equation  $x^2 + 10x + 36 = 0$  has no real roots.

(2)

The equation  $x^2 + 10x + k = 0$  has equal roots.

(c) Find the value of k.

(2) (d) For this value of k, sketch the graph of  $y = x^2 + 10x + k$ , showing the coordinates of

(d) For this value of k, sketch the graph of  $y = x^2 + 10x + k$ , showing the coordinates of any points at which the graph meets the coordinate axes. (4)

| ••••• | <br>• • • • • • • • • • • • • • • • • • • • | ••••• | •••••• | ••••• |
|-------|---------------------------------------------|-------|--------|-------|
|       | <br>                                        |       |        |       |
|       |                                             |       |        |       |
| ••••• | <br>                                        |       |        |       |
|       |                                             |       |        |       |
|       | <br>                                        |       |        |       |
|       |                                             |       |        |       |
|       |                                             |       |        |       |

|         |        |       | <br>      |           |
|---------|--------|-------|-----------|-----------|
|         |        |       |           |           |
|         |        |       |           |           |
|         |        |       |           |           |
|         |        |       |           |           |
| ••••••• | •••••• | ••••• | <br>••••• | ••••••••• |

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

| 9.   | The curve C has equation $y = f(x)$ and the point $P(3, 5)$ lies on C.                                    | Leave |
|------|-----------------------------------------------------------------------------------------------------------|-------|
|      | Given that                                                                                                |       |
|      | $f'(x) = 3x^2 - 8x + 6,$                                                                                  |       |
|      | (a) find $f(x)$ . (4)                                                                                     |       |
|      | (b) Verify that the point $(2, 0)$ lies on $C$ .                                                          |       |
|      | (2)                                                                                                       |       |
|      | The point $Q$ also lies on $C$ , and the tangent to $C$ at $Q$ is parallel to the tangent to $C$ at $P$ . |       |
|      | (c) Find the $x$ -coordinate of $Q$ . (5)                                                                 |       |
|      |                                                                                                           |       |
| •••• |                                                                                                           |       |
| •••• |                                                                                                           |       |
| •••• |                                                                                                           |       |
| •••• |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |
| •••• |                                                                                                           |       |
|      |                                                                                                           |       |
|      |                                                                                                           |       |

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

Leave blank

10. The curve C has equation

$$y = x^3 - 5x + \frac{2}{x}, \qquad x \neq 0.$$

The points A and B both lie on C and have coordinates (1, -2) and (-1, 2) respectively.

(a) Show that the gradient of C at A is equal to the gradient of C at B.

(5)

(b) Show that an equation for the normal to C at A is

$$4y = x - 9$$
.

**(4)** 

The normal to C at A meets the y-axis at the point P. The normal to C at B meets the y-axis at the point Q.

| (  | 4 | .) |
|----|---|----|
| ١. | _ | •  |

| (-) |  |
|-----|--|
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |
|     |  |

|     | Leave<br>blank |
|-----|----------------|
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
|     |                |
| END |                |
|     |                |

|                                  |                  | Surname Initial(s) |
|----------------------------------|------------------|--------------------|
| Paper Reference (complete below) | Centre<br>No.    |                    |
|                                  | Candidate<br>No. | Signature          |
|                                  |                  |                    |

Paper Reference(s)

## 6664

# Edexcel GCE Pure Mathematics C2 Advanced Subsidiary Specimen Paper

| Tillo. I lloui 50 llilliate. | Time: | 1 | hour | 30 | minutes |
|------------------------------|-------|---|------|----|---------|
|------------------------------|-------|---|------|----|---------|

| Materials required for examination | Items included with question paper |
|------------------------------------|------------------------------------|
|                                    | Nil                                |

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G..

#### **Instructions to Candidates**

Tour candidate details are printed next to the bar code above. Check that these are correct and sign your name in the signature box above.

If your candidate details are incorrect, or missing, then complete ALL the boxes above. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

You must write your answer for each question in the space following the question.

If you need more space to complete your answer to any question, use additional answer sheets.

#### **Information for Candidates**

A booklet 'mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions.

This paper has 9 questions.

#### **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit



| Number | Blank |
|--------|-------|
| 1      |       |
| 2      |       |
| 3      |       |
| 4      |       |
| 5      |       |
| 6      |       |
| 7      |       |
| 8      |       |
| 9      |       |
|        |       |
|        |       |
|        |       |
|        |       |
|        |       |
|        |       |
|        |       |
|        |       |
|        |       |
|        |       |
|        |       |
|        |       |
| Total  | _     |

| 1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2 + 3x)^6$ . | Leave<br>blank |
|--------------------------------------------------------------------------------------------------|----------------|
| (4)                                                                                              |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |
|                                                                                                  |                |

| 2. The circle $C$ has centre $(3, 4)$ and passes through the point $(8, -8)$ . | Leave<br>blank |
|--------------------------------------------------------------------------------|----------------|
| Find an equation for <i>C</i> .                                                |                |
| (4)                                                                            |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |
|                                                                                |                |

|                                                                        | x         | 1                                       | 1.5                                     | 2      | 2.5    | 3                                       |                                         |                  |
|------------------------------------------------------------------------|-----------|-----------------------------------------|-----------------------------------------|--------|--------|-----------------------------------------|-----------------------------------------|------------------|
|                                                                        | у         | 1.414                                   | 2.092                                   | 3.000  |        |                                         |                                         |                  |
| <ul><li>a) Calculate,</li><li>b) Use the v</li><li>2 decimal</li></ul> | alues fro | m the tal                               | ole and y                               |        |        |                                         |                                         | (2) estimate, to |
|                                                                        | praces, r |                                         |                                         |        |        |                                         |                                         | (4)              |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
| •••••                                                                  | •••••     | •••••                                   | •••••                                   | •••••• | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••                                   | ••••••           |
| •••••                                                                  | •••••     | • • • • • • • • • • • • • • • • • • • • | ••••••                                  |        | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••                                   | ••••••           |
| •••••                                                                  |           | •••••                                   |                                         |        |        | •••••                                   | •••••                                   |                  |
|                                                                        |           |                                         |                                         |        |        | • • • • • • • • • • • • • • • • • • • • |                                         |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
| •••••                                                                  | ••••••    | •••••                                   | ••••••                                  | •••••• | •••••  | ••••••                                  | • • • • • • • • • • • • • • • • • • • • | ••••••           |
|                                                                        | •••••     | •••••                                   | •••••                                   |        | •••••  | •••••                                   |                                         |                  |
|                                                                        |           | •••••                                   |                                         |        |        | • • • • • • • • • • • • • • • • • • • • | •••••                                   |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
|                                                                        | •••••     | •••••                                   | ••••••                                  | •••••• | •••••• | •••••                                   |                                         |                  |
| •••••                                                                  | •••••     | • • • • • • • • • • • • • • • • • • • • | •••••                                   |        | •••••  | • • • • • • • • • • • • • • • • • • • • |                                         |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
| ••••••                                                                 | ••••••    | •                                       | •                                       | •••••• | •••••• | •                                       |                                         | •                |
| •••••                                                                  | •••••     | •••••                                   | ••••••                                  | •••••• | •••••• | •••••                                   |                                         |                  |
|                                                                        |           | •••••                                   |                                         |        |        |                                         |                                         |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |
| •••••                                                                  | •••••     | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |        | •••••  | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | •••••            |
|                                                                        |           |                                         |                                         |        |        |                                         |                                         |                  |

| <b>4.</b> Solve, for $0 \le x < 360^\circ$ , the equation | Leave<br>blank |
|-----------------------------------------------------------|----------------|
| $3\sin^2 x = 1 + \cos x,$                                 |                |
| giving your answers to the nearest degree.                |                |
| (7)                                                       |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |

Leave 5. Figure 1 blank В 8 mm 8 mm 8 mm 8 mm The shaded area in Fig. 1 shows a badge ABC, where AB and AC are straight lines, with AB = AC = 8 mm. The curve BC is an arc of a circle, centre O, where OB = OC = 8 mm and O is in the same plane as ABC. The angle BAC is 0.9 radians. (a) Find the perimeter of the badge. **(2)** (b) Find the area of the badge. **(5)** 

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

| 6.   | At the beginning of the year 2000 a company bought a new machine for £15 000. Each year the value of the machine decreases by 20% of its value at the start of the year.                                                                                                                                                         | Leave<br>blank |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|      | (a) Show that at the start of the year 2002, the value of the machine was £9600. (2)                                                                                                                                                                                                                                             |                |
|      | When the value of the machine falls below £500, the company will replace it.                                                                                                                                                                                                                                                     |                |
|      | (b) Find the year in which the machine will be replaced. (4)                                                                                                                                                                                                                                                                     |                |
|      | To plan for a replacement machine, the company pays £1000 at the start of each year into a savings account. The account pays interest at a fixed rate of 5% per annum. The first payment was made when the machine was first bought and the last payment will be made at the start of the year in which the machine is replaced. |                |
|      | (c) Using your answer to part (b), find how much the savings account will be worth immediately after the payment at the start of the year in which the machine is replaced.                                                                                                                                                      |                |
|      | (4)                                                                                                                                                                                                                                                                                                                              |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
|      |                                                                                                                                                                                                                                                                                                                                  |                |
|      |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
|      |                                                                                                                                                                                                                                                                                                                                  |                |
|      |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |
| •••• |                                                                                                                                                                                                                                                                                                                                  |                |

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

| 7. (a) Use the factor theorem to show that $(x + 1)$ is a factor of    |     | eave<br>lank |
|------------------------------------------------------------------------|-----|--------------|
| $x^3 - x^2 - 10x - 8$ .                                                |     |              |
| (b) Find all the solutions of the equation $x^3 - x^2 - 10x - 8 = 0$ . | (2) |              |
| (b) This air the solutions of the equation $x = x = 10x = 0 = 0$ .     | (4) |              |
| (c) Prove that the value of x that satisfies                           |     |              |
| $2\log_2 x + \log_2 (x - 1) = 1 + \log_2 (5x + 4) \tag{I}$             |     |              |
| is a solution of the equation                                          |     |              |
| $x^3 - x^2 - 10x - 8 = 0.$                                             |     |              |
| (d) State, with a reason, the value of x that satisfies equation (I).  | (4) |              |
| (a) Zame, which a reason, and which summers equation (2).              | (2) |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |
|                                                                        |     |              |

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

8.

Figure 2

Leave blank



The line with equation y = x + 5 cuts the curve with equation  $y = x^2 - 3x + 8$  at the points A and B, as shown in Fig. 2.

(a) Find the coordinates of the points A and B.

**(5)** 

(b) Find the area of the shaded region between the curve and the line, as shown in Fig. 2.

**(7)** 

|       |       |           | •••••• |
|-------|-------|-----------|--------|
| ••••• | ••••• | <br>••••• | •••••  |

| Leave<br>blank |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |

9.





Figure 3

Figure 3 shows a triangle PQR. The size of angle QPR is 30°, the length of PQ is (x+1) and the length of PR is  $(4-x)^2$ , where  $x \in \mathbb{R}$ .

(a) Show that the area A of the triangle is given by

$$A = \frac{1}{4}(x^3 - 7x^2 + 8x + 16).$$

**(3)** 

(b) Use calculus to prove that the area of  $\triangle PQR$  is a maximum when  $x = \frac{2}{3}$ . Explain clearly how you know that this value of x gives the maximum area.

**(6)** 

(c) Find the maximum area of  $\Delta PQR$ .

**(1)** 

(d) Find the length of QR when the area of  $\Delta PQR$  is a maximum.

**(3)** 

| <br>      |
|-----------|
|           |
| •••••     |
|           |
| •••••     |
| <br>      |
|           |
| <br>      |
|           |
| <br>      |
|           |
|           |
|           |
| <br>••••• |
|           |
| •••••     |
|           |

|     | T           |
|-----|-------------|
|     | Leave blank |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
| END |             |
|     |             |
|     |             |

# 6665 Edexcel GCE

## **Pure Mathematics C3**

## **Advanced Level**

## **Specimen Paper**

Time: 1 hour 30 minutes

#### Materials required for examination

Answer Book (AB16) Mathematical Formulae (Lilac) Graph Paper (ASG2) **Items included with question papers** 

Nil

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI-89, TI-92, Casio *cfx* 9970G, Hewlett Packard HP 48G.

#### **Instructions to Candidates**

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Pure Mathematics C3), the paper reference (6665), your surname, other name and signature.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

#### **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions.

This paper has seven questions.

#### **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.



1. The function f is defined by

$$f: x \mapsto |x-2| - 3, x \in \mathbb{R}.$$

(a) Solve the equation f(x) = 1.

**(3)** 

The function g is defined by

g: 
$$x \mapsto x^2 - 4x + 11, x \ge 0$$
.

(b) Find the range of g.

**(3)** 

(c) Find gf(-1).

**(2)** 

- 2.  $f(x) = x^3 2x 5.$ 
  - (a) Show that there is a root  $\alpha$  of f(x) = 0 for x in the interval [2, 3].

(2)

The root  $\alpha$  is to be estimated using the iterative formula

$$x_{n+1} = \sqrt{\left(2 + \frac{5}{x_n}\right)}, \quad x_0 = 2.$$

(b) Calculate the values of  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$ , giving your answers to 4 significant figures.

**(3)** 

(c) Prove that, to 5 significant figures,  $\alpha$  is 2.0946.

**(3)** 

**3.** (a) Using the identity for  $\cos (A + B)$ , prove that  $\cos \theta = 1 - 2 \sin^2 (\frac{1}{2} \theta)$ .

**(3)** 

(b) Prove that  $1 + \sin \theta - \cos \theta = 2 \sin \left(\frac{1}{2}\theta\right) \left[\cos \left(\frac{1}{2}\theta\right) + \sin \left(\frac{1}{2}\theta\right)\right]$ .

**(3)** 

(c) Hence, or otherwise, solve the equation

$$1 + \sin \theta - \cos \theta = 0$$
,  $0 \le \theta < 2\pi$ .

**(4)** 

**4.**  $f(x) = x + \frac{3}{x-1} - \frac{12}{x^2 + 2x - 3}, x \in \mathbb{R}, x > 1.$ 

(a) Show that  $f(x) = \frac{x^2 + 3x + 3}{x + 3}$ . (5)

(b) Solve the equation  $f'(x) = \frac{22}{25}$ . (5)

5. Figure 1



Figure 1 shows part of the curve with equation y = f(x),  $x \in \mathbb{R}$ . The curve meets the x-axis at P(p, 0) and meets the y-axis at Q(0, q).

- (a) On separate diagrams, sketch the curve with equation
  - (i) y = |f(x)|,
  - (ii)  $y = 3f(\frac{1}{2}x)$ .

In each case show, in terms of p or q, the coordinates of points at which the curve meets the axes.

(5)

Given that  $f(x) = 3 \ln(2x + 3)$ ,

- (b) state the exact value of q, (1)
- (c) find the value of p, (2)
- (d) find an equation for the tangent to the curve at P. (4)

**6.** As a substance cools its temperature, T °C, is related to the time (t minutes) for which it has been cooling. The relationship is given by the equation

$$T = 20 + 60e^{-0.1t}, \ t \ge 0.$$

(a) Find the value of T when the substance started to cool.

**(1)** 

(b) Explain why the temperature of the substance is always above 20°C.

**(1)** 

(c) Sketch the graph of T against t.

**(2)** 

(d) Find the value, to 2 significant figures, of t at the instant T = 60.

**(4)** 

(e) Find  $\frac{dT}{dt}$ .

**(2)** 

(f) Hence find the value of T at which the temperature is decreasing at a rate of 1.8 °C per minute.

**(3)** 

7. (i) Given that  $y = \tan x + 2 \cos x$ , find the exact value of  $\frac{dy}{dx}$  at  $x = \frac{\pi}{4}$ .

(3)

(ii) Given that  $x = \tan \frac{1}{2}y$ , prove that  $\frac{dy}{dx} = \frac{2}{1+x^2}$ .

**(4)** 

(iii) Given that  $y = e^{-x} \sin 2x$ , show that  $\frac{dy}{dx}$  can be expressed in the form  $R e^{-x} \cos (2x + \alpha)$ . Find, to 3 significant figures, the values of R and  $\alpha$ , where  $0 < \alpha < \frac{\pi}{2}$ .

**(7)** 

**END** 

35 Turn over

Paper Reference(s)

## 6666

## **Edexcel GCE**

## **Pure Mathematics C4**

## **Advanced Level**

## **Specimen Paper**

Time: 1 hour 30 minutes

#### Materials required for examination

Answer Book (AB16) Mathematical Formulae (Lilac) Graph Paper (ASG2) Items included with question papers

Ni

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI-89, TI-92, Casio CFX-9970G, Hewlett Packard HP 48G.

#### **Instructions to Candidates**

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Pure Mathematics C4), the paper reference (6666), your surname, other name and signature.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

#### **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has eight questions.

#### **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

1. Use the binomial theorem to expand  $(4-3x)^{-\frac{1}{2}}$ , in ascending powers of x, up to and including the term in  $x^3$ . Give each coefficient as a simplified fraction.

**(5)** 

**2.** The curve C has equation

$$13x^2 + 13y^2 - 10xy = 52.$$

Find an expression for  $\frac{dy}{dx}$  as a function of x and y, simplifying your answer.

**(6)** 

3. Use the substitution  $x = \tan \theta$  to show that

$$\int_0^1 \frac{1}{(1+x^2)^2} \, \mathrm{d}x = \frac{\pi}{8} + \frac{1}{4} \ .$$

**(8)** 

4. Figure 1



Figure 1 shows part of the curve with parametric equations

$$x = \tan t$$
,  $y = \sin 2t$ ,  $-\frac{\pi}{2} < t < \frac{\pi}{2}$ .

(a) Find the gradient of the curve at the point *P* where  $t = \frac{\pi}{3}$ .

**(4)** 

(b) Find an equation of the normal to the curve at P.

(3)

(c) Find an equation of the normal to the curve at the point Q where  $t = \frac{\pi}{4}$ .

**(2)** 

5. The vector equations of two straight lines are

$$\mathbf{r} = 5\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$$
 and

$$r = 2i - 11j + ak + \mu(-3i - 4j + 5k).$$

Given that the two lines intersect, find

(a) the coordinates of the point of intersection,

(5)

(b) the value of the constant a,

**(2)** 

(c) the acute angle between the two lines.

**(4)** 

**6.** Given that

$$\frac{11x-1}{(1-x)^2(2+3x)} \equiv \frac{A}{(1-x)^2} + \frac{B}{(1-x)} + \frac{C}{(2+3x)},$$

(a) find the values of A, B and C.

**(4)** 

(b) Find the exact value of  $\int_0^{\frac{1}{2}} \frac{11x-1}{(1-x)^2(2+3x)} dx$ , giving your answer in the form  $k + \ln a$ , where

k is an integer and a is a simplified fraction.

**(7)** 

39 Turn over

7. (a) Given that  $u = \frac{x}{2} - \frac{1}{8} \sin 4x$ , show that  $\frac{du}{dx} = \sin^2 2x$ .

**(4)** 

Figure 2



Figure 2 shows the finite region bounded by the curve  $y = x^{\frac{1}{2}} \sin 2x$ , the line  $x = \frac{\pi}{4}$  and the *x*-axis. This region is rotated through  $2\pi$  radians about the *x*-axis.

(b) Using the result in part (a), or otherwise, find the exact value of the volume generated.

(8)

- 8. A circular stain grows in such a way that the rate of increase of its radius is inversely proportional to the square of the radius. Given that the area of the stain at time t seconds is  $A \text{ cm}^2$ ,
  - (a) show that  $\frac{dA}{dt} \propto \frac{1}{\sqrt{A}}$ .

Another stain, which is growing more quickly, has area  $S ext{ cm}^2$  at time t seconds. It is given that

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{2\mathrm{e}^{2t}}{\sqrt{S}}.$$

Given that, for this second stain, S = 9 at time t = 0,

(b) solve the differential equation to find the time at which S=16. Give your answer to 2 significant figures.

**(7)** 

**END** 

41 Turn over

| Question number | Scheme                                                                       | Marks         |
|-----------------|------------------------------------------------------------------------------|---------------|
| 1.              | a = 7, d = 2                                                                 | B1            |
|                 | $S_{20} = \frac{1}{2} \times 20 \times (2 \times 7 + 19 \times 2) = 520$     | M1 A1         |
|                 |                                                                              | (3 marks)     |
| 2.              | $\int (5x + 3\sqrt{x})  \mathrm{d}x = \frac{5x^2}{2} + 2x^{\frac{3}{2}} + C$ | M1 A1 A1 B1   |
|                 |                                                                              | (4 marks)     |
| <b>3.</b> (a)   | $\sqrt{80} = 4\sqrt{5}$                                                      | B1 (1)        |
| (b)             | $(4 - \sqrt{5})^2 = 16 - 8\sqrt{5} + 5 = 21 - 8\sqrt{5}$                     | M1 A1 A1 (3)  |
|                 |                                                                              | (4 marks)     |
| 4.              | Gradient of $AB = \frac{4 - (-6)}{3 - 7} \left( = -\frac{5}{2} \right)$      | M1 A1         |
|                 | Gradient of $l = \frac{2}{5}$                                                | M1            |
|                 | $y-4=\frac{2}{5}(x-3)$ $2x-5y+14=0$                                          | M1 A1 (5)     |
|                 |                                                                              | (5 marks)     |
| <b>5.</b> (a)   | Position, Shape                                                              | B1            |
|                 | O $X$ $(0, 2), (2, 0)$                                                       | B1 B1 (3)     |
| (b)             | y A Position, Shape                                                          | B1            |
|                 | $(0,1), \left(\frac{1}{2},2\right), \left(\frac{3}{2},0\right)$              | B2 (1, 0) (3) |
|                 | $O \mid \qquad \qquad \setminus \qquad x$                                    | (6 marks)     |

| _  | stion<br>nber | Scheme                                                                                               | Marks     |      |
|----|---------------|------------------------------------------------------------------------------------------------------|-----------|------|
| 6. | (a)           | $5 - 2x = 2x^2 - 3x - 16$ $2x^2 - x - 21 = 0$                                                        | M1 A1     |      |
|    |               | $(2x-7)(x+3) = 0 	 x = -3, x = \frac{7}{2}$                                                          | M1 A1     |      |
|    |               | y = 11, y = -2                                                                                       | M1 A1ft   | (6)  |
|    | (b)           | Using critical values $x = -3$ , $x = \frac{7}{2}$                                                   | M1        |      |
|    |               | $x < -3, \qquad x > \frac{7}{2}$                                                                     | M1 A1ft   | (3)  |
|    |               |                                                                                                      | (9 ma     | rks) |
| 7. | (a)           | $a + (n-1)d = 250 + (10 \times 50) = £750$                                                           | M1 A1     | (2)  |
|    | (b)           | $\frac{1}{2}n\left[2a + (n-1)d\right] = \frac{1}{2} \times 20 \times (500 + 19 \times 50), = £14500$ | M1 A1, A1 | (3)  |
|    | (c)           | B: $\frac{1}{2} \times 20 \times (2A + 19 \times 60)$ [= 10(2A + 1140)], = "14500"                   | B1, M1    |      |
|    |               | Solve for $A: A = 155$                                                                               | M1 A1     | (4)  |
|    |               |                                                                                                      | (9 ma     | rks) |
| 8. | (a)           | $a = 5,$ $(x + 5)^2 - 25 + 36$ $b = 11$                                                              | B1, M1 A1 | (3)  |
|    | (b)           | $b^2 - 4ac = 100 - 144$ , < 0, therefore no real roots                                               | M1 A1     | (2)  |
|    | (c)           | Equal roots if $b^2 - 4ac = 0$ $4k = 100$ $k = 25$                                                   | M1 A1     | (2)  |
|    | (d)           | Shape, position                                                                                      | B1 B1     |      |
|    |               | (-5,0)(0,25)                                                                                         | B1 B1ft   | (4)  |
|    |               |                                                                                                      | (11 ma    | rks) |

| Question number | Scheme                                                                                  | Marks      |
|-----------------|-----------------------------------------------------------------------------------------|------------|
| <b>9.</b> (a)   | $f(x) = x^3 - 4x^2 + 6x + C$                                                            | M1 A1      |
|                 | $5 = 27 - 36 + 18 + C \qquad C = -4$                                                    | M1 A1 (4)  |
| (b)             | x = 2: $y = 8 - 16 + 12 - 4 = 0$                                                        | M1 A1 (2)  |
| (c)             | f'(3) = 27 - 24 + 6 = 9, Parallel therefore equal gradient                              | B1, M1     |
|                 | $3x^2 - 8x + 6 = 9 		 3x^2 - 8x - 3 = 0$                                                | M1         |
|                 | $3x^{2} - 8x + 6 = 9$ $(3x + 1)(x - 3) = 0$ $3x^{2} - 8x - 3 = 0$ $Q: x = -\frac{1}{3}$ | M1 A1 (5)  |
|                 |                                                                                         | (11 marks) |
| <b>10.</b> (a)  | $\frac{dy}{dx} = 3x^2 - 5 - 2x^{-2}$                                                    | M1 A2(1,0) |
|                 | At both A and B, $\frac{dy}{dx} = 3 \times 1 - 5 - \frac{2}{1} \qquad (=-4)$            | M1 A1 (5)  |
| (b)             | Gradient of normal $=\frac{1}{4}$                                                       | M1 A1ft    |
|                 | $y - (-2) = \frac{1}{4} (x - 1)$ $4y = x - 9$                                           | M1 A1 (4)  |
| (c)             | Normal at A meets y-axis where $x = 0$ : $y = -\frac{9}{4}$                             | B1         |
|                 | Similarly for normal at <i>B</i> : $4y = x + 9$ $y = \frac{9}{4}$                       | M1 A1      |
|                 | Length of $PQ = \frac{9}{4} + \frac{9}{4} = \frac{9}{2}$                                | A1 (4)     |
|                 |                                                                                         | (13 marks) |

| Question number | Scheme                                                                                |                                      | Marks      |
|-----------------|---------------------------------------------------------------------------------------|--------------------------------------|------------|
| 1.              | $(2+3x)^6 = 2^6 + 6.2^5 \times 3x + \binom{6}{2} 2^4 (3x)^2$                          | >1 term correct                      | M1         |
|                 | $= 64, +576x, +2160x^2$                                                               |                                      | B1 A1 A1   |
|                 |                                                                                       |                                      | (4 marks)  |
| 2.              | $r = \sqrt{(8-3)^2 + (-8-4)^2}, = 13$                                                 | Method for $r$ or $r^2$              | M1 A1      |
|                 | Equation: $(x-3)^2 + (y-4)^2 = 169$                                                   | ft their r                           | M1 A1ft    |
|                 |                                                                                       |                                      | (4 marks)  |
| <b>3.</b> (a)   | (x = 2.5) $y = 4.077$ $(x = 3)$ $y = 5.292$                                           |                                      | B1 B1 (2)  |
| (b)             | $A \approx \frac{1}{2} \times \frac{1}{2} [1.414 + 5.292 + 2(2.092 + 3.000 + 5.292)]$ | For $\frac{1}{2} \times \frac{1}{2}$ | B1         |
|                 |                                                                                       | ft their y values                    | M1 A1ft    |
|                 | = 6.261 = 6.26 (2  d.p.)                                                              |                                      | A1 (4)     |
|                 |                                                                                       |                                      | (6 marks)  |
| 4.              | $3(1-\cos^2 x) = 1 + \cos x$                                                          | Use of $s^2 + c^2 = 1$               | M1         |
|                 | $0 = 3\cos^2 x + \cos x - 2$                                                          | 3TQ in $\cos x$                      | M1         |
|                 | $0 = (3\cos x - 2)(\cos x + 1)$                                                       | Attempt to solve                     | M1         |
|                 | $\cos x = \frac{2}{3}  \text{or}  -1$                                                 | Both                                 | A1         |
|                 | $\cos x = \frac{2}{3}$ gives $x = 48^{\circ}$ , 312°                                  |                                      | B1, B1ft   |
|                 | $\cos x = -1 \text{ gives } x = 180^{\circ}$                                          |                                      | B1         |
|                 |                                                                                       |                                      | (7 marks)  |
| 5. (a)          | Arc length = $r\theta = 8 \times 0.9 = 7.2$                                           | M1 for use of $r\theta$              | M1         |
|                 | Perimeter = $16 + r\theta = 23.2$ (mm)                                                |                                      | A1 (2)     |
| (b)             | Area of triangle = $\frac{1}{2}$ .82.sin(0.9) = 25.066                                |                                      | M1         |
|                 | Area of sector $= \frac{1}{2}.8^2.(0.9) = 28.8$                                       |                                      | M1         |
|                 | Area of segment = $28.8 - 25.066 = 3.7(33)$                                           |                                      | A1ft       |
|                 | Area of badge = triangle – segment, = $21.3 \text{ (mm}^2\text{)}$                    |                                      | M1, A1 (5) |
|                 |                                                                                       |                                      | (7 marks)  |

| Ques |     | Scheme                                                                             |                                 | Marks         |
|------|-----|------------------------------------------------------------------------------------|---------------------------------|---------------|
| 6.   | (a) | $15000 \times (0.8)^2 = 9600  (*)$                                                 | M1 for $\times$ by 0.8          | M1 A1 cso (2) |
|      | (b) | $15000 \times (0.8)^n < 500$                                                       | Suitable equation or inequality | M1            |
|      |     | $n\log(0.8) < \log(\frac{1}{30})$                                                  | Take logs                       | M1            |
|      |     | n > 15.(24)                                                                        | n = is OK                       | A1            |
|      |     | So machine is replaced in 2015                                                     |                                 | A1 (4)        |
|      | (c) | $a = 1000, r = 1.05, n = 16$ ( $\geq 2$ correct)                                   |                                 | M1            |
|      |     | $S_{16} = \frac{1000(1.05^{16} - 1)}{1.05 - 1}$                                    |                                 | M1 A1         |
|      |     | = 23 657.49 = £23 700  or  £23 660  or  £23657                                     |                                 | A1 (4)        |
|      |     |                                                                                    |                                 | (10 marks)    |
| 7.   | (a) | f(-1) = -1 - 1 + 10 - 8                                                            | f(+1) or f(-1)                  | M1            |
|      |     | = 0 so $(x + 1)$ is a factor                                                       | = 0 and comment                 | A1 (2)        |
|      | (b) | $x^3 - x^2 = 2(5x + 4)$                                                            | Out of logs                     | M1            |
|      |     | i.e. $x^3 - x^2 - 10x - 8 = 0$ (*)                                                 | A1 cso (4)                      | M1            |
|      |     | $x^{3} - x^{2} = 2(5x + 4)$ i.e. $x^{3} - x^{2} - 10x - 8 = 0$ (*) $x = -1, -2, 4$ |                                 | A2(1, 0) (4)  |
|      | (c) | $\log_2 x^2 + \log_2(x-1) = 1 + \log_2(5x+4)$                                      | Use of $\log x^n$               | M1            |
|      |     | $\log_2\left(\frac{x^2(x-1)}{5x+4}\right) = 1$                                     | Use of $\log a + \log b$        | M1            |
|      | (d) | x = 4, since $x < 0$ is not valid in logs                                          |                                 | B1, B1 (2)    |
|      |     |                                                                                    |                                 | (12 marks)    |

| Questi<br>numb |     | Scheme                                                                                         |               | Marks      |
|----------------|-----|------------------------------------------------------------------------------------------------|---------------|------------|
| 8.             | (a) | $x^2 - 3x + 8 = x + 5$                                                                         | Line = curve  | M1         |
|                |     | $x^{2} - 3x + 8 = x + 5$ $x^{2} - 4x + 3 = 0$ $0 = (x - 3)(x - 1)$ A is (1, 6); B is (3, 8)    | 3TQ = 0       | M1         |
|                |     | 0 = (x - 3)(x - 1)                                                                             | Solving       | M1         |
|                |     | A is (1, 6); B is (3, 8)                                                                       |               | A1; A1 (5) |
| 1              | (b) | $\int (x^2 - 3x + 8)  \mathrm{d}x = \left[ \frac{x^3}{3} - \frac{3x^2}{2} + 8x \right]$        | Integration   | M1 A2(1,0) |
|                |     | Area below curve = $(9 - \frac{27}{2} + 24) - (\frac{1}{3} - \frac{3}{2} + 8) = 12\frac{2}{3}$ | Use of Limits | M1         |
|                |     | Trapezium = $\frac{1}{2} \times 2 \times (6+8) = 14$                                           |               | B1         |
|                |     | Area = Trapezium – Integral, = $14-12\frac{2}{3}=1\frac{1}{3}$                                 |               | M1, A1 (7) |
|                |     |                                                                                                |               | (12 marks) |
| ALT (          | (b) | $-x^2 + 4x - 3$                                                                                | Line – curve  | M1         |
|                |     | $\int (-x^2 + 4x - 3)  \mathrm{d}x = \left[ -\frac{x^3}{3} + 2x^2 - 3x \right]$                | Integration   | M1 A2(1,0) |
|                |     | Area = $\int_{1}^{3} () dx = (-9 + 18 - 9) - (-\frac{1}{3} + 2 - 3)$                           | Use of limits | M1         |
|                |     | $=1\frac{1}{3}$                                                                                |               | A2 (7)     |

| Question<br>number | Scheme                                                                                                                |                               | Mark   | XS . |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|--------|------|
| <b>9.</b> (a)      | $A = \frac{1}{2}(x+1)(4-x)^2 \sin 30^{\circ}$                                                                         | Use of $\frac{1}{2}ab\sin C$  | M1     |      |
|                    | •                                                                                                                     | empt to multiply out.         | M1     |      |
|                    | $= \frac{1}{4}(x^3 - 7x^2 + 8x + 16)  (*)$                                                                            |                               | A1 cso | (3)  |
| (b)                | $\frac{dA}{dx} = \frac{1}{4} (3x^2 - 14x + 8)$                                                                        | Ignore the $\frac{1}{4}$      | M1 A1  |      |
|                    | $\frac{dA}{dx} = \frac{1}{4}(3x^2 - 14x + 8)$ $\frac{dA}{dx} = 0 \Rightarrow (3x - 2)(x - 4) = 0$                     |                               | M1     |      |
|                    | So $x = \frac{2}{3}$ or 4                                                                                             | At least $x = \frac{2}{3}$ or | A1     |      |
|                    | e.g. $\frac{d^2 A}{dx^2} = \frac{1}{4} (6x - 14)$ , when $x = \frac{2}{3}$ it is < 0, so maximum                      | Any full method               | M1     |      |
|                    | So $x = \frac{2}{3}$ gives maximum area (*)                                                                           | Full accuracy                 | A1     | (6)  |
| (c)                | Maximum area = $\frac{1}{4} \left(\frac{5}{3}\right) \left(\frac{10}{3}\right)^2 = 4.6$ or 4.63 or 4.630              |                               | B1     | (1)  |
| (d)                | Cosine rule: $QR^2 = (\frac{5}{3})^2 + (\frac{10}{3})^4 - 2 \times \frac{5}{3} \times (\frac{10}{3})^2 \cos 30^\circ$ | M1 for $QR$ or $QR^2$         | M1 A1  |      |
|                    | = 94.159                                                                                                              |                               |        |      |
|                    | QR = 9.7  or  9.70  or  9.704                                                                                         |                               | A1     | (3)  |
|                    |                                                                                                                       |                               | (13 ma | rks) |

| _  | stion<br>nber | Scheme                                                                                                                                                                                                                        |            | Marks      |      |
|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------|
| 1. | (a)           | x-2 -3=1 $x=6$                                                                                                                                                                                                                | B1         |            |      |
|    |               | $-(x-2)-3=1 \Rightarrow x=-2$                                                                                                                                                                                                 | M1 A       | <b>A</b> 1 | (3)  |
|    | (b)           | $g(x) = x^2 - 4x + 11 = (x - 2)^2 + 7 \text{ or } g'(x) = 2x - 4$                                                                                                                                                             | M1 A       | <b>A</b> 1 |      |
|    |               | $g'(x) = 0 \Rightarrow x = 2$                                                                                                                                                                                                 |            |            |      |
|    |               | Range: $g(x) \ge 7$ .                                                                                                                                                                                                         | A1         |            | (3)  |
|    | (c)           | gf(-1) = g(0) correct order; = 11                                                                                                                                                                                             | M1 A       | <b>A</b> 1 | (2)  |
|    |               |                                                                                                                                                                                                                               |            | (8 mai     | rks) |
| 2. | (a)           | f(2) = 8 - 4 - 5 = -1 method shows change of sign                                                                                                                                                                             | M1         |            |      |
|    |               | $f(3) = 27 - 6 - 5 = 16$ $\Rightarrow$ root with accuracy                                                                                                                                                                     | A1         |            | (2)  |
|    | (b)           | $x_1 = 2.121$ , $x_2 = 2.087$ , $x_3 = 2.097$ , $x_4 = 2.094$                                                                                                                                                                 | M1 A       | A2 (1, 0)  | (3)  |
|    | (c)           | Choosing suitable interval, e.g. [2.09455, 2.09465]                                                                                                                                                                           | M1         |            |      |
|    |               | f(2.09455) = -0.00001 shows change of sign                                                                                                                                                                                    | M1         |            |      |
|    |               | f(2.09465) = +0.001(099) accuracy and conclusion                                                                                                                                                                              | A1         |            | (3)  |
|    |               |                                                                                                                                                                                                                               |            | (8 mai     | rks) |
| 3. | (a)           | cos (A + B) = cos A cos B - sin A sin B (formula sheet)                                                                                                                                                                       |            |            |      |
|    |               | $\cos\left(\frac{1}{2}\theta + \frac{1}{2}\theta\right)$                                                                                                                                                                      |            |            |      |
|    |               | $= \cos\left(\frac{1}{2}\theta\right)\cos\left(\frac{1}{2}\theta\right) - \sin\left(\frac{1}{2}\theta\right)\sin\left(\frac{1}{2}\theta\right) = \cos^2\left(\frac{1}{2}\theta\right) - \sin^2\left(\frac{1}{2}\theta\right)$ |            |            |      |
|    |               | $= \{1 - \sin^2(\frac{1}{2}\theta)\} - \sin^2(\frac{1}{2}\theta) = 1 - 2\sin^2(\frac{1}{2}\theta)$                                                                                                                            | M1 A       | <b>A</b> 1 | (3)  |
|    | (b)           | $\sin\theta + 1 - \cos\theta = 2\sin\left(\frac{1}{2}\theta\right)\cos\left(\frac{1}{2}\theta\right) + 2\sin^2\left(\frac{1}{2}\theta\right)$                                                                                 | M1 N       | М1         |      |
|    |               | $= 2 \sin\left(\frac{1}{2}\theta\right) \left[\cos\left(\frac{1}{2}\theta\right) + \sin\left(\frac{1}{2}\theta\right)\right]$                                                                                                 | A1         |            | (3)  |
|    |               | [M1 use of $\sin 2A = 2 \sin A \cos A$ ; M1 use of (a)]                                                                                                                                                                       |            |            |      |
|    | (c)           | $2\sin\left(\frac{1}{2}\theta\right)\left[\cos\left(\frac{1}{2}\theta\right) + \sin\left(\frac{1}{2}\theta\right)\right] = 0$                                                                                                 |            |            |      |
|    |               | $\Rightarrow \sin(\frac{1}{2}\theta) = 0 \text{ or } \cos(\frac{1}{2}\theta) + \sin(\frac{1}{2}\theta) = 0$                                                                                                                   | M1         |            |      |
|    |               | $\theta = 0$                                                                                                                                                                                                                  |            |            |      |
|    |               | $\tan \frac{1}{2} \theta = -1; \Rightarrow \theta = \frac{3}{2} \pi$                                                                                                                                                          | M1 A       | <b>A</b> 1 | (4)  |
|    |               |                                                                                                                                                                                                                               | (10 marks) |            | rks) |

| Question number | Scheme                                                                                                      | Marks       |
|-----------------|-------------------------------------------------------------------------------------------------------------|-------------|
| <b>4.</b> (a)   | $x^2 + 2x - 3 = (x+3)(x-1)$                                                                                 | B1          |
|                 | $f(x) = \frac{x(x^2 + 2x - 3) + 3(x + 3) - 12}{(x + 3)(x - 1)}  [=  \frac{x^3 + 2x^2 - 3}{(x + 3)(x - 1)}]$ | M1A1        |
|                 | $=\frac{(x-1)(x^2+3x+3)}{(x-1)(x+3)}$                                                                       | M1          |
|                 | $=\frac{(x^2+3x+3)}{(x+3)}$                                                                                 | A1 (5)      |
| (b)             | $f'(x) = \frac{(x+3)(2x+3) - (x^2+3x+3)}{(x+3)^2} \qquad [= \frac{x^2+6x+6}{(x+3)^2}]$                      | M1 A2, 1, 0 |
|                 | Setting f'(x) = $\frac{22}{25}$ and attempting to solve quadratic                                           | M1          |
|                 | x = 2 (only this solution)                                                                                  | A1 (5)      |
|                 |                                                                                                             | (10 marks)  |
| ALT (b)         | ALT: $f(x) = x + \frac{3}{x+3}$ , $f'(x) = 1 - \frac{3}{(x+3)^2}$                                           |             |

| Question number | Scheme                                                                                   | Marks   |      |
|-----------------|------------------------------------------------------------------------------------------|---------|------|
| 5. (a)          | (i) y Shape correct:                                                                     | B1      |      |
|                 | $ \begin{array}{c c}  & q \\ \hline  & p & 0 \\ \hline  & p & 0 \end{array} $ Intercepts | B1      | (2)  |
|                 | (ii) $y \triangleq$ Shape correct                                                        | B1      |      |
|                 | (2p, 0)  on  x                                                                           | B1      |      |
|                 | (0,3q)  on  y                                                                            | B1      | (3)  |
| (b)             | $q = 3 \ln 3$                                                                            | B1      | (1)  |
| (c)             | $\ln(2p+3) = 0 \Rightarrow 2p+3 = 1;$ $p = -1$                                           | M1 A1   | (2)  |
| (d)             | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{2x+3}; \text{ evaluated at } x = p  (6)$     | M1 A1   |      |
|                 | Equation: $y = 6(x + 1)$ any form                                                        | M1 A1ft | (4)  |
|                 |                                                                                          | (12 mai | rks) |

|    | estion<br>mber | Scheme                                                    |                                   | Marks  |       |
|----|----------------|-----------------------------------------------------------|-----------------------------------|--------|-------|
| 6. | (a)            | T = 80                                                    |                                   | B1     | (1)   |
|    | (b)            | $e^{-0.1 t} \ge 0$ or equivalent                          |                                   | B1     | (1)   |
|    | (c)            |                                                           | Negative exponential shape        | M1     |       |
|    |                | $T \spadesuit$                                            | $t \ge 0$ , "80"                  |        |       |
|    |                | 80                                                        | clearly not $\rightarrow x$ -axis | A1     | (2)   |
|    |                |                                                           |                                   |        |       |
|    |                |                                                           |                                   |        |       |
|    |                |                                                           |                                   |        |       |
|    |                | t                                                         |                                   |        |       |
|    | (d)            | $60 = 20 + 60 e^{-0.1 t} \Rightarrow 60 e^{-0.1 t} = 40$  |                                   | M1     |       |
|    |                | $\Rightarrow$ $-0.1 t = \ln\left(\frac{2}{3}\right)$      |                                   | M1A1   |       |
|    |                | t = 4.1                                                   |                                   | A1     | (4)   |
|    | (e)            | $\frac{\mathrm{d}T}{\mathrm{d}t} = -6 \mathrm{e}^{-0.1t}$ |                                   | M1A1   | (2)   |
|    | (f)            | Using $\frac{\mathrm{d}T}{\mathrm{d}t} = -1.8$            |                                   | B1     |       |
|    |                | Solving for $t$ , or using value of $e^{-0.1 t}$ (0.3)    |                                   | M1     |       |
|    |                | T = 38                                                    |                                   | A1     | (3)   |
|    |                |                                                           |                                   | (13 ma | arks) |

| Question number | Scheme                                                                                                                                      | Marks    |      |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| 7. (i)          | $\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x - 2\sin x$                                                                                      | B1 B1    |      |
|                 | When $x = \frac{1}{4}\pi$ , $\frac{dy}{dx} = 2 - \sqrt{2}$                                                                                  | B1       | (3)  |
| (ii)            | $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{2} \sec^2 \frac{1}{2} y$                                                                        | B1       |      |
|                 | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sec^2\left(\frac{y}{2}\right)} = \frac{2}{1+\tan^2\left(\frac{y}{2}\right)} = \frac{2}{1+x^2}$ | M1 M1 A1 | (4)  |
| (iii)           | $\frac{dy}{dx} = 2e^{-x}\cos 2x - e^{-x}\sin 2x = e^{-x}(2\cos 2x - \sin 2x)$                                                               | M1 A1 A1 |      |
|                 | Method for R: $R = 2.24$ (allow $\sqrt{5}$ )                                                                                                | M1 A1    |      |
|                 | Method for $\alpha$ : $\alpha = 0.464$                                                                                                      | M1 A1    | (7)  |
|                 |                                                                                                                                             | (14 ma   | rks) |

| Question number | Scheme                                                                                                                                                                                                                                                                 | Marks      |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.              | $(4-3x)^{-\frac{1}{2}} = 4^{-\frac{1}{2}} \left(1 - \frac{3}{4}x\right)^{-\frac{1}{2}}$                                                                                                                                                                                |            |
|                 | $= \frac{1}{2} \left( 1 + \frac{3}{8}x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{3}{4}x\right)^2}{2} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(-\frac{3}{4}x\right)^3}{6} + \dots \right)$ | B1 M1      |
|                 | $= \frac{1}{2} + \frac{3}{16}x_{1} + \frac{27}{256}x^{2}_{1} + \frac{135}{2048}x^{3}_{1} + \dots$                                                                                                                                                                      | A1, A1, A1 |
|                 |                                                                                                                                                                                                                                                                        | (5 marks)  |
| 2.              | 26x + 26yy'; -10xy' - 10y = 0                                                                                                                                                                                                                                          | M1A1; M1A1 |
|                 | y'(26y - 10x) = 10y - 26x                                                                                                                                                                                                                                              |            |
|                 | $y' = \frac{10y - 26x}{26y - 10x} = \frac{5y - 13x}{13y - 5x}$                                                                                                                                                                                                         | M1 A1      |
|                 |                                                                                                                                                                                                                                                                        | (6 marks)  |
| 3.              | $x = \tan \theta$ $\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2 \theta \Rightarrow I = \int \frac{\sec^2 \theta}{\sec^4 \theta} \mathrm{d}\theta$                                                                                                                     | M1 A1      |
|                 | Limits $\frac{\pi}{4}$ and 0                                                                                                                                                                                                                                           | B1         |
|                 | $I = \int \cos^2 \theta \ d\theta = \int \frac{\cos 2\theta + 1}{2} d\theta$                                                                                                                                                                                           | M1 A1      |
|                 | $= \left[\frac{\sin 2\theta}{4} + \frac{\theta}{2}\right]_0^{\frac{\pi}{4}}$                                                                                                                                                                                           | M1 A1      |
|                 | $=\frac{1}{4}+\frac{\pi}{8} \tag{*}$                                                                                                                                                                                                                                   | A1 cao     |
|                 |                                                                                                                                                                                                                                                                        | (8 marks)  |

| _  | stion<br>nber | Scheme                                                                                                                                                                                                                     | Marl     | KS     |
|----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
| 4. | (a)           | $\frac{\mathrm{d}x}{\mathrm{d}t} = \sec^2 t \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 2\cos 2t, \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2t}{\sec^2 t}$                                                       | M1 A1, = | > M1   |
|    |               | When $t = \frac{\pi}{3}$ gradient is $-\frac{1}{4}$                                                                                                                                                                        | B1       | (4)    |
|    | (b)           | $y - \frac{\sqrt{3}}{2} = -\frac{1}{m}(x - \sqrt{3})$ $y - \frac{\sqrt{3}}{2} = 4(x - \sqrt{3})$ $y = 4x - \frac{7}{2}\sqrt{3}$ $P \text{ has coordinates } (\sqrt{3}, \frac{\sqrt{3}}{2})$ $y = 4x - \frac{7}{2}\sqrt{3}$ | B1       |        |
|    |               | $y - \frac{\sqrt{3}}{2} = 4(x - \sqrt{3})$                                                                                                                                                                                 | M1       |        |
|    |               | $y = 4x - \frac{7}{2}\sqrt{3}$                                                                                                                                                                                             | A1       | (3)    |
|    | (c)           | $\frac{dy}{dx} = 0 \implies$ gradient of tan = 0, gradient of normal undefined                                                                                                                                             | M1       |        |
|    |               | $\therefore x = \tan \frac{\pi}{4},  \text{i.e: } x = 1$                                                                                                                                                                   | A1       | (2)    |
|    |               |                                                                                                                                                                                                                            | (9 1     | narks) |
| 5. | (a)           | $5 + \lambda = 2 - 3\mu;$ $3 - 2\lambda = -11 - 4\mu$                                                                                                                                                                      | B1 B1    |        |
|    |               | $\therefore \lambda + 3\mu + 3 = 0$                                                                                                                                                                                        |          |        |
|    |               | $5 + \lambda = 2 - 3\mu, \qquad 3 - 2\lambda = -11 - 4\mu$ $\therefore \lambda + 3\mu + 3 = 0$ $2\lambda - 4\mu - 14 = 0$ $2\lambda + 6\mu + 6 = 0$                                                                        |          |        |
|    |               | $2\lambda + 6\mu + 6 = 0$                                                                                                                                                                                                  |          |        |
|    |               | $10\mu + 20 = 0 \implies \mu = -2 :: \lambda = 3$                                                                                                                                                                          | M1 A1    |        |
|    |               | : point is $(8, -3, 4)$                                                                                                                                                                                                    | A1       | (5)    |
|    | (b)           | $\therefore a - 10 = 4 \qquad \Rightarrow a = 14$                                                                                                                                                                          | M1 A1    | (2)    |
|    | (c)           | $\cos \theta = \frac{-3+8+10}{\sqrt{9}\sqrt{25+25}}$                                                                                                                                                                       | M1 A1    |        |
|    |               | $=\frac{15}{3\times5\sqrt{2}} \qquad \qquad =\frac{1}{\sqrt{2}}$                                                                                                                                                           |          |        |
|    |               | Angle = 45°                                                                                                                                                                                                                | M1 A1    | (4)    |
|    |               |                                                                                                                                                                                                                            | (11 1    | narks) |

| Question number | Scheme                                                                                                                                       | Marks                |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>6.</b> (a)   | $11x - 1 \equiv A(2+3x) + B(1-x)(2+3x) + C(1-x)^2$                                                                                           |                      |
|                 | Putting $x = 1 \Rightarrow A = 2$                                                                                                            | B1                   |
|                 | Putting $x = -\frac{2}{3} \Rightarrow -\frac{25}{3} = \frac{25}{9}C \implies C = -3$                                                         | B1                   |
|                 | $cf x^2 	 0 = -3B + C \Rightarrow B = -1$                                                                                                    | M1A1 (4)             |
| (b)             | $\int_{0}^{\frac{1}{2}} \frac{2}{(1-x)^{2}} - \frac{1}{(1-x)} - \frac{3}{(2+3x)} dx$ $= \left[ \frac{2}{1-x} + \ln 1-x  - \ln 2+3x  \right]$ |                      |
|                 | $= \left[ \frac{2}{1-x} + \ln 1-x  - \ln 2+3x  \right]$                                                                                      | M1 A1ft A1ft<br>A1ft |
|                 | $= [4 + \ln \frac{1}{2} - \ln 3 \frac{1}{2} - (2 - \ln 2)]$                                                                                  | M1                   |
|                 | $=2+\ln\frac{\frac{1}{2}\times 2}{3\frac{1}{2}}$                                                                                             | M1                   |
|                 | $=2 + \ln \frac{2}{7}$                                                                                                                       | A1 (7)               |
|                 |                                                                                                                                              | (11 marks)           |
|                 | $\frac{du}{dx} = \frac{1}{2} - \frac{1}{2}\cos 4x; = \frac{1}{2} - \frac{1}{2}(1 - 2\sin^2 2x) = \sin^2 2x$                                  | M1 A1; M1 A1 (4)     |
| (b)             | $V = \pi \int x \sin^2 2x  \mathrm{d}x$                                                                                                      | M1                   |
|                 | $= \pi \left[ x \left( \frac{x}{2} - \frac{1}{8} \sin 4x \right) - \int \frac{x}{2} - \frac{1}{8} \sin 4x  dx \right]_0^{\frac{\pi}{4}}$     | M1 A1 A1             |
|                 | $= \pi \left[ \frac{x^2}{2} - \frac{x}{8} \sin 4x - \left( \frac{x^2}{4} + \frac{1}{32} \cos 4x \right) \right]_0^{\frac{\pi}{4}}$           | M1 A1                |
|                 | $= \pi \left[ \frac{\pi^2}{64} + \frac{1}{32} + \frac{1}{32} \right] = \pi \left[ \frac{\pi^2}{64} + \frac{1}{16} \right]$                   | M1 A1 (8)            |
|                 |                                                                                                                                              | (12 marks)           |

| Question number | Scheme                                                                                                                                                                                                                                                    | Marks      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>8.</b> (a)   | $\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{k}{r^2}$                                                                                                                                                                                                         | B1         |
|                 | $A = \pi r^2 \qquad \therefore \frac{\mathrm{d}A}{\mathrm{d}r} = 2\pi r$                                                                                                                                                                                  | M1A1       |
|                 | $A = \pi r^{2} \qquad \therefore \frac{dA}{dr} = 2\pi r$ $\therefore \frac{dA}{dt} = 2\pi r \frac{k}{r^{2}} = \frac{(2\pi k)}{r}; = \frac{(2\pi k)}{\left(\frac{A}{\pi}\right)^{\frac{1}{2}}} = \frac{2\pi^{\frac{3}{2}}k}{\sqrt{A}}$                     | M1; M1     |
|                 | $\therefore \frac{dA}{dt} \propto \frac{1}{\sqrt{A}} (*)$ $\int \sqrt{S}  dS = \int 2e^{2t}  dt$ $\frac{2}{3} S^{\frac{3}{2}} = e^{2t} + C$ $t = 0, S = 9 \implies C = 17$ $\therefore \frac{2}{3} S^{\frac{3}{2}} = e^{2t} + 17 \text{ and use } S = 16$ | A1 (6)     |
| (b)             | $\int \sqrt{S}  \mathrm{d}S = \int 2e^{2t}  \mathrm{d}t$                                                                                                                                                                                                  | M1         |
|                 | $\frac{2}{3}S^{\frac{3}{2}} = e^{2t} + C$                                                                                                                                                                                                                 | M1A1       |
|                 | $t = 0, S = 9 \implies C = 17$                                                                                                                                                                                                                            | B1         |
|                 | $\therefore \frac{2}{3}S^{\frac{3}{2}} = e^{2t} + 17 \text{ and use } S = 16$                                                                                                                                                                             | M1         |
|                 | $\left(\frac{128}{3} - 17\right) = e^{2t} \qquad \Rightarrow t = \frac{1}{2} \ln \left[\frac{77}{3}\right]$                                                                                                                                               | M1         |
|                 | = 1.6                                                                                                                                                                                                                                                     | A1 (7)     |
|                 |                                                                                                                                                                                                                                                           | (13 marks) |