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General 
 
This paper proved to be a good test of candidates’ ability on the WMA11 content and plenty of 
opportunity was provided for them to demonstrate what they had learnt.  Candidate did find number 
of questions challenging, although they did not seem to find time to be an issue.  Marks were 
available to candidates of all abilities and the questions that proved to be the most challenging were 
2, 6 and 8. 
 
Report on Individual Questions  
 
Question 1 
 
This was a very typical and accessible question to start the paper with the vast majority scoring 3 or 
4 marks.  
Candidates were nearly all successful in being able to increase at least one of the indexes by one 
and 5x− was seen in nearly all cases. This even included some candidates who appeared to 

differentiate some terms and integrate others.  Usually candidates were able to achieve 42
3

x , but the 

second term proved to be more challenging.  Many candidates struggled to deal with the coefficient 

of 
1
2

−  with the 2 ending up on the numerator instead before integrating.  Other candidates made 

errors dealing with the negative fractional power of the second term.  There were still some 
candidates who omitted the constant of integration at the end and some made errors with 
simplifying their coefficients.  Whilst not penalised on this occasion, there were still a number of 
candidates who used poor notation; this included the integral sign and dx remaining as part of their 
final answer even though they had integrated. 
 
Question 2 
 
This question proved to be challenging for many of the candidates and was one of the most difficult 
ones on the paper.  It was clear that candidates are still uncomfortable with the manipulation of 
expressions which involve a lot of work with indices. 
 
In part (a), candidates were usually successful in achieving the correct answer, but for many this 
was all the marks they scored in the question.  
 
In part (b), some were able to apply the addition law to extract the y term, but many did not achieve 
the correct answer.  Errors were made with manipulating the expression, particularly due to the 
terms being on the denominator. 
 
Part (c) was unattempted by a large number of candidates, whilst those who did attempt it, were 
unable to see how they could progress from 2 39 x− to a term which had 3x and scored zero marks as a 



 

result.  Due to the nature of part (b) and (c) it was unusual for any candidates to pick up any marks 
in (c) had they not been successful in part (b). 
 
Question 3 
 
This question proved to be a good discriminator between weaker candidates and more able 
candidates.  
 
Weaker candidates generally were only able to gain full marks in part (a). Most candidates 

recognised that they needed to differentiate and obtained  
d 2 3
d
y x
x
= +  and substituted 3x =  to 

obtain the correct answer.  However,  some candidates only scored the method mark as they 
differentiated either incorrectly to achieve 3ax +  where a was usually 1 or made arithmetical slips 

when substituting 3x = into 
d 2 3
d
y x
x
= + . Some tried to find the gradient algebraically using 

16 ( 3)y m x− = − . 
 
Part (b) proved to be a good discriminator. Many candidates often failed to gain any marks. 
Unfortunately, many candidates who correctly gained full marks in part (a) then went on to 

substitute 3x h= +  into their 
d
d
y
x

 stating the gradient at PQ 2 9h= +  thus scoring zero marks in (b) 

and also in part (c).  

However, most recognised that they needed to use ( )
f (3 ) 16

3 3
h
h

+ −
±

+ −  and most did state gradient of 

9PQ h= + , however. those who stated 
16 f ( )

3 (3 )
x h

h
− +
− +

 tended to make bracket and sign errors. Some 

candidates were only able to find the y value at point Q and failed to then use the gradient formula 
to establish the gradient of PQ.  
 
Part (c) was rarely answered successfully. In order to access this mark, they had to have achieved 
9+h in (b) and 9 in (a).  Few candidates referenced the limit as h tends to zero and the most 
common explanations that gained no credit were: “the answer to part (b) is h greater than the 
answer to part (a)” or “when 0h =  the gradients are same” or “they are linear and parallel.” 
 
 
 
 
 
 
 
 



 

Question 4 
 
This question provided some difficulty for many candidates although others were able to solve fully 
in very few steps.  The question was based upon a circle with a rectangle along part of a diameter 
and as such was a bit unusual and this presented difficulty for some candidates.  Overall it was quite 
a good differentiating question as candidates who analysed it and saw the best strategy were 
rewarded.  
 
Candidates were mostly successful in part (a), although many missed the simplest method of 

finding 1 4cos
12

−  
 
 

 in radians.  A few calculated in degrees and then converted to radians, gaining 

full marks.  Significantly more used inefficient methods, such as finding other angles or sides in 
triangle ADO, or using Pythagoras and sine or cosine rule, to proceed to the correct solution.  It 
should be noted that many candidates who used the cosine rule with three known sides, which 
required more steps, were able to complete the work accurately. 
 
Part (b) required finding the area of the composite shape, essentially a major sector of the circle 
with a right-angled triangle removed.  Those failing part (a) could still use the given angle to solve 
correctly.  Many were confused however by the additional removal of triangle ADO from the sector 
area.  The positioning of the rectangle on the diagram led some to believe that the area could be 
calculated by subtracting this rectangle from the circle.  Those who failed to gain full marks had 
usually combined component areas incorrectly.   Many assumed that the sector was in fact three-
quarters of the circle which it clearly was not.  A lot of candidates were able to achieve at least one 
of the first two method marks for correctly finding the area of a sector or area of the triangle using 
an allowable angle.  There were a lot of responses where the candidates did not achieve the second 
method mark as they incorrectly applied Pythagoras’ Theorem to find the height of the triangle or 
used an incorrect method to find the triangle area.  Those who did not gain the third method mark 
had mainly used π – 1.231 or even 1.231 as their angle.  The third method mark required a fully 
correct method to find the required area so those who used an incorrect sector angle were unable to 
gain the last two marks in (b) 
 
Generally, candidates were more successful in part (c).  Almost all used  rθ  to find an arc length, 
but not always the major arc. Many candidates correctly used   π + 1.231 with r = 12 and then added 
16 with their 8√2.  Those who attempted to find the circumference of the full circle and subtract an 
arc before adding tended to be more prone to slips. 
 
Occasionally accuracy marks for (b) and (c) were lost because of rounding the angle to one decimal 
place before calculations.  The question asked for answers to one decimal place but rounding a 
small angle to 4.4 radians (from 4.373) produced quite a large accuracy error and this should really 
be known by candidates. 
 
 



 

Question 5 
 
Many candidates were usually successful in scoring the majority, if not all, of the marks in this 
question. 
 
In part (a), most candidates were able to start this question by taking out a factor of x or dividing by 
10. The few candidates who divided by x usually scored no marks as the solution 0x =  was never 
found.  Most then proceeded to solve the resulting equation either by factorising the resulting 
quadratic, or by using the quadratic formula. There were few errors in this process. ‘Completing the 
square’ was occasionally seen which usually led to an incorrect answer.  Candidates should be 
reminded to read the instructions of the question; the requirement to solve “using algebra” meant 
that it is recommended to show as many steps as possible.  It was apparent that some candidates had 
used the calculator to find the roots and then work backwards to a factorised form.  This approach 
should be used with caution in questions that require more working to be shown such as this one. 
 
In part (b), many candidates were able to use their answers from (a) to find solutions for y.  

However, few realised that the solution arising from 
1
2

x = −  was not valid, losing the final A mark. 

Some candidates lost the final two marks because they took the square root of their x value rather 
than squaring and subtracting 3.  A significant number tried to answer (b) without realising that they 
had to use their solutions from (a).  Such approaches were awarded no marks as the question clearly 
stated ‘hence’. 
 
Question 6 
 
This question was one of the most challenging on the paper.  There were a substantial number of 
blank responses.  Only the most able were able to gain full marks.  It was disappointing to see many 
candidates not sketching a diagram, those that did generally proceeded to get at least half marks.  
Centres should stress to candidates that it is good practice to draw a sketch of the problem. 
 
Part (a) was the most successfully answered part with the correct equation of 2l .  Most of the 

candidates who attempted this part reached the equation 
3 6
4

y x= −  but failed to write the equation 

in the form 3 4 24 0x y− − =  or 3 4 24 0x y− + + =  and lost the A mark. Some candidates struggled 
with the rearrangement of the equation 3 4 24 0x y− − =  correctly.  
In part (b), a majority of the candidates could not calculate the area of the paralleogram PQRS 
correctly, but most of them calculated the correct coordinates of the points P and Q.  Many 
candidates did not appear to know how to find the area of a parallelogram, whilst a significant 
number thought it was length ×  width. The most common error in finding the area was multiplying 
the two sides PR and PQ or PQ and QR.  A few candidates calculated the lengths of PQ, PR and the 



 

angle RPQ using cosine rule and then used 
12 sin
2

PR PQ RPQ = × × × 
 

.  Those candidates who 

split the area into two triangles usually proceeded to score full marks.  A very small number of 
candidates used the shoelace method but nearly none of them reached the correct answer as the 
coordinates of their S was calculated incorrectly, generally as S (0, 5)−  or (0, 6)− . 
 
In part (c) it was very common for candidates to misunderstand the origination and position of the 

parallelogram.  A lot of candidates gained a mark from the SC for S
44 ,5
3

 
 
 

.  The most common 

method was to attempt to equate lengths RS and PQ.  Very few candidates used a translation to find 
the coordinate. 
 
Question 7 
 
This question was well attempted by both medium ability and higher ability candidates.  Lower 
ability candidates struggled to make progress, with most of them scoring no more than one mark.  
The answers were required in degrees and it was disappointing to see candidates giving all 
coordinates in radians. 
 
In part (a)(i) many candidates did recognise that only the y value was affected by the transformation 
of  sin x  to 3siny x= .  However, there were many candidates who multiplied the x coordinate by 3 
instead of the y coordinate and a few gave their answers the wrong way round.  In part (ii) many 
candidates added 90 to 360 giving Q(450,0) or just (360,0).  
 
Part (b) proved the most difficult for candidates to understand.  About half of candidates did not 
gain any marks in this part of the question.  Candidates who gained only one mark were generally 
able to state the x coordinate of R but not the y coordinate.  Most common incorrect y coordinates 
were 7−  and 10− .  Those that did gain full marks did so generally by equating the maximum value 
of 10 and the equation 3siny x k= +  to achieve 10 3 k= +  and then proceed to obtain the y 
coordinate for R using 4 3sin 7x= + . The most common incorrect answer for this part was 
(90, 10)− . 
 
 
 
 
 
 
 
 
 
 



 

Question 8 
 
Most candidates started correctly by equating the two equations, although a few had an inequality. 
Some candidates, who did not realise what was required, tried to complete the square to find a 
minimum or just solved the given quadratic equation. There were many errors in the rearrangement 
of their equation so quadratics ending with ....11 0k− =  was often seen.  Candidates did not always 
collect the ‘x’ coefficients but often continued with the correct ‘a’, ‘b’ and ‘c’. 
 
Most candidates proceeded to find the discriminant of their resulting quadratic, usually with and 
used a valid method to obtain ‘their’ critical values.  The majority of candidates continued to find 
the inside region for ‘their’ critical values and almost all used the letter k when referring to the 
range of values. A sketch graph proved useful to many in this part. 
 
Question 9 
 
It was pleasing to see a high number of simplifications into the correct two terms at the start of this 

question.  Most candidates correctly attempted to divide by 
1
22x .  A few candidates attempted the 

quotient (or product) rule, usually correctly.  Many candidates found 
d
d
y
x

 correctly, whilst those 

who did not achieve a correct 
d
d
y
x

 tended to make errors in either the coefficients or the powers of x. 

Some candidates were able to complete the question by finding 3
2

x = ,  although some incorrectly 

gave the negative square root as an answer as well.  Many candidates struggled with the final part 
and many incorrect attempts were seen.  Most errors occurred when candidates attempted to 

factorise 
d 0
d
y
x
= . Multiplying by another power of x to achieve whole number or positive powers 

also led to errors and few reached the form 2 ...x± =  or 4 ...x± =  to gain the method mark.  Finding a 
fourth root also caused problems for some candidates. 
 
 
 
 
 
 
 
 
 
 
 



 

 
Question 10 
 
This was a curve transformation question based upon a cubic presented in factorised form and with 
a double root.  Candidates had to sketch the curve and then correctly analyse a stretch and a 
translation in x and a translation in y.  
 
Generally, this question was answered well. Part (a) will have been straightforward for those with a 
graphical calculator, although there were a few candidates who forgot to label x/y-axis intercepts.  
Most candidates were able to obtain ¾ and 5 as their values on the x-axis.  Some who obviously did 
not have access to graphical technology sketched an incorrect shape, mostly parabolas or negative 
cubics. A few positioned their curve incorrectly, failing to understand that there would be a repeated 
root at 5x = . In some cases the graph ended at the point (0, 75)−  losing the last B mark. The last B 
mark for 75− was generally easier for candidates to obtain, but there were instances where their 
graph was considerably wrong but it did cross at 75−  so, the last B mark was achieved. 
 
On the whole, if a candidate had answered part (a) correctly, they then went on to transform the x-

axis intercepts into 
1f
4

x 
 
 

 by multiplying their x intercepts by 4 to give 3x = and 20x = in part (b). 

There were a few who found the correct values for 
1f
4

x 
 
 

 as 3 and 20, despite having sketched f(x) 

incorrectly.  A common error was to divide by 4 rather than multiplying.  Part (ii) required 
identifying the y-translation so that the original cubic would pass through the origin; when part (a) 
was correct this was often answered correctly, too.  
 
Part (c) required the x-translation to g( ) f ( 1)x x= + and giving the correct expression for g(x).  
Essentially "x" is replaced by "x+1" in the f(x) expression and some simplification was required.  
The most common error seen was to simply add a 1 into each bracket.  Many struggled to simplify 
the expression correctly, sometimes with incorrect expansion of the bracket (4( 1) 3)x + −  to 
(4 1 3)x + −  or by multiplying by -5 instead of subtracting in 2(( 1) 5)x + − . Many did not notice that 
the y-intercept of the new function was the constant found by multiplying the two brackets when 

0x = . Sometimes a candidate decided to expand the f(x) brackets to obtain the x powers and then 
change these to powers of (x + 1) but errors were usually made with the coefficients.  The question 
stated clearly that a factorised form for g(x) was acceptable. 
 
 
 
 
 
 



 

 
 
Question 11 
 
This proved to be a good question at the end of the paper to discriminate between candidates.  It 
was pleasing to see a good number who scored full marks, and most candidates were able to do 
something in the question to score a number of the available method marks, even if they made 
errors along the way. 

In part (a) most candidates were able to deduce that the gradient of the normal was 
1
4

from the 

information given.  These candidates then used the correct points to proceed to find the equation of 
the normal.  The occasional error was seen, although some candidates did not attempt this part and 
just proceeded to part (b). 
 
Part (b) relied on candidates having a good understanding of what information had been presented 
and determining in which order they needed to use it.  Indeed most candidates appreciated that they 
needed to integrate twice, even if they were unsure as to what else they needed to do.  The first 
hurdle that candidates encountered was omitting the constant of integration or applying a correct 
method to find the value of the first constant.  A significant number used (4, 50)−  rather than 
substituting 4x =  into their f ( )x′ and equating to 4− .  This may have been due to the order that the 
information was given.  These candidates then either forgot the constant of integration again or did 
not include it when they integrated for a second time. Some candidates progressed correctly to the 
end but made a slip with their final constant. 
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