

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International A Level in Statistics 1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code WST01_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method
 (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme		
1. (a)	$S_{ww} = 41252 - \frac{640^2}{10} = \frac{292}{10}$	M1A1	
	$S_{wp} = 27557.8 - \frac{640 \times 431}{10} = -26.2$	A1	
(b)	$r = \frac{-26.2}{\sqrt{292 \times 2.72}}$	(3) M1	
	$\sqrt{292 \times 2.72}$ = -0.9297 awrt <u>-0.930</u>	A1 (2)	
(c)	As <u>weight</u> increases the percentage of <u>oil</u> content decreases o.e.	B1 (1)	
(d)	$b = \frac{-26.2}{292} = -0.0897$ awrt $\underline{-0.09}$	M1 A1	
	$a = \frac{431}{10} - \left(\frac{-26.2}{292}\right) \times \left(\frac{640}{10}\right) = 48.842$	M1	
	p = 48.8 - 0.0897w	A1 (4)	
(e)	$p = 48.8 - 0.0897 \times 60$ = 43.4/43.5 awrt 43.4/43.5	(4) M1 A1	
	avit <u>iota iote</u>	(2) Total 12	
	Notes		
(a)	M1 for a correct expression for S_{ww} or S_{wp} (may be implied by one correct answer) 1^{st} A1 for either $S_{ww} = 292$ or $S_{wp} = -26.2$ 2^{nd} A1 for both $S_{ww} = 292$ and $S_{wp} = -26.2$		
(b)	M1 for a correct expression (Allow ft of their S_{ww} or S_{wp} provided $S_{ww} \neq 41252$ and $S_{wp} \neq 27557.8$). Condone missing "—" A1 for awrt -0.930 (Condone -0.93 for M1A1 if correct expression is seen) (Answer only awrt -0.930 scores 2/2 but answer only -0.93 is M1A0)		
(c)	B1 For a correct contextual description of negative correlation which must include weight and oil (but w increases as p decreases is not sufficient)		
(d)	1^{st} M1 for a correct expression for b (Allow ft) 1^{st} A1 for awrt -0.09 2^{nd} M1 for a correct method for a ft their value of b (Allow $a = 43.1 + b \times 64$) 2^{nd} A1 for a correct equation for p and w with $a = \text{awrt } 48.8$ and $b = \text{awrt } -0.0897$ No fractions. Equation in x and y is A0		
(e)	M1 substituting $w = 60$ into their equation A1 awrt 43.4 or 43.5 (Answer only scores 2/2)		

Question Number	Scheme	Marks
2.	$1.5 \times 12 = 18$ 20 people represented by 18 (cm ²) or 1 person is represented by 0.9 (cm ²)	M1
	$x = \frac{20 \times 94.5}{18} \text{ oe}$	M1
	18 = 105 (people)	A1cao
		(3) Total 3
	Notes	10tai 5
	Notes 1 st M1 for an attempt to relate area to frequency (e.g. $\frac{20}{18}$ or $\frac{18}{20}$ seen)	
	2 nd M1 for a correct expression/equation for total frequency e.g. $\frac{18}{20} = \frac{94.5}{x}$ A1 for 105cao	

Question Number	Scheme	Ma	rks
3.(a)	(Discrete) <u>Uniform</u>	B1	
(b)	$P(X=4) = \frac{1}{5} \text{ oe}$	B1	(1)
(c)	$F(3) = \frac{3}{5} \text{ oe}$	B1	(1)
(d)	P(3X-3>X+4) = P(X>3.5) 2	M1	(1)
	$=\frac{2}{5}$ oe	A1	(2)
(e)	$\mathrm{E}(X) = \underline{3}$	B1	(1)
(f)	$E(X^{2}) = \frac{1}{5} (1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2})$ $= 11$	M1 A1	
(g)	Var $(X) = 11 - 3^2$ or $\frac{(5+1)(5-1)}{12}$	M1	(2)
	= <u>2</u>	A1	(2)
(h)	$11.4 = aE(X) - 3 \text{ or } 11.4 = 3a - 3$ $a = 4.8$ $Var(4.8X - 3) = `4.8`^2 \times `2`$ $= 46.08$ awrt 46.1	M1 A1 M1 A1	
	Notes		(4) al 14
(a)	B1 for uniform	1	
(d)	M1 for identifying the correct probabilities i.e. $P(X > 3.5)$ or $P(X = 4) + P(X = 4)$	(X=5)	
(f)	M1 for a correct expression		
(g)	M1 for either 'their (f)' – 'their (e)' ² or for a correct expression $\frac{(5+1)(5-1)}{12}$		
(h)	1st M1 for setting up a correct linear equation using $aE(X) - 3 = 11.4$ 1st A1 may be implied by a correct answer 2nd M1 for "their a^2 "×"their $Var(X)$ " (must see values substituted) (may be implied by a correct answer or correct ft answer) NB 'their $Var(X)$ ' < 0 is M0 here.		

Question Number	Scheme		
4.(a)	7.5 <u>and</u> 25	B1	
(b)	Mean = 10.3125 awrt <u>10.3</u>	B1 (1)	
(c)	$\sigma = \sqrt{\frac{120125}{80} - 10.3125^2}$	M1	
	= 6.6188 (s = 6.6605) awrt 6.62	A1 (2)	
(d)	Median = $\{5\} + \frac{20}{24} \times 5$ or $\{10\} - \frac{4}{24} \times 5$	M1	
	= 9.16666 awrt <u>9.17</u>	A1 (2)	
(e)	Mean > median ∴ positive skew	M1A1 (2)	
(f)	t = 10v + 5		
	$Mean = 10 \times 10.3125 + 5$	M1	
	$=108.125$ awrt <u>108</u> $\sigma = 10 \times 6.6188$	A1 M1	
	= 66.188 (66.605 from s) awrt <u>66.2</u>	A1	
	- 00.100 (00.003 1101113)	(4)	
		Total 12	
	Notes		
(a)	B1 both values correct (may be seen in table)		
(b) (c)	B1 for awrt 10.3 (Do not allow improper fractions). M1 for a correct expression including the square root (allow ft from their model) A1 for awrt 6.62 (Allow <i>s</i> = awrt 6.66)		
(d)	M1 for a correct fraction: $\frac{20}{24} \times 5$ or if using $n + 1$ for $\frac{20.5}{24} \times 5$		
	may be scored from working down $-\frac{4}{24} \times 5$		
	A1 for awrt 9.17 or (if using $n + 1$) for awrt 9.27		
(e)	M1 for a correct comparison of 'their b' and 'their d' (must have an answer to both (b) and (d))		
	Comparison may be part of bigger expression e.g. 3(mean – median)/s.d.		
	Allow use of $Q_3 - Q_2 > Q_2 - Q_1$ only if $Q_1 = 5$ and $Q_3 = 15$ are both seen		
	A1 for positive skew (which must follow from their values)		
(f)	1 st M1 for 10×"their mean"+5 2 nd M1 for 10×"their sd"		
	Use of decoded data to find mean must be fully correct, i.e. 8650/80 = awrt 108 (N	 11Δ1)	
	Use of decoded data to find s.d. must be fully correct, i.e. $\sqrt{\frac{1285750}{80} - \left(\frac{8650}{80}\right)^2} = \text{awrt } 66.2 \text{ (M1A)}$		

Question Number	Scheme	Marks	
5. (a)	$P(T=2) = 3 \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{12}$ oe	M1 A1	
(b)	P(T=3) = [P(0, 3) + P(1, 2) + P(2, 1)] + P(3)	(2)	
	$= \left(\frac{1}{6} \times \frac{1}{2}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \frac{1}{2}$	M1M1	
	$=\frac{23}{36}$ oe	A1	
(c)	$P(T = 3 \text{ rolled twice}) = \frac{P((T = 3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$	(3) M1	
	$= \frac{\frac{5}{36}}{\frac{1}{2}}$ $= \frac{5}{18} \text{ oe}$	M1	
	$=\frac{5}{18}$ oe	A1 (3)	
		Total 8	
	Notes		
	Correct answer only in (a), (b) or (c) scores full marks for that part.		
(a)	Methods leading to answers > 1 score 0 marks M1 for a correct expression		
(u)	A1 allow exact equivalent		
	$(\frac{1}{6} \times \frac{1}{2} = \frac{1}{12} \text{ is M0A0}).$		
(b)	1^{st} M1 for $\frac{1}{2}$ + at least one correct product		
	2 nd M1 for fully correct expression A1 allow exact equivalent		
(c)	1 st M1 for correct conditional probability ratio (this mark may be implied by 2^{nd} N but going on to assume independence [using numerator $P(T = 3) \times P(\text{rolled twice } M0M0A0$.		
	2 nd M1 for a correct numerical ratio of probabilities (allow ft of (their (b) –	$-\frac{1}{2}$) as	
	numerator) A1 allow exact equivalent		

Question Number	Scheme			
6. (a)	$[P(A \cup C) =] \frac{9}{10} \text{ oe}$			
(b)	$P(A \cup B) = P(A) + P(B) - P(A) \times P(B)$			
	$\frac{5}{8} = \frac{2}{5} + P(B) - \frac{2}{5}P(B)$		M1 A1	
	$P(B) = \frac{3}{8} *$		A1cso	
(c)	$[P(A B) = P(A) =] \frac{2}{5} \text{ oe}$		(4) B1	
	_		(1)	
(d)		Diagram	B1	
	$ \begin{array}{c c} A & 0.05 \\ \hline 0.25 & 0.15 & 0.05 \end{array} $	0.15 <u>and</u> 0.25	M1	
	0 0.175	0.05 and 0.05	M1	
	0.325 0.05 C	0.175 <u>and</u> 0.325	M1 A1	
			(5) Total 11	
(b)	Notes $1^{\text{st}} \text{ M1 for use of } P(A \cup B) = P(A) + P(B) - P(A)$	$\sim R$		
(b)	$2^{\text{nd}} \text{ M1 for use of } P(A \cap B) = P(A) \times P(B) \text{ (But just)}$	•	 _is_M0M0)	
(d)	1st A1 a correct equation 2^{nd} A1 cso (No wrong working seen dependent on all previous marks) (allow a full verification method, however, substitution of $P(B)=3/8$ into only one $P(B)$ to find the other $P(B)$ (e.g. using $3/20$ to find $3/8$) can score M1M0A0A0) B1 3 circles intersecting, see diagram above, (at least 2 labelled) with the two zeros showing A does not intersect C (Do not allow blank spaces for the two zeros) or 3 circles, see diagram below, (at least 2 labelled) where B intersects A and C do not intersect A and A			
	$3^{\text{rd}} \text{ M1 } \frac{3}{8}$ - ("their 0.15" + "their <u>0.05"</u>), i.e. P(B) =	$=\frac{3}{8}$ and $\frac{1}{2}$ - "their 0.175", i.e	$P(C) = \frac{1}{2}$	
	For the 3^{rd} M mark, blank regions inside P(B) and P(A) fully correct with box $ \begin{array}{c c} \hline & A & \frac{2}{40} \\ \hline & \frac{10}{40} & \frac{6}{40} & \frac{2}{40} \end{array} $	$\frac{C}{40}$ are not treated as 0s and sc $\frac{7}{40}$ $\frac{13}{40}$	ore M0	

Question Number	Scheme		
7(a)(i)	$P(X > 505) = P\left(Z > \frac{505 - 503}{1.6}\right)$	M1	
	= 1 - P(Z < 1.25) = 1 - 0.8944 $= 0.1056$ awrt 0.106		
(ii)	$P(501 < X < 505) = 1 - 2 \times 0.1056$ or $0.8944 - 0.1056$ = 0.7888 awrt 0.789	(3) M1 A1	
(b)	$P(X < w) = 0.9713$ or $P(X > w) = 0.0287$ (may be implied by $z = \pm 1.9$)	M1 (2)	
	$\frac{w-503}{1.6} = 1.9$ or $\frac{(1006-w)-503}{1.6} = -1.9$	M1	
	w = 506.04 awrt <u>506</u>	A1 (3)	
(c)	$\frac{r - 503}{q} = -2.3263$	M1A1	
	$\frac{r+6-503}{q} = 1.6449$	M1A1	
	1.6449q - 6 = -2.3263q	ddM1	
	q = 1.51 awrt <u>1.51</u>	A1	
	r = 499.48 awrt 499	A1 (7)	
		Total 15	
	Notes		
(a)(i)	1 st M1 standardising with 505, 503 and 1.6. May be implied by use of 1.25 (Allo	w _± ±)	
	2^{nd} M1 for $1 - P(Z < 1.25)$ i.e. a correct method for finding $P(Z > 1.25)$, e.g. $1 - p$ where 0.5		
(ii)	$M1 1-2 \times their(i)$		
(b)	1st M1 for using symmetry to find the area of one tail (may be seen in a diagram))	
	2^{nd} M1 a single standardisation with 503, 1.6 and w (or $1006 - w$) and set = $\pm z$ v	value $(1.8 < z)$	
	(2) A1 for event 506 which must some from connect working (A narrow only) 506 co.	omas 0/2 hust	
	A1 for awrt 506 which must come from correct working. (Answer only : 506 sc 506.0with no working send to review)	ores 0/3, but	
(-)	$1^{\text{st}} \text{ M1 } \frac{r - 503}{z} = z \text{ value where } z > 2$		
(c)	q		
	$1^{\text{st}} \text{ A1 } \frac{r - 503}{a} = \text{awrt } -2.3263 \text{ (signs must be compatible)}$		
	q		
	$2^{\text{nd}} \text{ M1 } \frac{r+6-503}{q} = z \text{ value where } z > 1$		
	\mathbf{I}		
	$2^{\text{nd}} \text{ A1} \frac{r+6-503}{a} = \text{ awrt } 1.6449 \text{ (signs must be compatible)}$		
	<i>q</i> Special Case: Less than 4dp <i>z</i> -values: use of awrt 2.32/2.33/2.34 and awrt 1.64/1.65 could		
	score M1 A0 M1 and then A1 provided both equations have compatible signs.		
	3^{rd} M1 (dep on both Ms) attempt to solve simultaneous equations leading to a value for q or r		
	3 rd A1 for awrt 1.51 4 th A1 for awrt 499 (allow 499.5)		
	1 111 101 WILL T// (MILOW T//.J)		