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Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Pure Mathematics P6), the paper reference (6676), your surname, initials and signature.
When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.

Full marks may be obtained for answers to ALL questions.

This paper has 7 questions.

The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. Answers

without working may gain no credit.

1.
(a)
Express 
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, where p and q are integers to be found.
(1)


The sequence of real numbers u1, u2, u3, ... is such that u1 = 5.2 and un + 1 = 
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(b)
Prove by induction that un > 5, for n (ℤ+.

 (4)


2.
(a)
(i)
Explain why, for any two vectors a and b, a.b ( a = 0.
(2)



(ii)
Given vectors a, b and c such that a ( b = a ( c, where a ( 0 and b ( c, show that

b – c = (a,    where ( is a scalar.

(2)


(b)
A, B and C are 2 ( 2 matrices.



(i)
Given that AB = AC, and that A is not singular, prove that B = C.

(2)


(ii)
Given that AB = AC, where A = 
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 and B = 
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, find a matrix C whose elements are all non-zero.
 (3)

3.
The line l1 has equation
r = i + 6j – k + ((2i + 3k)


and the line l2 has equation 

r = 3i + pj + ((i – 2j + k), where p is a constant.


The plane (1 contains l1 and l2.

(a)
Find a vector which is normal to (1.
(2)

(b)
Show that an equation for (1 is 6x + y – 4z = 16.

 (2)


(c)
Find the value of p.

(1)


The plane (2 has equation r.(i + 2j + k) = 2.


(d)
Find an equation for the line of intersection of (1 and (2, giving your answer in the form

(r – a) ( b = 0.

(5)

4.
A complex number z is represented by the point P in the Argand diagram. Given that

(z – 3i ( = 3,


(a)
sketch the locus of P.
 (2)

(b)
Find the complex number z which satisfies both (z – 3i ( = 3 and arg (z – 3i) = 
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The transformation T from the z-plane to the w-plane is given by

w = 
[image: image7.wmf]w
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.
(c)
Show that T maps (z – 3i ( = 3 to a line in the w-plane, and give the cartesian equation of this line.
 (5)

5.
(a)
Given that z = ei(, show that
zn – 
[image: image8.wmf]n
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 = 2i sin n( ,



where n is a positive integer.

(2)


(b)
Show that

sin5 (  = 
[image: image9.wmf]16

1

(sin 5(  – 5 sin 3(  + 10 sin ( ).

(5)


(c)
Hence solve, in the interval 0 ( ( < 2(,

sin 5( – 5 sin 3(  + 6 sin (  = 0.
(5)

6.
The variable y satisfies the differential equation

4(1 + x2)
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At x = 0, y = 1 and 
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(a)
Find the value of 
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 at x = 0.

(1)


(b)
Use the approximations
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, with h = 0.1,


to find an estimate of y, at x = 0.1, to 5 decimal places.
(6)


(c)
Find the value of 
[image: image19.wmf]3
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 at x = 0.
(4)


(d)
Express y as a series, in ascending powers of x, up to and including the term in x3.

(2)


(e)
Find the value that the series gives for y at x = 0.1, giving your answer to 5 decimal places.

(1)
          

7.






A = 
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(a)
Show that det A = 20 – 4k.
 (2)
   
(b)
Find A–1.
(6)


Given that k = 3 and that 
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 is an eigenvector of A,


(c)
find the corresponding eigenvalue.
(2)


Given that the only other distinct eigenvalue of A is 8,


(d)
find a corresponding eigenvector.
 (4)
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