| Surname | Other na | mes | |-----------------------------------------------------|---------------|--------------------------| | Pearson Edexcel International Advanced Level | Centre Number | Candidate Number | | Further Pu<br>Mathemated<br>Advanced/Advance | tics F3 | | | | • | I | | Monday 27 June 2016 – Mo<br>Time: 1 hour 30 minutes | | Paper Reference WFM03/01 | Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - When a calculator is used, the answer should be given to an appropriate degree of accuracy. ## Information - The total mark for this paper is 75. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. PEARSON Turn over ▶ P 4 6 6 8 4 A 0 1 3 2 | 1. | The curve C has equation | |----|---------------------------------------------------------------------------------------------------| | | | | | $y = 9\cosh x + 3\sinh x + 7x$ | | | • | | | Use differentiation to find the exact $x$ coordinate of the stationary point of $C$ , giving your | | | | | | answer as a natural logarithm. | | | (6) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 1 continued | blank | |----------------------|-------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 01 | | | Q1 | | (Total 6 marks) | | **(5)** 2. An ellipse has equation $$\frac{x^2}{25} + \frac{y^2}{4} = 1$$ The point *P* lies on the ellipse and has coordinates $(5\cos\theta, 2\sin\theta)$ , $0 < \theta < \frac{\pi}{2}$ The line L is a normal to the ellipse at the point P. (a) Show that an equation for L is $$5x\sin\theta - 2y\cos\theta = 21\sin\theta\cos\theta$$ Given that the line L crosses the y-axis at the point Q and that M is the midpoint of PQ, (b) find the exact area of triangle OPM, where O is the origin, giving your answer as a multiple of $\sin 2\theta$ | | | (6) | |--|--|-----| | | | | | <br> | <br> | |------|------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | <br> | | | | | | | | | | | | | | | | | | Leave<br>blank | |----------------------|----------------| | Question 2 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 2 continued | | | |----------------------|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Leave | |----------------------|-------| | Question 2 continued | | | | | | | | | | | | | _ | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | _ | | | _ | | | | | | | | | | | | | | | | | | | | | | | | Q2 | | | | | (Total 11 marl | ks) | 3. Without using a calculator, find (b) $\int_{-1}^{4} \frac{1}{\sqrt{4x^2 - 12x + 34}} dx$ , giving your answer in the form $p \ln(q + r\sqrt{2})$ , where p, q and r are rational numbers to be found. | - ( | <b>/)</b> | |-----|-----------| | (7) | |-----| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | L | |----------------------|---| | puestion 3 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Leave | |----------------------|-------| | Question 3 continued | blank | | Question 5 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 3 continued | | Leave<br>blank | |----------------------|----------------|----------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Q3 | | | | <u> </u> | | T) | otal 12 marks) | | 4. $$\mathbf{M} = \begin{pmatrix} 1 & k & 0 \\ -1 & 1 & 1 \\ 1 & k & 3 \end{pmatrix}, \text{ where } k \text{ is a constant}$$ (a) Find $\mathbf{M}^{-1}$ in terms of k. **(5)** **(4)** Hence, given that k = 0 (b) find the matrix N such that $$\mathbf{MN} = \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$$ 12 | uestion 4 continued | | |---------------------|--| | destion 4 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 4 continued | |----------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 4 continued | | blank | |----------------------|--------------------|-------| | Question 4 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Q4 | | | (Total 0 ms - d-n) | | | | (Total 9 marks) | | **(2)** - 5. Given that $y = \operatorname{artanh}(\cos x)$ - (a) show that $$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}\,x$$ (b) Hence find the exact value of $$\int_0^{\frac{\pi}{6}} \cos x \, \operatorname{artanh}(\cos x) \, \mathrm{d}x$$ giving your answer in the form $a \ln(b + c\sqrt{3}) + d\pi$ , where a, b, c and d are rational numbers to be found. | hypotian 5 continued | | |----------------------|--| | Question 5 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 5 continued | | | |----------------------|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 5 continued | bla | ave | |----------------------|-----------------|-----| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Q5 | ) | | | (Total 7 marks) | | | 6. | The coordinates of the points $A$ , $B$ and $C$ relative to a fixed origin $O$ are $(1, 2, 1, 2, 2, 2, 2, 3, 4)$ and $(2, 1, 6)$ respectively. The plane $\Pi$ contains the points $A$ , $B$ and $C$ . | 3), | |----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | | | (5) | | | The point $D$ has coordinates $(k, 4, 14)$ where $k$ is a positive constant. | | | | Given that the volume of the tetrahedron ABCD is 6 cubic units, | | | | (b) find the value of $k$ . | (4) | | | | _ | | | | | | | | | | | | _ | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | _ | | | | | | | Lea<br>bla | |----------------------|------------| | Question 6 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 6 continued | | |----------------------|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 6 continued | | |----------------------|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Q6 | | | (Total 9 marks) | | 7. The curve C has parametric equations $$x = 3t^4, \quad y = 4t^3, \qquad 0 \leqslant t \leqslant 1$$ The curve C is rotated through $2\pi$ radians about the x-axis. The area of the curved surface generated is S. (a) Show that $$S = k\pi \int_{0}^{1} t^{5} (t^{2} + 1)^{\frac{1}{2}} dt$$ where k is a constant to be found. **(4)** (b) Use the substitution $u^2 = t^2 + 1$ to find the value of S, giving your answer in the form $p\pi(11\sqrt{2} - 4)$ where p is a rational number to be found. **(7)** 24 | uestion 7 continued | | |---------------------|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 7 continued | |----------------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 7 continued | | Leav<br>blanl | |----------------------|------------------|---------------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Q7 | | | (Total 11 marks) | | **(5)** **(5)** 8. $$I_n = \int_0^{\ln 2} \tanh^{2n} x \, \mathrm{d}x, \quad n \geqslant 0$$ (a) Show that, for $n \ge 1$ $$I_n = I_{n-1} - \frac{1}{2n-1} \left(\frac{3}{5}\right)^{2n-1}$$ (b) Hence show that $$\int_0^{\ln 2} \tanh^4 x \, \mathrm{d}x = p + \ln 2$$ where p is a rational number to be found. | | Leave | |----------------------|-------| | | blank | | Question 8 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Question 8 continue | ed | | | |---------------------|----|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Leave | |----------------------|-------| | | blank | | Question 8 continued | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | euestion 8 continued | | blan | |----------------------|---------------------------|------| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Q | | | (Total 10 marks) | | | END | TOTAL FOR PAPER: 75 MARKS | |