

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 6666_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $pq = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question	Scheme Notes				
1. Way 1	$\left\{\frac{1}{\left(2+5x\right)^3} = \right\} (2+5x)^{-3}$ Writes down $(2+5x)^{-3} \text{ or uses}$ power of -3				
	$= (2)^{-3} \left(1 + \frac{5x}{2}\right)^{-3} = \frac{1}{8} \left(1 + \frac{5x}{2}\right)^{-3}$		$\frac{2^{-3}}{8}$ or $\frac{1}{8}$	<u>B1</u>	
	$= \left\{ \frac{1}{8} \right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!} (kx)^2 + \frac{(-3)(-4)(-3)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)(-4)}{3!} (kx)^2 + (-3)(-4)(-4)(-$	$\frac{5)}{(kx)^3+\dots}$	see notes	M1 A1	
	$= \left\{ \frac{1}{8} \right\} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(\frac{5x}{2} \right)^2 + \frac{(-3)(-4)(-3)}{3!} \right]$	$\frac{-5)\left(\frac{5x}{2}\right)^3 + \dots$			
	$= \frac{1}{8} \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$				
	$= \frac{1}{8} \left[1 - 7.5x + 37.5x^2 - 156.25x^3 + \dots \right]$				
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $\mathbf{or} \frac{1}{8} - \frac{15}{16}x; + 4\frac{11}{16}x^2 - 19\frac{17}{32}x^3 + \dots$			A1; A1	
	8 16 16 32			[6]	
				0	
Way 2	$f(x) = (2 + 5x)^{-3}$ Write	es down $(2+5x)^{-1}$	$\frac{3}{3}$ or uses power of -3	M1	
Way 2	$f(x) = (2+5x)^{-3}$ Write $f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$		or uses power of -3 rrect f''(x) and f'''(x)	M1 B1	
Way 2	$f''(x) = 300(2+5x)^{-5}, \ f'''(x) = -7500(2+5x)^{-6}$	Co			
Way 2		Co	rrect $f''(x)$ and $f'''(x)$	B1	
Way 2	$f''(x) = 300(2+5x)^{-5}, \ f'''(x) = -7500(2+5x)^{-6}$	Co	rrect f''(x) and f'''(x) $\pm a(2+5x)^{-4}$, $a \neq \pm 1$	B1 M1	
Way 2	$f''(x) = 300(2 + 5x)^{-5}, \ f'''(x) = -7500(2 + 5x)^{-6}$ $f'(x) = -15(2 + 5x)^{-4}$	Co	rrect f''(x) and f'''(x) $\pm a(2+5x)^{-4}$, $a \neq \pm 1$	B1 M1 A1 oe	
	$f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$ $f'(x) = -15(2+5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{15}{8}, f''(0) = \frac{15}{$	Co	rrect f''(x) and f'''(x) $\pm a(2+5x)^{-4}$, $a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1	B1 M1 A1 oe	
Way 2	$f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$ $f'(x) = -15(2+5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{75}{8} $	Co	rrect f"(x) and f"'(x) $\pm a(2+5x)^{-4}, a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1	B1 M1 A1 oe A1; A1 [6] M1	
	$f''(x) = 300(2 + 5x)^{-5}, f'''(x) = -7500(2 + 5x)^{-6}$ $f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{1}{8}, f''(0) = \frac{1}{8}, $	1875 16	rrect f"(x) and f"'(x) $\pm a(2+5x)^{-4}, a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1 Same as in Way 1	B1 M1 A1 oe A1; A1 [6] M1 B1	
	$f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$ $f'(x) = -15(2+5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{15}{8}, f''(0) = \frac{15}{$	1875 16	rrect f"(x) and f"'(x) $\pm a(2+5x)^{-4}$, $a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1 Same as in Way 1 Any two terms correct	B1 M1 A1 oe A1; A1 [6] M1 B1 M1	
	$f''(x) = 300(2 + 5x)^{-5}, f'''(x) = -7500(2 + 5x)^{-6}$ $f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{1}{8}, f''(0) = \frac{1}{8}, $	1875 16	rrect f"(x) and f"'(x) $\pm a(2+5x)^{-4}, a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1 Same as in Way 1	B1 M1 A1 oe A1; A1 [6] M1 B1	
	$f''(x) = 300(2 + 5x)^{-5}, f'''(x) = -7500(2 + 5x)^{-6}$ $f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{75}{8} \text{ so, } f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots \right\}$ $(2 + 5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-3)(-4)}{3!}$	$-\frac{1875}{16}$ $\frac{5)}{(2)^{-6}(5x)^3}$	rrect f"(x) and f"'(x) $\pm a(2+5x)^{-4}$, $a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1 Same as in Way 1 Any two terms correct All four terms correct Same as in Way 1	B1 M1 A1 oe A1; A1 [6] M1 B1 M1 A1	
	$f''(x) = 300(2 + 5x)^{-5}, f'''(x) = -7500(2 + 5x)^{-6}$ $f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{75}{8} \text{ so, } f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots \right\}$ $(2 + 5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-3)(-4)(-3)}{3!}$ $= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ Note: Terms can be simplified or un-simplified or un-simplif	$ \frac{1875}{16} = \frac{1875}{16} $ Solution is a split of the evaluated in the	rrect f"(x) and f"'(x) $\pm a(2+5x)^{-4}, a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1 Same as in Way 1 Any two terms correct All four terms correct Same as in Way 1	B1 M1 A1 oe A1; A1 [6] M1 B1 M1 A1 A1 A1; A1	
	$f''(x) = 300(2 + 5x)^{-5}, f'''(x) = -7500(2 + 5x)^{-6}$ $f'(x) = -15(2 + 5x)^{-4}$ $\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{75}{8} \text{ so, } f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots \right\}$ $(2 + 5x)^{-3}$ $= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-3)(-4)}{3!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-4)(-4)}{3!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-4)(-4)}{3!}(2)^{-5}(5x$	$ \frac{1875}{16} = \frac{1875}{16} $ Solution by the second of t	rrect f"(x) and f"'(x) $\pm a(2+5x)^{-4}, a \neq \pm 1$ $-15(2+5x)^{-4}$ Same as in Way 1 Same as in Way 1 Any two terms correct All four terms correct Same as in Way 1	B1 M1 A1 oe A1; A1 [6] M1 B1 M1 A1 A1 A1; A1	

		Question 1 Notes
1.	1 st M1	mark can be implied by a constant term of $(2)^{-3}$ or $\frac{1}{8}$.
	<u>B1</u>	$\frac{2^{-3}}{8}$ or $\frac{1}{8}$ outside brackets or $\frac{1}{8}$ as candidate's constant term in their binomial expansion.
	2 nd M1	Expands $(+kx)^{-3}$, $k = a$ value $\neq 1$, to give any 2 terms out of 4 terms simplified or unsimplified,
		Eg: $1 + (-3)(kx)$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ or $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$
		or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ are fine for M1.
	1st A1	A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$
		expansion with consistent (kx) . Note that (kx) must be consistent and $k = a$ value $\neq 1$.
	Note	You would award B1M1A0 for $\frac{1}{8} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(5x \right)^2 + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x}{2} \right)^3 + \dots \right]$
		because (kx) is not consistent.
	Note	Incorrect bracketing: $= \left\{ \frac{1}{8} \right\} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(\frac{5x^2}{2} \right) + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x^3}{2} \right) + \dots \right]$
		is M1A0 unless recovered.
	2 nd A1	For $\frac{1}{8} - \frac{15}{16}x$ (simplified) or also allow $0.125 - 0.9375x$.
	3 rd A1	Accept only $\frac{75}{16}x^2 - \frac{625}{32}x^3$ or $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3$ or $4.6875x^2 - 19.53125x^3$
	SC	If a candidate would otherwise score 2 nd A0, 3 rd A0 then allow Special Case 2 nd A1 for either
		SC: $\frac{1}{8} \left[1 - \frac{15}{2} x; \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots + \frac{75}{2} x^2 + \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots - \frac{625}{4} x^3 + \dots \right]$
		SC: $\lambda \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$ or SC: $\left[\lambda - \frac{15\lambda}{2}x + \frac{75\lambda}{2}x^2 - \frac{625\lambda}{4}x^3 + \dots \right]$
		(where λ can be 1 or omitted), where each term in the $\left[\dots\right]$ is a simplified fraction or a decimal
	SC	Special case for the 2 nd M1 mark Award Special Case 2 nd M1 for a correct simplified or un-simplified
		$1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2 + \frac{n(n-1)(n-2)}{3!}(kx)^3$ expansion with their $n \neq -3$, $n \neq positive$ integer
		and a consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessarily the LHS)
		in a candidate's expansion. Note that $k \neq 1$.
	Note	Ignore extra terms beyond the term in x^3
	Note	You can ignore subsequent working following a correct answer.

Question Number	Scheme								Marks	
2.	<u> </u>	1	1.2	1.4	1.6	1.8	2	$y = x^2 \ln x$		
(a)	$\begin{cases} y \\ \text{At } x = \end{cases}$	$\frac{0}{1.4.}$ v	0.2625 0.6595 (4)	0.659485 1 dp)	1.2032	1.9044	2.7726	0.6595	B1 cao	
()	(, 7						0,0070	[1]	
(b)	$\frac{1}{2}$ ×(0.2	$(x) \times [0]$	+ 2.7726 + 2	(0.2625 + the)	eir 0.6595 +	1.2032 + 1	.9044)]	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{10}$	B1 o.e.	
	{Note: 7	The "0"	' does not ha	ve to be inclu	ded in [.]}		For structure of []	M1	
	$\left\{=\frac{1}{10}(1)\right\}$	0.8318	$\left. \frac{1}{3} \right\} = 1.0831$	8 = 1.083 (3 d	lp)		anything t	hat rounds to 1.083	A1 [3]	
(c) Way 1	$\int_{\mathbf{I}} - \int \mathbf{r}^2$	ln vdv	$\int u = 1$	$\ln x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} =$	$\frac{1}{x}$				[3]	
Way 1	$\left\{ \mathbf{I} = \int x^2 \ln x \mathrm{d}x \right\}, \left\{ \begin{aligned} u &= \ln x \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x} \\ \frac{\mathrm{d}v}{\mathrm{d}x} &= x^2 \implies v = \frac{1}{3}x^3 \end{aligned} \right\}$									
	x^3	ſ x	$^{3}(1)$				_	$x - \int \mu x^3 \left(\frac{1}{x}\right) \{dx\}$ $\{dx\}$, where $\lambda, \mu > 0$	M1	
	$=\frac{\pi}{3}\ln x$	$x - \int \frac{x}{3}$	$\frac{3}{3} \left(\frac{1}{x} \right) \{ \mathrm{d}x \}$				$\frac{1}{\ln x} \to \frac{x^3}{3} \ln x$	$1 x - \int \frac{x^3}{3} \left(\frac{1}{x} \right) \{ \mathrm{d}x \} ,$	A1	
	$=\frac{x^3}{3}\ln x$	$c-\frac{x^3}{9}$				$\frac{x^3}{3}\ln x -$	$\frac{x^3}{9}$, simplifies	ied or un-simplified	A1	
	Area (R) = {	$\frac{x^3}{3}\ln x - \frac{x^3}{9}$		$2-\frac{8}{9}\bigg)-\bigg(0$	$-\frac{1}{9}$	M marl	ent on the previous k. Applies limits of and 1 and subtracts c correct way round	dM1	
	$=\frac{8}{3}\ln 2$	$-\frac{7}{9}$					$\frac{8}{3}\ln 2 - \frac{7}{9}$	or $\frac{1}{9}(24\ln 2 - 7)$		
(c) Way 2	$I = x^2(x)$	xln <i>x</i> –	$x) - \int 2x(x)$	$\ln x - x) dx$	$\begin{cases} u = x^2 \\ \frac{\mathrm{d}v}{\mathrm{d}x} = \ln x \end{cases}$	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} \Rightarrow v$	$\frac{u}{x} = 2x$ $y = x \ln x - x$		[5]	
	So, 3I=	$x^2(x \ln x)$	$(1x - x) + \int 2x - x = 0$	$x^2 \{ dx \}$						
	A full method of applying $u = x^2$, $v' = \ln x$ to give $\pm \lambda x^2 (x \ln x - x) \pm \mu \int x^2 \{ dx \}$					M1				
	and $I = \frac{1}{3}x^2(x \ln x - x) + \frac{1}{3}\int 2x^2 \{dx\}$				A1					
	$= \frac{1}{3}x^2($	<i>x</i> ln <i>x</i> –	$-x)+\frac{2}{9}x^3$			$\frac{x^3}{3}\ln x -$		ied or un-simplified	A1	
					The	ı award dN	11A1 in the	same way as above	M1 A1 [5]	
									9	

		Question 2 Notes
2. (a)	B1	0.6595 correct answer only. Look for this on the table or in the candidate's working.
(b)	В1	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.
	M1	For structure of trapezium rule []
	Note	No errors are allowed [eg. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a repeated <i>y</i> ordinate].
	A1 Note	anything that rounds to 1.083 Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.070614704)
	Note	Full marks can be gained in part (b) for using an incorrect part (a) answer of 0.6594
	Note	Award B1M1A1 for $\frac{1}{10}(2.7726) + \frac{1}{5}(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) = \text{awrt } 1.083$
	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly
	Award	B1M0A0 for $\frac{1}{2}$ (0.2) + 2(0.2625 + their 0.6595 + 1.2032 + 1.9044) + 2.7726 (answer of 10.9318)
	Award	B1M0A0 for $\frac{1}{2}$ (0.2)(2.7726) + 2(0.2625 + their 0.6595 + 1.2032 + 1.9044) (answer of 8.33646)
	Altern	native method: Adding individual trapezia
	Area ≈	$0.2 \times \left[\frac{0 + 0.2625}{2} + \frac{0.2625 + "0.6595"}{2} + \frac{"0.6595" + 1.2032}{2} + \frac{1.2032 + 1.9044}{2} + \frac{1.9044 + 2.7726}{2} \right] = 1.08318$
	B1	0.2 and a divisor of 2 on all terms inside brackets
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2
	A1	anything that rounds to 1.083
(c)	A 1	Exact answer needs to be a two term expression in the form $a \ln b + c$
	Note	Give A1 e.g. $\frac{8}{3}\ln 2 - \frac{7}{9}$ or $\frac{1}{9}(24\ln 2 - 7)$ or $\frac{4}{3}\ln 4 - \frac{7}{9}$ or $\frac{1}{3}\ln 256 - \frac{7}{9}$ or $-\frac{7}{9} + \frac{8}{3}\ln 2$
		or $\ln 2^{\frac{8}{3}} - \frac{7}{9}$ or equivalent.
	Note	Give final A0 for a final answer of $\frac{8\ln 2 - \ln 1}{3} - \frac{7}{9}$ or $\frac{8\ln 2}{3} - \frac{1}{3}\ln 1 - \frac{7}{9}$ or $\frac{8\ln 2}{3} - \frac{8}{9} + \frac{1}{9}$
		or $\frac{8}{3} \ln 2 - \frac{7}{9} + c$
	Note	$\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2$ followed by awrt 1.07 with no correct answer seen is dM1A0
	Note	Give dM0A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \frac{1}{9}$ (adding rather than subtracting)
	Note	Allow dM1A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \left(0 + \frac{1}{9}\right)$
	SC	A candidate who uses $u = \ln x$ and $\frac{dv}{dx} = x^2$, $\frac{du}{dx} = \frac{\alpha}{x}$, $v = \beta x^3$, writes down the correct "by parts"
		formula but makes only one error when applying it can be awarded Special Case 1 st M1.

Question Number	Scheme			Notes	Mar	ks
3.	$2x^2y + 2x + 4y - \cos(\pi y) = 17$					
(a) Way 1	$\left\{\frac{\cancel{x}}{\cancel{x}} \times\right\} \left(\underbrace{\frac{4xy + 2x^2 \frac{dy}{dx}}{dx}}\right) + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx}$	$\frac{y}{x} = 0$			M1 <u>A1</u>	<u>B1</u>
	$\frac{dy}{dx} (2x^2 + 4 + \pi \sin(\pi y)) + 4xy + 2 = 0$				dM1	
	$\left\{ \frac{dy}{dx} = \right\} \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)}$	$n(\pi y)$		Correct answer or equivalent	A1 cso	
(b)	At $\left(3, \frac{1}{2}\right)$, $m_{\rm T} = \frac{{\rm d}y}{{\rm d}x} = \frac{-4(3)(\frac{1}{2}) - 2}{2(3)^2 + 4 + \pi \sin\left(\frac{1}{2}\pi\right)} \left\{ = \frac{-8}{22 + \pi} \right\}$ Substituting $x = 3$ & $y = \frac{1}{2}$ into an equation involving $\frac{{\rm d}y}{{\rm d}x}$			M1 ~	[5]	
	$m_{\rm N} = \frac{22 + \pi}{8}$		r.	$\frac{-1}{n_{\rm T}}$ to find a numerical $m_{\rm N}$ mplied by later working	M1	
	$\Rightarrow y = \left \frac{2z + \kappa}{z} \right x + \frac{1}{z} - \frac{33 + 6\kappa}{z}$	$y - \frac{1}{2} = m_{\rm N}(x - 3) \text{ or }$ $y = m_{\rm N}x + c \text{ where } \frac{1}{2} = (\text{their } m_{\rm N})3 + c$ with a numerical $m_{\rm N} \ (\neq m_{\rm T}) \text{ where } m_{\rm N} \text{ is }$ in terms of π and sets $y = 0$ in their normal equation.			dM1	
	So, $\left\{ x = \frac{-4}{22 + \pi} + 3 \implies \right\} \ x = \frac{3\pi + 62}{\pi + 22}$	$\frac{3\pi + 6}{\pi + 2}$	62 22	or $\frac{6\pi + 124}{2\pi + 44}$ or $\frac{62 + 3\pi}{22 + \pi}$	A1 o.e.	
						[4] 9
(a) Way 2	$\left\{ \underbrace{\frac{\partial x}{\partial y}} \times \right\} \left(\underbrace{\frac{4xy\frac{dx}{dy} + 2x^2}{dy}} \right) + 2\frac{dx}{dy} + 4 + \pi \sin(\pi y) =$	= 0			M1 <u>A1</u>	<u>B1</u>
	$\frac{dx}{dy}(4xy+2) + 2x^2 + 4 + \pi \sin(\pi y) = 0$				dM1	
	$\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)}$ Correct answer or equivalent				A1 cso	
	Question	3 Notes				[5]
3. (a)	Note Writing down from no working • $\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)} \text{ scores M1A1B1M1A1}$ • $\frac{dy}{dx} = \frac{4xy + 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ scores M1A0B1M1A0}$					
	Note Few candidates will write $4xy dx + 2x^2 dy + 2dx + 4dy + \pi \sin(\pi y) dy = 0$ leading to $\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)}$ or equivalent. This should get full marks.					

		Question 3 Notes Continued
3. (a) Way 1	M1	Differentiates implicitly to include either $2x^2 \frac{dy}{dx}$ or $4y \to 4\frac{dy}{dx}$ or $-\cos(\pi y) \to \pm \lambda \sin(\pi y) \frac{dy}{dx}$
		(Ignore $\left(\frac{dy}{dx}\right)$). λ is a constant which can be 1.
	1st A1	$2x + 4y - \cos(\pi y) = 17 \rightarrow 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} = 0$
	Note	$4xy + 2x^2 \frac{dy}{dx} + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} \rightarrow 2x^2 \frac{dy}{dx} + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} = -4xy - 2$
		will get 1^{st} A1 (implied) as the "=0" can be implied by the rearrangement of their equation.
	B1	$2x^2y \to 4xy + 2x^2 \frac{\mathrm{d}y}{\mathrm{d}x}$
	Note	If an extra term appears then award 1 st A0.
	dM1	Dependent on the first method mark being awarded.
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.
		ie. $\frac{dy}{dx}(2x^2 + 4 + \pi \sin(\pi y)) + \dots = \dots$
	Note	Writing down an extra $\frac{dy}{dx} =$ and then including it in their factorisation is fine for dM1.
	Note	Final A1 cso: If the candidate's solution is not completely correct, then do not give this mark.
	Note	Final A1 isw: You can, however, ignore subsequent working following on from correct solution.
(a)	Way 2	Apply the mark scheme for Way 2 in the same way as Way 1.
(b)	1 st M1	M1 can be gained by seeing at least one example of substituting $x = 3$ and at least one example of
		substituting $y = \frac{1}{2}$. E.g. " $-4xy$ " \rightarrow " -6 " in their $\frac{dy}{dx}$ would be sufficient for M1, unless it is clear
		that they are instead applying $x = \frac{1}{2}$, $y = 3$.
	3 rd M1	is dependent on the first M1.
	Note	The 2 nd M1 mark can be implied by later working.
		Eg. Award 2 nd M1 3 rd M1 for $\frac{\frac{1}{2}}{3-x} = \frac{-1}{\text{their } m_T}$
	Note	We can accept $\sin \pi$ or $\sin \left(\frac{\pi}{2}\right)$ as a numerical value for the 2 nd M1 mark.
		But, $\sin \pi$ by itself or $\sin \left(\frac{\pi}{2}\right)$ by itself are not allowed as being in terms of π for the 3 rd M1 mark.
		The 3 rd M1 can be accessed for terms containing $\pi \sin\left(\frac{\pi}{2}\right)$.

Question Number	Scheme		Notes	Marks	
4.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$				
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	be in the	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.		
	$\ln x = -\frac{5}{2}t + c$		both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$ $\pm k \rightarrow \pm kt$ (with respect to t); $k, \alpha \neq 0$	M1	
	2		$\ln x = -\frac{5}{2}t + c \text{, including "} + c "$	A1	
	$\{t = 0, x = 60 \Longrightarrow\} \ln 60 = c$		Finds their c and uses correct algebra $\frac{-5}{t}$		
	$\ln x = -\frac{5}{2}t + \ln 60 \Rightarrow \underline{x = 60e^{-\frac{5}{2}t}} \text{ or } x$	$=\frac{60}{e^{\frac{5}{2}t}}$	to achieve $x = 60e^{-\frac{x}{2}}$ or $x = \frac{60}{e^{\frac{5}{2}}}$ with no incorrect working seen	A1 cso	
				[4]	
(a) Way 2	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} \mathrm{d}x$		Either $\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$	B1	
	2,		Integrates both sides to give either $t =$ or $\pm \alpha \ln px$; $\alpha \neq 0$, $p > 0$	M1	
	$t = -\frac{2}{5}\ln x + c$		$t = -\frac{2}{5} \ln x + c, \text{ including "} + c$ "	A1	
	$\left\{t=0, x=60 \Rightarrow\right\} c = \frac{2}{5}\ln 60 \Rightarrow t = -\frac{2}{5}$	$\ln x + \frac{2}{5} \ln 60$	Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$		
	$\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow \underline{x = 60e^{-\frac{5}{2}t}} \text{ o}$	$x = \frac{60}{\frac{5}{2}t}$			
	2	<u>e²</u>	with no incorrect working seen	A1 cso	
				[4]	
(a) Way 3	$\int_{60}^{x} \frac{1}{x} dx = \int_{0}^{t} -\frac{5}{2} dt$		Ignore limits	B1	
	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$		both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$ $\pm k \rightarrow \pm kt$ (with respect to t); k , $\alpha \neq 0$	M1	
		[ln x	A1		
	$\ln x - \ln 60 = -\frac{5}{2}t \implies x = 60e^{-\frac{5}{2}t}$ or x	$=\frac{60}{e^{\frac{5}{2}t}}$	Correct algebra leading to a correct result	A1 cso	
				[4]	
(b)	$20 = 60e^{-\frac{5}{2}t} \text{ or } \ln 20 = -\frac{5}{2}t + \ln 60$	of eit l	tutes $x = 20$ into an equation in the form $her x = \pm \lambda e^{\pm \mu t} \pm \beta \text{ or } x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$	M1	
	2	or ±	$\alpha \ln \delta x = \pm \mu t \pm \beta \text{ or } t = \pm \lambda \ln \delta x \pm \beta;$ $\alpha, \lambda, \mu, \delta \neq 0 \text{ and } \beta \text{ can be } 0$		
	\	ses correct alge			
	(, , , , , , , , , , , , , , , , , , ,	either $t = A \ln \theta$ = $A(\ln 20 - \ln \theta)$	dM1		
	Tiotes t mast se greater than o		60) or $A(\ln 60 - \ln 20)$ o.e. $(A \in \square, t > 0)$	A 1 ccc	
	$\Rightarrow t = 632.8006 = 633$ (to the nearest minute) awrt 633 or 10 hours and awrt 33 minutes Note: dM1 can be implied by $t = \text{awrt } 0.44$ from no incorrect working.			A1 cso	
	rvote: divir can be implied i	0y = awit 0.44	+ from no incorrect working.	-	
				7	

Question Number		Scheme			Notes	Marks		
4.		$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$						
(a) Way 4		$\frac{dx}{dx} = -\int dt$	be	e in the	ariables as shown. dx and dt should not wrong positions, though this mark can be later working. Ignore the integral signs.	B1		
	, -	$\frac{2}{5}\ln(5x) = -t + c$		Integra	tes both sides to give either $\pm \alpha \ln(px)$ kt (with respect to t); k , $\alpha \neq 0$; $p > 0$	M1		
	•	5			$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c"$	A1		
		$, x = 60 \Rightarrow \begin{cases} \frac{2}{5} \ln 300 = c \end{cases}$	t		Finds their c and uses correct algebra			
	3	$\frac{1}{x}(x) = -t + \frac{2}{5}\ln 300 \Rightarrow \frac{x = 60e^{-\frac{5}{2}t}}{5} \text{ or} $ to achieve $x = 60e^{-\frac{5}{2}t} \text{ or } x = \frac{60}{e^{\frac{5}{2}t}}$ with no incorrect working seen			A1 cso			
	$x = \frac{60}{e^{\frac{5}{2}}}$	<u>t</u>				[4]		
(a) Way 5	$\left\{ \frac{\mathrm{d}t}{\mathrm{d}x} = \right.$	$-\frac{2}{5x} \Rightarrow \left. \right\} t = \int_{60}^{x} -\frac{2}{5x} dx$			Ignore limits	[4] B1		
		$t = \left[-\frac{2}{5} \ln x \right]_{0}^{x}$	(_	ates both sides to give either $\pm k \rightarrow \pm kt$ spect to t) or $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$; $k, \alpha \neq 0$	M1		
		[5 m] ₆₀		A1				
	J	$\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Rightarrow -\frac{5}{2}t = \ln x - \ln x$	60					
	$\Rightarrow \underline{x} =$	$60e^{-\frac{5}{2}t} \text{ or } x = \frac{60}{e^{\frac{5}{2}t}}$	Correct algebra leading to a correct result					
				Duestion	1 4 Notes	[4]		
4. (a)	B1	For the correct separation of vari			. •			
	Note	B1 can be implied by seeing eith	er ln	$x = -\frac{5}{2}$	$t + c$ or $t = -\frac{2}{5} \ln x + c$ with or without	+ <i>c</i>		
	Note	B1 can also be implied by seeing	$g[\ln x]$	$_{60}^{x} = \left[-\frac{1}{2} \right]$	$\left[\frac{5}{2}t\right]_{0}^{t}$			
	Note	Allow A1 for $x = 60\sqrt{e^{-5t}}$ or $x = \frac{60}{\sqrt{e^{5t}}}$ with no incorrect working seen						
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60$	→ x =	$=60e^{-\frac{5}{2}t}$				
	Note				final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)			
	Note				t methods that candidates can give.			
	Note		wn $x =$	$= 60e^{-\frac{5}{2}t}$	or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no evidence of working of	or integration		
(b)	A1	seen. You can apply cso for the work only seen in part (b).						
	Note				by $t = \text{awrt } 633 \text{ from no incorrect working}$	ıg.		
	Note	Substitutes $x = 40$ into their equ						

Question Number		Scheme	Notes	Marks	
5.	x = 4 ta	$an t, y = 5\sqrt{3}\sin 2t, \qquad 0 \leqslant t < \frac{\pi}{2}$			
(a) Way 1	α,	$ex^{2}t, \frac{dy}{dt} = 10\sqrt{3}\cos 2t$	Either both x and y are differentiated correctly with respect to t or their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10}{10}$	$\frac{0\sqrt{3}\cos 2t}{4\sec^2 t} \left\{ = \frac{5}{2}\sqrt{3}\cos 2t\cos^2 t \right\}$	or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ Correct $\frac{dy}{dt}$ (Can be implied)	A1 oe	
	$\begin{cases} At P \bigg(4 \sqrt{4} \bigg) \bigg) $	$\sqrt{3}$, $\frac{15}{2}$), $t = \frac{\pi}{3}$	u.		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10}{10}$	$\frac{0\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting $t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{16}$	$\frac{15}{16\sqrt{3}}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso	
(b)	$\begin{cases} 10\sqrt{3}\cos \theta \end{cases}$	$2t = 0 \Rightarrow t = \frac{\pi}{4}$		[4]	
	So $x = 4 \text{ ta}$	$ \operatorname{an}\left(\frac{\pi}{4}\right), \ y = 5\sqrt{3}\sin\left(2\left(\frac{\pi}{4}\right)\right) $	At least one of either $x = 4 \tan\left(\frac{\pi}{4}\right)$ or $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$	M1	
	Coordinate	es are $(4, 5\sqrt{3})$	or $y = \text{awrt } 8.7$ (4, 5 $\sqrt{3}$) or $x = 4$, $y = 5\sqrt{3}$	A1	
				[2] 6	
5. (a)	1 st A1	Correct $\frac{dy}{dx}$. E.g. $\frac{10\sqrt{3}\cos 2t}{4\sec^2 t}$ or $\frac{5}{2}\sqrt{3}\cos 2t\cos^2 t$ or $\frac{5}{2}\sqrt{3}\cos^2 t(\cos^2 t - \sin^2 t)$			
	Note	or any equivalent form. Give the final A0 for a final answer of $-\frac{10}{32}\sqrt{3}$ without reference to $-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$			
	Note	Give the final A0 for more than one value stated for $\frac{dy}{dx}$			
(b)	Note	Also allow M1 for either $x = 4\tan(45)$ or $y = 5\sqrt{3}\sin(2(45))$			
	Note Note	M1 can be gained by ignoring previo Give A0 for stating more than one se			
	Note	Writing $x = 4$, $y = 5\sqrt{3}$ followed by	·-		

Question Number	Scheme			Marks
5.	$x = 4\tan t, y = 5\sqrt{3}\sin 2t, \qquad 0 \leqslant t < \frac{\pi}{2}$			
(a) Way 2	$\tan t = \frac{x}{4} \Rightarrow \sin t = \frac{x}{\sqrt{(x^2 + 16)}}, \cos t = \frac{4}{\sqrt{(x^2 + 16)}} \Rightarrow \frac{1}{\sqrt{(x^2 + 16)}}$	$y = \frac{40\sqrt{3}x}{x^2 + 16}$		
	$\begin{cases} u = 40\sqrt{3}x & v = x^2 + 16 \\ \frac{du}{dx} = 40\sqrt{3} & \frac{dv}{dx} = 2x \end{cases}$			
	$\frac{dy}{dx} = \frac{40\sqrt{3}(x^2 + 16) - 2x(40\sqrt{3}x)}{(x^2 + 16)^2} \left\{ = \frac{40\sqrt{3}(16 - x^2)}{(x^2 + 16)^2} \right\}$		$\frac{\pm A(x^2 + 16) \pm Bx^2}{(x^2 + 16)^2}$	M1
	$(x^2+16)^2$ $(x^2+16)^2$	Correct $\frac{dy}{dx}$; simp	plified or un-simplified	A1
	$dy 40\sqrt{3}(48+16) - 80\sqrt{3}(48)$	_	the previous M mark vidence of substituting	13.64
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40\sqrt{3}(48+16) - 80\sqrt{3}(48)}{(48+16)^2}$	<u>:</u>	dM1	
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	A1 cso
		from a	correct solution only	[4]
(a) Way 3	$y = 5\sqrt{3}\sin\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{4}\right)^2}\right)\left(\frac{1}{4}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm A\cos\theta$	$\operatorname{ss}\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{1}{1+x^2}\right)$	M1
	$dx \qquad \left(\frac{4}{1+\left(\frac{x}{4}\right)^2}\right) \left(\frac{4}{1+\left(\frac{x}{4}\right)^2}\right) \left(\frac{4}{1+\left(\frac{x}{4}\right)^2}\right) \left(\frac{4}{1+\left(\frac{x}{4}\right)^2}\right) \left(\frac{4}{1+\left(\frac{x}{4}\right)^2}\right) \left(\frac{4}{1+\left(\frac{x}{4}\right)^2}\right) \left(\frac{4}{1+\left(\frac{x}{4}\right)^2}\right) \left(\frac{4}{1+\left(\frac{x}{$	Correct $\frac{dy}{dx}$; simplified or un-simplified.		A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\sqrt{3}\right)\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right) \left\{ = 5\sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)\right\}$	$\frac{1}{2}\left(\frac{1}{4}\right)$ Some evidence of substituting $x = 4\sqrt{3} \text{ into their } \frac{dy}{dx}$		dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	A1 cso
		from a	correct solution only	[4]

Question Number	Scheme				Votes	Marks
6.	(i) $\int \frac{3y-4}{y(3y+2)} dy$, $y > 0$, (ii) $\int_0^3 \sqrt{\frac{y}{4-y}} dy$	$\frac{\overline{x}}{-x}$ dx, $x =$	$=4\sin^2\theta$			
(i)	$\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y-4 = A(3y-4)$	+2) + Rv		See notes		M1
Way 1	$y(3y+2) - y - (3y+2)$ $y = 0 \implies -4 = 2A \implies A = -2$	1 2) 1 Dy			st one of their their $B = 9$	A1
	$y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$		A	A = -2 and	Both their their $B = 9$	A1
	$\int_{0}^{1} 3y - 4$ $\int_{0}^{1} -2$ 9		ntegrates to g $\pm \lambda \ln y \mathbf{or} \underline{\hspace{1cm}} (3)$			M1
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{-2}{y} + \frac{9}{(3y+2)} \mathrm{d}y$	At leas	et one term co		$A \neq 0$, $B \neq 0$ owed through r from their B	A1 ft
	$= -2\ln y + 3\ln(3y+2) \left\{ + c \right\}$	$-2\ln y + 3$	$3\ln(3y+2)$	or -2ln y		A1 cao
		simpli	ified or un-sin		<u> </u>	
					ı	[6]
(ii) (a) Way 1	$\left\{x = 4\sin^2\theta \Rightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta \text{or} \frac{\mathrm{d}x}{\mathrm{d}\theta} =$	$4\sin 2\theta$ or	$dx = 8\sin\theta c$	$\cos \theta d\theta$		B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ d\theta \right\} \text{or} \int \sqrt{\frac{4}{4-4}} d\theta = -\frac{1}{4} \int \sqrt{\frac{4}{4-4}} d\theta = -\frac$	$\frac{\sin^2\theta}{4\sin^2\theta}.4\sin^2\theta$	$\mathrm{d} 2 \theta \left\{ \mathrm{d} \theta \right\}$			M1
	$= \int \underline{\tan \theta} \cdot 8 \sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4 \sin 2\theta$	$O\left\{d\theta\right\}$	$\left(\frac{x}{4-x}\right) \to 0$	$\pm K \tan \theta$ or	$t \pm K \left(\frac{\sin \theta}{\cos \theta} \right)$	<u>M1</u>
	$= \int 8\sin^2\theta d\theta$		$\int 88$	$\int 8\sin^2\theta d\theta \text{including } d\theta$		
	$3 = 4\sin^2\theta \text{ or } \frac{3}{4} = \sin^2\theta \text{ or } \sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = $ $\left\{ x = 0 \to \theta = 0 \right\}$		Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work seen regarding limits			B1
	,					[5]
(ii) (b)	$= \left\{ 8 \right\} \int \left(\frac{1 - \cos 2\theta}{2} \right) d\theta \left\{ = \int \left(4 - 4\cos 2\theta \right) d\theta \right\}$	θ	-	-	$\theta = 1 - 2\sin^2\theta$ I. (See notes)	M1
	(1 1)		For ±	$\alpha\theta \pm \beta \sin\theta$	$12\theta, \alpha, \beta \neq 0$	M1
	$= \left\{ 8 \right\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right) \left\{ = 4\theta - 2\sin 2\theta \right\} $ $\sin^2 \theta \rightarrow \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right)$				A1	
	$\left\{ \int_{0}^{\frac{\pi}{3}} 8\sin^{2}\theta d\theta = 8 \left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}} \right\} = 8 \left(\left(\frac{\pi}{6} - \frac{1}{4} \left(\frac{\sqrt{3}}{2} \right) \right) - (0+0) \right)$					
	$= \frac{4}{3}\pi - \sqrt{3}$ "two term"	exact answ	er of e.g. $\frac{4}{3}\pi$	$-\sqrt{3}$ or $\frac{1}{3}$	$\frac{1}{3}(4\pi-3\sqrt{3})$	A1 o.e.
						[4]
						15

		Question 6 Notes
6. (i)	1 st M1	Writing $\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)}$ and a complete method for finding the value of at least one of their <i>A</i> or their <i>B</i> .
	Note	M1A1 can be implied <i>for writing down</i> either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{their } B}{(3y+2)}$
		or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working.
	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)
	Note	Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$
	Note	but allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$
6. (ii)(a)	1st M1	Substitutes $x = 4\sin^2\theta$ and their dx (from their correctly rearranged $\frac{dx}{d\theta}$) into $\sqrt{\left(\frac{x}{4-x}\right)}dx$
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$
	Note	Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta d\theta$
	2 nd M1	Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K \tan\theta$ or $\pm K \left(\frac{\sin\theta}{\cos\theta}\right)$
-	Note	Integral sign is not needed for this mark.
	1st A1	Simplifies to give $\int 8\sin^2\theta d\theta$ including $d\theta$
	2 nd B1	Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work seen
		regarding limits
	Note	Allow 2 nd B1 for $x = 4\sin^2\left(\frac{\pi}{3}\right) = 3$ and $x = 4\sin^2 0 = 0$
	Note	Allow 2 nd B1 for $\theta = \sin^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x = 3$, $\theta = \frac{\pi}{3}$; $x = 0$, $\theta = 0$
(ii)(b)	M1	Writes down a correct equation involving $\cos 2\theta$ and $\sin^2 \theta$
		E.g.: $\cos 2\theta = 1 - 2\sin^2 \theta$ or $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ or $K\sin^2 \theta = K\left(\frac{1 - \cos 2\theta}{2}\right)$
		and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.
	M1	Integrates to give an expression of the form $\pm \alpha\theta \pm \beta \sin 2\theta$ or $k(\pm \alpha\theta \pm \beta \sin 2\theta)$, $\alpha \neq 0, \beta \neq 0$ (can be simplified or un-simplified).
	1st A1	Integrating $\sin^2 \theta$ to give $\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$, un-simplified or simplified. Correct solution only.
		Can be implied by $k \sin^2 \theta$ giving $\frac{k}{2}\theta - \frac{k}{4}\sin 2\theta$ or $\frac{k}{4}(2\theta - \sin 2\theta)$ un-simplified or simplified.
	2 nd A1	A correct solution in part (ii) leading to a "two term" exact answer of
		e.g. $\frac{4}{3}\pi - \sqrt{3}$ or $\frac{8}{6}\pi - \sqrt{3}$ or $\frac{4}{3}\pi - \frac{2\sqrt{3}}{2}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$
	Note	A decimal answer of 2.456739397 (without a correct exact answer) is A0.
	Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the 1 st three marks (i.e. M1M1A1) in part (b).
	Note	If they incorrectly obtain $\int_0^{\frac{\pi}{3}} 8\sin^2\theta d\theta$ in part (i)(a) (or correctly guess that $\lambda = 8$)
		then the final A1 is available for a correct solution in part (ii)(b).

	Scheme		Notes	Marks
6. (i) Way 2	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3y+6}{y(3y+2)} \mathrm{d}y$		110003	WILKS
	$\frac{3y+6}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y+6 = A(3y+2) + By$		See notes	M1
	$y(3y + 2) \qquad y \qquad (3y + 2)$ $y = 0 \qquad \Rightarrow 6 = 2A \Rightarrow A = 3$			A1
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 3$ and their $B = -6$	A1
	$\int \frac{3y - 4}{y(3y + 2)} dy$ $= \int \frac{6y + 2}{3y^2 + 2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y + 2)} dy$		Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1
	$\int 3y^2 + 2y$ $\int y$ $\int (3y + 2)$	At lea	At least one term correctly followed through	
	$= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \left\{ + c \right\}$	$(y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \{+c\}$		A1 cao
				[6]
6. (i) Way 3	$\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$	<u>2)</u> dy		
	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + \frac{B}{(3y+2)}$	+ By	See notes	M1
	$y = 0 \implies 5 = 2A \implies A = \frac{5}{2}$		At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$	A1
	$y = -\frac{2}{3} \implies 5 = -\frac{2}{3}B \implies B = -\frac{15}{2}$		Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	A1
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$ $= \int \frac{3y+1}{3y^2+2y} \mathrm{d}y - \int \frac{\frac{5}{2}}{y} \mathrm{d}y + \int \frac{\frac{15}{2}}{(3y+2)} \mathrm{d}y$		Integrates to give at least one of either $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1
	J $3y^2 + 2y$ J y J y (3y + 2) A t le		ast one term correctly followed through	A1 ft
	$= \frac{1}{2}\ln(3y^2 + 2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y + 2) \left\{+c\right\}$		$\frac{1}{2}\ln(3y^2 + 2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y + 2)$ with correct bracketing, simplified or un-simplified	A1 cao
				[6]

	Scheme		Notes		
6. (i) Way 4	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$				
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$				
	$\frac{4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 4 = A(3y+2) + A(3y+2) = A(3y+2) + A(3y+2) = A(3y+2) + A(3y+2) = A(3y+2) =$		See notes	M1	
	y(3y+2) $y(3y+2)$		At least one of	A1	
	$y = 0 \implies 4 = 2A \implies A = 2$		their $A = 2$ or	their $B = -6$	711
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 2$ and their $B = -6$		A1
	C 0 4	C	Integrates to give at least		
	$\frac{3y-4}{y(3y+2)} dy$	$\frac{c}{(3v+2)}$	$\rightarrow \pm \alpha \ln(3y+2)$ or $\frac{A}{y}$	$\rightarrow \pm \lambda \ln y$ or	
	$\int y(3y+2)$	(-) -/	_	$\pm \mu \ln(3y+2),$	M1
	$\begin{bmatrix} 3 & \begin{bmatrix} 2 & \begin{bmatrix} 6 & \end{bmatrix} \end{bmatrix}$		(-)		
	$= \int \frac{3}{3y+2} dy - \int \frac{2}{y} dy + \int \frac{6}{(3y+2)} dy$	A + 10+		$B \neq 0, C \neq 0$	A 1 f4
		At lea	ast one term correctly for $\ln(3y+2) - 2\ln y$		A1 ft
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \left\{+c\right\}$			ect bracketing,	A1 cao
			simplified o	r un-simplified	[6]
	Alternative methods for B1M1M1A1 in (ii)(a)				[6]
(ii)(a) Way 2	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta$		As in Way 1		B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}}.8\sin\theta\cos\theta \left\{ d\theta \right\}$			As before	M1
	$= \int \sqrt{\frac{\sin^2 \theta}{(1-\sin^2 \theta)}} \cdot 8\cos \theta \sin \theta \left\{ d\theta \right\}$				
	$= \int \frac{\sin \theta}{\sqrt{(1-\sin^2 \theta)}} \cdot 8\sqrt{(1-\sin^2 \theta)} \sin \theta \left\{ d\theta \right\}$				
	$= \int \sin \theta . 8 \sin \theta \left\{ d\theta \right\}$		Correct me $\sqrt{(1-\sin^2\theta)}$ bein	thod leading to g cancelled out	M1
	$= \int 8\sin^2\theta d\theta$	$\int 8\sin^2\theta d\theta including$		including $\mathrm{d}\theta$	A1 cso
(ii)(a) Way 3	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin 2\theta$ As in Way 1			B1	
	$x = 4\sin^2\theta = 2 - 2\cos 2\theta$, $4 - x = 2 + 2\cos 2\theta$				
	$\int \sqrt{\frac{2-2\cos 2\theta}{2+2\cos 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$			M1	
	$= \int \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 + 2\cos 2\theta}} \cdot \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 - 2\cos 2\theta}} 4\sin 2\theta \left\{ d\theta \right\} = \int \frac{2 - 2\cos 2\theta}{\sqrt{4 - 4\cos^2 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$				
	$= \int \frac{2 - 2\cos 2\theta}{2\sin 2\theta} \cdot 4\sin 2\theta \left\{ d\theta \right\} = \int 2(2 - 2\cos 2\theta) \cdot \left\{ d\theta \right\}$ Correct method leading $\sin 2\theta$ being cancelled		_	M1	
	$= \int 8\sin^2\theta d\theta \qquad \qquad \int 8\sin^2\theta d\theta \text{including } d\theta$		A1 cso		

Question Number	Scheme		Notes		Marks	
7.	$y = (2x - 1)^{\frac{3}{4}}, x \geqslant \frac{1}{2}$ passes though $P(k, 8)$					
(a)	$\left\{ \int (2x-1)^{\frac{3}{2}} dx \right\} = \frac{1}{5} (2x-1)^{\frac{5}{2}} \left\{ + c \right\}$		$(2x\pm 1)^{\frac{3}{2}}$	$\rightarrow \pm \lambda (2x \pm 1)$ where $u = 2$		M1
	()	$\frac{1}{5}(2x-1)^{\frac{5}{2}}$	with or witho	out + c. Must be	e simplified.	A1
	4			3	3	[2]
(b)	${P(k, 8) \Rightarrow} 8 = (2k - 1)^{\frac{3}{4}} \Rightarrow k = \frac{8^{\frac{1}{3}} + 1}{2}$,	$(-1)^{\frac{3}{4}}$ or $8 = (2.4)^{\frac{3}{4}}$ or $8 = (2.4)^{\frac{3}{4}}$ or $8 = (2.4)^{\frac{3}{4}}$		M1
	So, $k = \frac{17}{2}$			$k ext{ (or } x) =$	$=\frac{17}{2}$ or 8.5	A1
						[2]
(c)	$\pi \int \left(\left(2x - 1 \right)^{\frac{3}{4}} \right)^2 \mathrm{d}x$		For $\pi \int \left(C \right)$	$(2x-1)^{\frac{3}{4}}\right)^2 \text{ or } 7$	$7\int (2x-1)^{\frac{3}{2}}$	B1
	3 ()		Ignore limits and dx . Can be implied.			
	$\left\{ \int_{\frac{1}{2}}^{\frac{17}{2}} y^2 \mathrm{d}x \right\} = \left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{1}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5} \right) - \left(0 \right) \right)$	$\left. \left\{ = \frac{1024}{5} \right\} \right.$		limits of "8.5" (and 0.5 to an expense)		M1
	$\begin{bmatrix} \bullet \ \overline{2} \end{bmatrix}$		the fo	orm $\pm \beta (2x-1)^{\frac{1}{2}}$	$\frac{3}{2}$; $\beta \neq 0$ and	IVII
	Note: It is not necessary to write the " -0 "	'	subt	tracts the correct	way round.	
	$\left\{V_{\text{cylinder}}\right\} = \pi(8)^2 \left(\frac{17}{2}\right) \left\{= 544\pi\right\}$		π ($8)^2$ (their answer	to part (b)	B1 ft
	(cyunaer) (2)		$V_{ m cylin}$	$_{\rm der} = 544\pi$ impli	es this mark	DIII
	1024π	1696	*	rrect answer in	_	
	$\left\{ \text{Vol}(S) = 544\pi - \frac{1024\pi}{5} \right\} \Rightarrow \text{Vol}(S) = \frac{1696}{5}\pi$ E.g. $\frac{1696}{5}\pi$, $\frac{3392}{10}\pi$ or 339.2π			A1		
				•	3	[4]
Alt. (c)	$\operatorname{Vol}(S) = \pi(8)^{2} \left(\frac{1}{2}\right) + \underline{\pi} \int_{0.5}^{8.5} \left(8^{2} - \underline{(2x-1)^{\frac{3}{2}}}\right) dx$ For $\underline{\pi} \int \dots \underline{(2x-1)^{\frac{3}{2}}}$			$\dots \underline{(2x-1)^{\frac{5}{2}}}$	B1	
	Ignore limits and dx .					
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \pi \left[64x - \frac{1}{5}(2x - 1)^{\frac{5}{2}}\right]_{0.5}^{8.5}$					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			M1		
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \underline{\pi} \left(\left(\underbrace{\underline{64("8.5")}}_{\underline{=}} - \frac{1}{5}(2(8.5) - 1)^{\frac{5}{2}}\right) - \left(\underbrace{\underline{64(0.5)}}_{\underline{=}} - \frac{1}{5}(2(0.5) - 1)^{\frac{5}{2}}\right)\right) \qquad \text{as above}$			<u>B1</u>		
	$\left\{ = 32\pi + \pi \left(\left(544 - \frac{1024}{5} \right) - \left(32 - 0 \right) \right) \right\} \Rightarrow \operatorname{Vol}(S) = \frac{1696}{5}\pi$			A1		
				[4]		
						8

	Question 7 Notes				
7. (b)	SC	Allow Special Case SC M1 for a candidate who sets $8 = (2k-1)^{\frac{3}{2}}$ or $8 = (2x-1)^{\frac{3}{2}}$ and rearranges to give $k = (or x =)$ a numerical value.			
7. (c)	M1	Can also be given for applying <i>u</i> -limits of "16" $(2("part (b)") - 1)$ and 0 to an expression of the			
		form $\pm \beta u^{\frac{5}{2}}$; $\beta \neq 0$ and subtracts the correct way round.			
	Note	You can give M1 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{\frac{1}{2}}^{\frac{17}{2}} = \frac{1024}{5}$			
	Note	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_0^{\frac{17}{2}} = \left(\left(\frac{1}{5} \right)^{\frac{17}{2}} \right)_0^{\frac{17}{2}} = \left(\frac{1}{5} \right)_0^{\frac{17}{2}} =$	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{0}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5} \right) - (0) \right)$		
	B1ft Note			linder with radius 8 and their (part (b)) heig	
	Note	to give a correct expression for i		volume of this cylinder they need to apply te.	neir iiiiits
		So $\pi \int_0^{8.5} 8^2 dx = \pi \left[64x \right]_0^{8.5}$ is not	sufficier	nt for B1 but $\pi(64(8.5) - 0)$ is sufficient for	or B1.
7.	MISREA	DING IN BOTH PARTS (B) ANI	D (C)		
	Apply the	Apply the misread rule (MR) for candidates who apply $y = (2x - 1)^{\frac{3}{2}}$ to both parts (b) and (c)			
(b)		$\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{3}$	3 3		
	So, $k = \frac{5}{2}$			$k \text{ (or } x) = \frac{5}{2} \text{ or } 2.5$	A1
					[2]
(c)	$\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2 \mathrm{d}x$			For $\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2$ or $\pi \int (2x-1)^3$	B1
				Ignore limits and dx. Can be implied. Applies x-limits of "2.5" (their answer to	
	$\int \frac{17}{2}$	$\int (2x-1)^4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\left(4^4 \right) \right) dx$)	part (b)) and 0.5 to an expression of the	
	$\int_{\frac{1}{2}}^{2} y^2 dx$	$x = \left[\frac{(2x-1)^4}{8} \right]_{\frac{1}{2}}^{\frac{5}{2}} = \left(\left(\frac{4^4}{8} \right) - (0) \right) \ \{ = \frac{1}{2} + $	= 32}	form $\pm \beta (2x-1)^4$; $\beta \neq 0$ and subtracts	M/1
				the correct way round.	
	$V_{\text{cylinder}} = \pi(8)^2 \left(\frac{5}{2}\right) \left\{= 160\pi\right\}$			$\pi(8)^2$ (their answer to part (b))	B1 ft
			Sight of 160π implies this mark		
	$\left\{ \operatorname{Vol}(S) = \right\}$	$= 160\pi - 32\pi $ \Rightarrow $\operatorname{Vol}(S) = 128\pi$		An exact correct answer in the form $k\pi$ E.g. 128π	A1
	Note N	Mark parts (b) and (a) using the mark scheme above and then working forwards from part (b)			
	C	Mark parts (b) and (c) using the mark scheme above and then working forwards from part (b) deduct two from any A or B marks gained.			
		E.g. (b) M1A1 (c) B1M1B1A1 would score (b) M1A0 (c) B0M1B1A1 E.g. (b) M1A1 (c) B1M1B0A0 would score (b) M1A0 (c) B0M1B0A0			
	Note I	3 3			
	r	misread in part (c).			

(a) $A(3, 5, 0)$ (b) $\{l_2:\} \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$	(-5)					KS .
(b) $ \{l_2:\} \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} $	$l_1: \mathbf{r} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \text{So } \mathbf{d}_1 = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}. \qquad \overrightarrow{OA} \text{ occurs when } \mu = 1. \overrightarrow{OP} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$					
				(3, 5, 0)	B1	[4]
\mathbf{d}_{2} is the di				M1	[1]	
-2				$\log \mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 = \mathbf{or} \ l_1 = \mathbf{for} \ \text{the A1 mark.}$	711	[2]
(c) $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA}$	$= \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$		2 02 02	<u> </u>		
AB ((2)	$\sqrt{(2^2 + (0)^2 + (2)^2)^2} = \sqrt{8} = 2\sqrt{2}$	-	Ft	all method for finding AP	M1	
$AP = \sqrt{(-2)}$	$+(0) + (2) = \sqrt{8} = 2\sqrt{2}$			$2\sqrt{2}$	A1	
	2)	(2) (5)	Realis	ation that the dot product is		[2]
(d) So $\overrightarrow{AP} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \text{ and } \mathbf{d}_2 = \begin{bmatrix} -5 \\ 4 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} -5 \\ 4 \\ 3 \end{bmatrix}$	$\begin{pmatrix} -2\\0\\2 \end{pmatrix} \bullet \begin{pmatrix} -3\\4\\3 \end{pmatrix}$	requ	ired between $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K\mathbf{d}$, or $\pm K\mathbf{d}_1$	M1	
$\left\{\cos\theta=\right\} \frac{\overline{AI}}{\overline{AI}}$	$\frac{\pm \left(\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \right)}{\left \mathbf{d}_2 \right } = \frac{\pm \left(\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \right)}{\sqrt{(-2)^2 + (0)^2 + (2)^2}}.$	$ \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} $ $ \sqrt{(-5)^2 + (4)^2} $	$\frac{A}{betw}$	dependent on the previous M mark. Applies dot product formula ween their $(\overline{AP} \text{ or } \overline{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	dM1	
$\left\{\cos\theta\right\} = \frac{\pm}{}$	$\frac{(10+0+6)}{\sqrt{8}.\sqrt{50}} = \frac{4}{5}$		{co	$\{s \theta\} = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20}$	A1 cso	
(e) {Area APE	$= \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin \theta$	$\frac{1}{2}$ (their	$(2\sqrt{2})^2 \sin\theta$ or	$\frac{1}{2}(\text{their }2\sqrt{2})^2\sin(\text{their }\theta)$	M1	[3]
=	= 2.4		2	$4 \text{ or } \frac{12}{5} \text{ or } \frac{24}{10} \text{ or awrt } 2.40$	A1	
(f) DF (51):	. (41) . (21) 1 DE	1 : 2 /2				[2]
(f) $PE = (-5\lambda)\mathbf{i}$	$PE = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k} \text{ and } PE = \text{their } 2\sqrt{2} \text{ from part (c)}$				M1	
$\begin{cases} PE = \\ \\ \Rightarrow 50\lambda^2 = 8 \end{cases}$	$\left\{PE^2 = \right\} (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2$ This mark can be implied. $\left\{ \Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow \right\} \lambda = \pm \frac{2}{5}$ Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$		M1 A1			
(1)	$l_2 : \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ dependent on the previous M mark Substitutes at least one of their values of λ into l_2 .		dM1			
$\left\{ \overline{OE} \right\} = \left(\begin{array}{c} 3\\ \frac{17}{5} \end{array} \right)$	$\left\{ \overline{OE} \right\} = \begin{pmatrix} 3 \\ \frac{17}{5} \\ \frac{4}{6} \end{pmatrix} \text{ or } \begin{pmatrix} 3 \\ 3.4 \\ 0.8 \end{pmatrix}, \left\{ \overline{OE} \right\} = \begin{pmatrix} -1 \\ \frac{33}{5} \\ \frac{16}{5} \end{pmatrix} \text{ or } \begin{pmatrix} -1 \\ 6.6 \\ 3.2 \end{pmatrix}$		At leas	et one set of coordinates are correct.	A1	
$\frac{4}{5}$		3.2	Both sets	s of coordinates are correct.	A1	F. #2
						[5] 15

	Question 8 Notes				
		(3)	3		
8. (a)	(a) B1 Allow $A(3,5,0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ or benefit of the doubt $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$				
		(0)	0		
(b)	A1	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 = \mathbf{or} \ \text{Line } 2 =$			
		i.e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$, where \mathbf{d} is a multiple of $\begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$.			
	Note	Allow the use of parameters μ or t instead of λ .			
(c)	M1	Finds the difference between \overline{OP} and their \overline{OA} and a	pplies Pythagoras to the result to find AP		
	Note	Allow M1A1 for $\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (0)^2}$			
(d)	Note	For both the M1 and dM1 marks \overline{AP} (or \overline{PA}) must be \overline{OP} and their \overline{OA} from part (a).	the vector used in part (c) or the difference		
	Note	Applying the dot product formula correctly without cos	θ as the subject is fine for M1dM1		
	Note	Evaluating the dot product (i.e. $(-2)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5)(-5) + (0)(4) + (2)(-5)(-5)(-5)(-5) + (0)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5$			
	Note	In part (d) allow one slip in writing \overrightarrow{AP} and \mathbf{d}_2			
	Note	$\cos \theta = \frac{-10 + 0 - 6}{\sqrt{8} \cdot \sqrt{50}} = -\frac{4}{5}$ followed by $\cos \theta = \frac{4}{5}$ is fine for A1 cso			
	Note	Give M1dM1A1 for $\{\cos \theta =\} = \frac{\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -10 \\ 8 \\ 6 \end{pmatrix}}{\sqrt{8} \cdot 10\sqrt{2}} = \frac{20 + 12}{40} = \frac{4}{5}$			
	Note	Note Allow final A1 (ignore subsequent working) for $\cos \theta = 0.8$ followed by 36.869°			
	Alternativ	ve Method: Vector Cross Product			
	Only app	ly this scheme if it is clear that a candidate is applying			
	$\overline{AP} \times \mathbf{d}_2$	$= \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \times \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{vmatrix} = -8\mathbf{i} - 4\mathbf{j} - 8\mathbf{i}$	\mathbf{k} Realisation that the vector cross product is required between their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$		
	$\sin \theta = \frac{\sqrt{(-8)^2 + (-4)^2 + (-8)^2}}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}}$ Applies the vector product formula between their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K \mathbf{d}_2$ or $\pm K \mathbf{d}_1$				
	$\sin \theta = \frac{12}{\sqrt{8}.\sqrt{50}} = \frac{3}{5} \Rightarrow \frac{\cos \theta}{5} = \frac{4}{5} \qquad \cos \theta = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20} \text{A1}$				
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2\sqrt{2})^2 \sin(36.869^\circ)$ or $\frac{1}{2}(2\sqrt{2})^2 \sin(180^\circ - 36.869^\circ)$; = awrt 2.40			
	Note	Candidates must use their θ from part (d) or apply a correct method of finding their $\sin \theta = \frac{3}{5}$ from their $\cos \theta = \frac{4}{5}$			
	<u> </u>				

	Question 8 Notes Continued				
8. (f)	Note	Allow the first M1A1 for deducing $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$ from no incorrect working			
	SC	Allow special case 1 st M1 for $\lambda = 2.5$ from comparing lengths or from no working			
	Note	Give 1 st M1 for $\sqrt{(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2} = (\text{their } 2\sqrt{2})$			
	Note	Give 1 st M0 for $(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})$ or equivalent			
	Note	Give 1 st M1 for $\lambda = \frac{\text{their } AP = \sqrt[8]{2}\sqrt{2}}{\sqrt{(-5)^2 + (4)^2 + (3)^2}}$ and 1 st A1 for $\lambda = \frac{2\sqrt{2}}{5\sqrt{2}}$			
	Note	So $\left\{ \hat{\mathbf{d}}_1 = \frac{1}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix} \Rightarrow \right\}$ "vector" = $\frac{2\sqrt{2}}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ is M1A1			
	Note	The 2^{nd} dM1 in part (f) can be implied for at least 2 (out of 6) correct x , y , z ordinates from their			
	NI 4	values of λ . Giving their "coordinates" as a column vector or position vector is fine for the final A1A1.			
	Note				
	CAREFUL	Putting l_2 equal to A gives	Futting l_2 equal to A gives		
		$\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = \frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix}$ Give M0 dM0 for finding and using $\lambda = \frac{2}{5}$ from this incorrect method			
	CAREFUL	Putting $\lambda \mathbf{d}_2 = \overrightarrow{AP}$ gives			
		$ \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = -\frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix} $	Give M0 dM0 for finding and using $\lambda = -\frac{2}{5}$ from this incorrect method.		
	General	General You can follow through the part (c) answer of their $AP = 2\sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1			
	General		You can follow through their \mathbf{d}_2 in part (b) for (d) M1dM1, (f) M1dM1.		