

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics 3 (6691/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040135
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1(a)	(This is a sample where) every (possible) sample (of size <i>n</i>) has an equal chance of being chosen.	B1
		(1)
(b)	'When it is impossible to provide a sampling frame ' or a correct example with an indication	B1
	of sampling frame being impossible.	
		(1)
(c)(i)	A list/register of all the students.	B1
(ii)	Number the students (from 0 to 74, 1 to 75 etc.)	B1
	Using the random no. table read off the nos. and identify or select the students allocated	B1
	those nos.	
		(3)
		Total 5
	Notes	
(a)	Require all / each / every etc sample and same/equal etc chance / probability etc for B1	
(b)	Require impossible / no / doesn't exist etc and sampling frame for B1	
(c)(i)	Require list/register etc and all/every/75 etc students for B1	
	List of 8 students is B0	
(ii)	First B1 accept 'in the corresponding position' o.e. if numbering omitted	
	Second B1 require both for mark.	

Question Number	Scheme	Marks
2a(i)	Only contains known data / function of data only / no population parameters	B1
	therefore it is a statistic	B1d
(ii)(iii)	(ii) and (iii) contain unknown parameters / population parameters / μ and / or σ	B1
	therefore it is not a statistic .	B1d
		(4)
(b)	$(E(\frac{3X_1-X_{20}}{2}) = \frac{3\mu-\mu}{2} =) \mu$	B1
	$Var(\frac{3X_1 - X_{20}}{3X_1 - X_{20}}) = \frac{9\sigma^2 + \sigma^2}{3\sigma^2}$	M1
	$(E(\frac{3X_1 - X_{20}}{2}) = \frac{3\mu - \mu}{2} =) \mu$ $Var(\frac{3X_1 - X_{20}}{2}) = \frac{9\sigma^2 + \sigma^2}{2^2}$ $= \frac{5\sigma^2}{2}$	A1
	2	(3)
		Total 7
	Notes	
(a)(i)	First B1 for known / no unknowns o.e. in (i)	
	Second B1 dependent on first B1 for 'Yes' / is a statistic o.e. in (i)	
	Third B1 for unknowns o.e. in both (ii) and (iii)	
	Fourth B1 dependent on third B1 for 'No' / not a statistic o.e. in both (ii) and (ii)	
(b)	B1 for μ	
	M1 for some squaring on numerator or denominator and must add on numerator	
	A1 for $\frac{5\sigma^2}{2}$ o.e.	

umber				Scheme			Marks
3			1	Happiness			
			Not happy	Fairly happy	Very happy	7	
		Female	13.51	41.77	30.71		M1
	Gender	Male	8.49	26.23	19.29		A1
				ent/ not associated endent/ associated			B1
	O		E	(O-E)		O^2	dM1
		1	_	$\frac{(O-L)}{E}$	<u></u>	$\frac{\sigma}{F}$	arvi i
	9	1	13.51	1.508	5.996		
	43		11.77	0.0361	44.26	54	
	34	3	30.71	0.351	37.63		
	13		3.49	2.402	19.91		
	25		26.23	0.0575	23.82		A1
	16		19.29	0.560	13.27	74	
	$\sum \frac{(O-B)}{E}$	$\left(\frac{E}{E}\right)^2 = 4.91$	or $\sum \frac{O^2}{E} - N =$	= 144.91 – 140 = 4	.91		A1
	L	2)(2-1)=2	E				B1
	$\sum (O-B)$	$\left(\frac{E}{E}\right)^2 < 5.991$					B1ft
	L L		cient evidence to	reject H0 ' or 'Ac	cent H0'		M1
			gender and happ	•	сері 110		A1
	140 0330010	ation between	gender and happ)IIIC33.			(1)
							Total 1
				Notes			Total
	1 st M1 for	r come use of	Row Total×Colum	n Total May be in	unlied by at lea	est 1 correct Fi	
				n Total l . May be im d 19.3 Allow M1A			
	1 st A1 awr	t 13.5, 41.8, 3	30.7, 8.5, 26.2 an		0 for Ei round	ded to integers	
	1 st A1 awr	t 13.5, 41.8, 3 both hypothes	80.7, 8.5, 26.2 an ses. Must mentio	d 19.3 Allow M1 <i>A</i>	0 for <i>Ei</i> round "gender" at le	ded to integers	
	1 st A1 awr 1 st B1 for Use of "re	t 13.5, 41.8, 3 both hypothes elationship" or	ses. Must mentio "correlation" or	d 19.3 Allow M1A n "happiness" and "connection" is B	A0 for <i>Ei</i> round "gender" at le	ded to integers	
	1 st A1 awr 1 st B1 for Use of "re 2 nd dM1 for	t 13.5, 41.8, 3 both hypothes elationship" or or at least 2 co	ses. Must mentio ""correlation" or prrect terms (in 3	d 19.3 Allow M1A n "happiness" and "connection" is B rdor 4 th columns) or	0 for <i>Ei</i> round "gender" at le	ast once.	
	1 st A1 awr 1 st B1 for Use of "re 2 nd dM1 for Dependen	t 13.5, 41.8, 3 both hypothes elationship" or or at least 2 co t on 1st M1.	ses. Must mention "correlation" or prrect terms (in 3 Accept 2sf accura	d 19.3 Allow M1A n "happiness" and "connection" is B	0 for <i>Ei</i> round "gender" at le 0 correct expre	ast once. ssions with their Ei	
	1 st A1 awr 1 st B1 for 1 Use of "re 2 nd dM1 for Dependen 2 nd A1 for Allow trun	t 13.5, 41.8, 3 both hypothes elationship" or or at least 2 co t on 1st M1. A all correct ten neation e.g. 44	ses. Must mention correct terms (in 3 Accept 2sf accurates (2sf or better 4.2	d 19.3 Allow M1A n "happiness" and "connection" is B rdor 4 th columns) or acy for the M mark	0 for <i>Ei</i> round "gender" at le 0 correct expre	ast once. ssions with their Ei	
	1st A1 awr 1st B1 for the Use of "re 2nd dM1 for Dependen 2nd A1 for Allow trun 3rd A1 awr 2nd B1 for 3rd B1ft for 3rd M1 for	both hypothese elationship" of or at least 2 control of the contro	ses. Must mention "correct terms (in 3 Accept 2sf accurates (2sf or better 4.2 one 4.915 es of freedom (moves from their decement linking the	d 19.3 Allow M1A n "happiness" and "connection" is B rdor 4 th columns) or acy for the M mark e). May be implied hay be implied by a grees of freedom eir test statistic and	"gender" at le "gender" at le 0 correct express. by a correct a	ast once. ssions with their Ei	
	1st A1 awr 1st B1 for Duse of "re 2nd dM1 for Dependen 2nd A1 for Allow trun 3rd A1 awr 2nd B1 for 3rd B1 for 3rd M1 for Contradict	both hypothese elationship" or at least 2 country to 1st M1. A confect tendent of the correct tendent of the correct degree or cythat follows a correct state tory statement.	ses. Must mention "correct terms (in 3 Accept 2sf accurates (2sf or better 4.2 one 4.915 es of freedom (moves from their decement linking the	d 19.3 Allow M1An "happiness" and "connection" is Burdor 4 th columns) or acy for the M market). May be implied by a grees of freedom	"gender" at le "gender" at le 0 correct express. by a correct a	ast once. ssions with their Ei	
	1st A1 awr 1st B1 for buse of "re 2nd dM1 for Dependen 2nd A1 for Allow trun 3rd A1 awr 2nd B1 for 3rd B1ft for 3rd M1 for Contradict Condone "	both hypothese elationship" of or at least 2 country to 1. A all correct tenderation e.g. 44 rt 4.91. Conductorrect degree for ev that follows a correct state tory statement "reject H1" a correct co	ses. Must mention "correct terms (in 3 Accept 2sf accurates (2sf or better 4.2 one 4.915 es of freedom (moves from their de ement linking that score M0 e.g."	d 19.3 Allow M1A n "happiness" and "connection" is B rdor 4 th columns) or acy for the M mark e). May be implied hay be implied by a grees of freedom eir test statistic and	a0 for <i>Ei</i> round "gender" at less of correct express. by a correct as a cv of 5.991) If their cv treject H0"	ded to integers ast once. ssions with their Ei	
	1st A1 awr 1st B1 for Duse of "re 2nd dM1 for Dependent 2nd A1 for Allow trunt 3rd A1 awr 2nd B1 for 3rd B1 for 3rd M1 for Contradict Condone '4th A1 for Condone '6	both hypothese elationship" or at least 2 control of the control o	ses. Must mention correct terms (in 3 Accept 2sf accurates (2sf or better 4.2 one 4.915 es of freedom (moves from their determent linking the tas score M0 e.g. connection connection).	d 19.3 Allow M1A n "happiness" and "connection" is B rd or 4 th columns) or ncy for the M mark e). May be implied may be implied by a grees of freedom eir test statistic and "significant, do no	"gender" at le "gender" at le 0 correct expre- by a correct a a cv of 5.991) If their cv t reject H0" gender" and "he elation".	ded to integers ast once. ssions with their Ei ns appiness"	
	1st A1 awr 1st B1 for Tuse of "re 2nd dM1 for Dependen 2nd A1 for Allow trun 3rd A1 awr 2nd B1 for 3rd B1 for 3rd M1 for Contradict Condone " 4th A1 for Condone" e.g. "There	both hypothese elationship" or at least 2 control of the control o	ses. Must mention correct terms (in 3 Accept 2sf accurates (2sf or better 4.2 one 4.915 es of freedom (moves from their determent linking the tas score M0 e.g. connection connection).	d 19.3 Allow M1A n "happiness" and "connection" is B rdor 4 th columns) or acy for the M mark b). May be implied hay be implied by a grees of freedom eir test statistic and "significant, do no - must mention "g here but not "corr	"gender" at le "gender" at le 0 correct expre by a correct a a cv of 5.991) I their cv t reject H0" gender" and "he relation".	ded to integers ast once. ssions with their Ei ns appiness"	

Question Number	Scheme	Marks
4	E(A) = E(B) + 4E(C) - 3E(D)	M1
	= 22	A1
	Var(A) = Var(B) + 16Var(C) + 9Var(D)	M1
	= 168.25	A1
	$P(A < 45) = P\left(Z < \frac{45 - 22}{\sqrt{168.25}}\right)$	M1
	= P(Z < 1.773)	
	= 0.9616 awrt 0.962	A1
		(6)
		Total 6
	Notes	
	$1^{\text{st}} \text{ M1 for E}(4C) = 4E(C) \text{ and } -E(3D) = -3E(D)$	
	1 st A1 for 22 cao	
	2^{nd} M1 for use of Var $(aX) = a^2$ Var X and + their '9Var (D) '	
	2 nd A1 for 168.25 cao	
	3 rd M1 for standardising using their mean and their sd	
	3 rd A1 for awrt 0.962. NB Calculator gives 0.961899	

Question Number	Scheme						
5(a)	The seeds are independent / There are a fixed number of seeds in a row / There are only						
	two outcomes to the seed germinating – either it germinates or it does not / The probability						
	of a seed germinating is constant						
(b)	$(0\times2)+(1\times6)+(2\times11)+(3\times19)+(4\times25)+(5\times32)+(6\times16)+(7\times9)$ 504						
	$\frac{(0\times2) + (1\times6) + (2\times11) + (3\times19) + (4\times25) + (5\times32) + (6\times16) + (7\times9)}{120\times7} = \frac{504}{840}$						
	= 0.6 **	A1cso	(2)				
(c)	p = 0.6 $q = 0.4$		(2)				
	$s = 120 \times 21q^5 p^2 = 120 \times 21 \times 0.4^5 \times 0.6^2 = 9.29$	B1					
	$t = 120 \times 35q^3 p^4 = 120 \times 35 \times 0.4^3 \times 0.6^4 = 34.84$	B1					
(d)	H ₀ : A binomial distribution is a suitable model.	B1	(2)				
	H _{1:} A binomial distribution is not a suitable model.						
	Observed number of rows 19 19 25 32 25	M1					
	Expected number of rows 11.55 23.22 34.84 31.35 19.04						
	$(O-E)^2$ 4.81 0.77 2.78 0.013 1.87						
	E						
	$\begin{array}{ c c c c c c }\hline & (O-E)^2 \\ \hline & E \\ \hline & O^2 \\ \hline & E \\ \hline & & 31.26 \\ \hline & & & 15.55 \\ \hline & & & & 32.66 \\ \hline \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	y = 5 - 2 = 3	B1ft					
	Critical value for $\chi^2 = 11.345$	B1ft M1A1					
	$\sum \frac{(O-E)^2}{E} = 10.23$ or $\sum \frac{O^2}{E} - N = 130.23 - 120 = 10.23$						
	10.23 < 11.345 therefore do not reject H ₀						
	A binomial is a suitable model.	A1	(7)				
		Total 13	. ,				
(a)	Notes Any two and at least one must have context. 2 correct, no context B1B0. Do not award B0B1.						
(b)	M1 require at least two correct terms in numerator and /(120x7) or /120 then /7						
	A1 cso as given answer						
(c) (d)	Cao for each B1 1^{st} B1 for both hypotheses. B0 if they include 0.6 Condone $X \sim B(n,p)$ etc						
(u)	1^{st} M1 for using some combined columns (<8)						
	2 nd B1ft follows from 'their no of columns' -2						
	3 rd B1ft follows from the degrees of freedom						
	2^{nd} M1 for attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ with at least 2^{nd} (3 seeds) and 4^{th} (5 seeds) accurate						
	to 2sf Contradictory statements score M0 e.g. "significant" do not reject H0						
	1st A1 for awrt 10.2						
	2 nd A1 dependent on 2 nd M for a correct comment suggesting that binomial model is suitable.						
	No follow through. Condone mention of 0.6 here. Hypotheses wrong way round scores A0						

Question Number	Scheme	Mar	ks
6(a)	$\overline{X} = \frac{1}{n} (X_1 + \ldots + X_n)$		
	$E(\overline{X}) = \frac{1}{n}E(X_1 + \ldots + X_n)$		
	$=\frac{1}{n}\left(\mathrm{E}(X_1)+\ldots+\mathrm{E}(X_n)\right)$		
	$=\frac{1}{n}(\mu+\ldots+\mu)$		
	$=\frac{n\mu}{n}=\mu$	B1cso	
	n.		(1)
(b)	$\bar{x} = \frac{1}{5}(197 + 203 + 205 + 201 + 195)$		
	= 200.2(g)	B1	
	n = 1	M1	
	$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - n\bar{x}^{2} \right) \qquad \text{or } \frac{n}{n-1} \text{V ar } x$		
	$=\frac{1}{5-1}(200469-5(200.2^2))$		
	= 17.2	A1	
			(3)
(c)	We require $2 \times 1.25 \ge$ Width of confidence interval		
	$2.5 \ge \frac{2 \times 1.96 \times 4.8}{\sqrt{n}}$ or $1.25 \ge \frac{1.96 \times 4.8}{\sqrt{n}}$ or $\frac{1.25}{\frac{4.8}{\sqrt{n}}} \ge 1.96$	M1B1	
	$\sqrt{n} \ge \frac{2 \times 1.96 \times 4.8}{2.5} = 7.5264$		
	$n \ge 56.6(5)$	A1	
	Minimum sample size is 57	A1	
			(4)
		T	otal 8
	Notes		
(a)	B1 cso: require $E(\bar{X}) = \mu$ with at least 1 correct intermediate step and no incorrect working.		
(b)			
	B1 for 200.2 or $\frac{1001}{5}$		
	M1 for use of correct formula. Accept $\frac{1}{4}S_{xx} = \frac{1}{4} \times 68.8$		
	A1 for awrt 17.2		
(c)	M1 for use of any equivalent expression. Accept equality. Accept their s instead of 4.8		
	B1 for 1.96 seen with s.e.		
	1 st A1 for 56.6(5)		
	2^{nd} A1 for 57. Must follow from correct working e.g. $\sqrt{n} \le 7.5264$ resulting in $n = 57$ award A0		
	I .	<u> </u>	

Question Number	Scheme	Marks
7(a)	$z = \pm 3.2905$ $\sigma = \frac{30}{3.2905}$	B1 M1
	$\sigma = 9.117 **$	A1cso (3)
(b)	H ₀ : $\mu = 1000 \text{ H}_1$: $\mu < 1000$ mean weight = 999.54 $z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{(999.54 - 1000)}{\frac{9.117}{\sqrt{10}}} = -0.160 \text{or} \frac{c - 1000}{\sqrt{83.12/10}} = -2.3263 \therefore \text{CR } c < 993.29$ 1% critical value = -2.3263 $-2.3263 < -0.160$ Accept H ₀ / not in critical region There is no evidence that that the machine is delivering packets of mean weight less than 1	B1 B1 M1A1 B1 dM1 A1ft
	Notes	(7) Total 10
(a)	M1 for 30/'their $ z $ ' >1 A1 cso as given answer	
(b)	1 st B1 both hypotheses correct. Accept 1kg in hypotheses if consistent units used in working usually either kg or g. 2^{nd} B1 999.54 (g) or 0.99954 (kg) 1 st M1 for standardising using their mean allow \pm , 1000 and $\frac{9.117}{\sqrt{10}}$ o.e. in kg 1 st A1 awrt -0.160 unless clearly using $ z $ (stated) then accept 0.160 or CR awrt 993 Condone -0.16 if fully correct expression seen. 3 rd B1 \pm 2.3263 sign consistent with test statistic or $p = 0.4364 > 0.01$ NB $p = 0.5636 < 0.99$ 2 nd dM1 dependent upon 1 st M for a correct statement linking their test statistic and their cv Contradictory statements score M0 e.g. "significant, do not reject H ₀ " 2 nd A1 for correct conclusion in context. Must mention 'machine' and 'packets'.	

Question Number	Scheme	Mark	(S
8(a)	$r = \frac{9.3433}{\sqrt{0.0632 \times 1957.5556}}$	M1	
	$\sqrt{0.0632 \times 1957.5556}$ = 0.840	A1	
			(2)
(b)	$H_0: \rho = 0 \ H_1: \rho > 0$	B1	
	Critical value = 0.5822	B1	
	0.840 > 0.5822 There is evidence to reject H ₀ .	M1	
	There is evidence of a positive correlation between a man's height and his weight.	A1ft	
			(4)
(c)	Man A B C D E F G H I		
	Actual weight 1 2 7 3 4 5 8 6 9	B1	
	Peter's order 1 4 2 6 3 8 5 9 7 d² 0 4 25 9 1 9 9 9 4	B1	
		M1A1	
	$\sum d^2 = 70$	WITAI	
	$r_{c} = 1 - \frac{6 \sum d^{2}}{1 - 6 \sum d^{$	dM1	
	$r_{s} = 1 - \frac{6 \sum d^{2}}{n(n^{2} - 1)}$ $= 1 - \frac{6 \times 70}{9(81 - 1)}$		
	$=1-\frac{1}{9(81-1)}$		
	= 0.417	A1	
			(6)
(d)	$H_0: \rho = 0 \ H_1: \rho > 0$	B1	
	Critical value 0.600	B1	
	(0.417 < 0.600) There is insufficient evidence to reject H ₀ .	M1	
	Peter does not have the ability to correctly order men, by weight, from their photograph.	A1	
			(4)
		Tota	al 16

	Notes	
(a)	M1 Clear use of $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$	
(b)	A1 0.840 cao 1^{st} B1 for both hypotheses in terms of ρ , one tail H ₁ must be compatible with their r Hypotheses just in words e.g. "no correlation" score B0	
	2 nd B1 for 0.5822 cao M1 for a statement comparing 'their r' with 'their cv' A1 for a correct contextualised comment. Must mention positive correlation, be carrying out a 1-tailed test and mention height and weight.	
(c)	Follow through their r and their cv (provided their $ cv < 1$ and their $ r < 1$) 1^{st} B1 for attempt to rank actual weight / Peter's order with at least 4 correct 2^{nd} B1 for correct rankings for both (one or both may be reversed) 1^{st} M1 for use of $\sum d^2$ with at least 4 values correct and attempt to add	
	1 st A1 for 70 or 170 with reversed rankings 2^{nd} dM1 for use of the correct formula, follow through their $\sum d^2$. Dependent on 1 st M1 If answer is not correct, a correct expression is required. 2^{nd} A1 for awrt 0.417 or $\frac{5}{12}$	
(d)	1^{st} B1 for both hypotheses in terms of ρ or ρ_s One tail H ₁ must be compatible with their ranking	
	Hypotheses just in words e.g. "no correlation" score B0	
	2 nd B1 for cv of 0.6(00) cao	
	Their cv must be compatible with their H ₁ which may be in words M1 for statement comparing 'their r' with 'their cv'	
	A1 for a correct contextualised comment. Must mention Peter and Men.	
	Follow through their r and their cv (provided their $ cv < 1$ and their $ r_s < 1$	