

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6683/01)

June 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Mark	s
Q1 (a)	$(S_{pp}=) 38125 - \frac{445^2}{10}$ = 18322.5 awrt 18300	M1 A1	
	$(S_{pt} =) 26830 - \frac{445 \times 240}{10}$	Ai	
	= 16150 awrt 16200	A1	(3)
(b)	$r = \frac{"16150"}{\sqrt{"18322.5" \times 21760}}$ Using their values for method	M1	
	= 0.8088 awrt 0.809	A1	(2)
(c)	As the temperature increases the pressure increases.	B1	(1) [6]
Notes			
	1(a) M1 for seeing a correct expression $38125 - \frac{445^2}{10}$ or $26830 - \frac{445 \times 240}{10}$		
	If no working seen, at least one answer must be exact to score M1 by implication. 1(b) Square root and their values with 21760 all in the right places required for method. Anything which rounds to (awrt) 0.809 for A1.		
	1(c) Require a correct statement in context using <u>temperature/heat</u> and <u>pressure</u> for B1. Don't allow "as <i>t</i> increases <i>p</i> increases".		
	Don't allow proportionality.		
	Positive correlation only is B0 since there is no interpretation.		

Question Number	Scheme	Mar	ks
Q2 (a)	$ \frac{1}{2} C \frac{1}{5} L $ Correct tree All labels Probabilities on correct branches $ \frac{1}{3} E \frac{1}{10} C \frac{4}{5} C \frac{4}{5} C \frac{1}{5} C$	B1 B1	
			(3)
(b)(i)	$\frac{1}{3} \times \frac{1}{10} = \frac{1}{30}$ or equivalent	M1 A1	(2)
(ii)	CNL + BNL + FNL = $\frac{1}{2} \times \frac{4}{5} + \frac{1}{6} \times \frac{3}{5} + \frac{1}{3} \times \frac{9}{10}$	M1	
	$=\frac{4}{5}$ or equivalent	A1	(2)
(c)	$P(F'/L) = \frac{P(F' \cap L)}{P(L)}$ Attempt correct conditional probability but see notes	M1	
	$= \frac{\frac{1}{6} \times \frac{2}{5} + \frac{1}{2} \times \frac{1}{5}}{1 - (ii)}$ $\frac{\text{numerator}}{\text{denominator}}$ 5	$\frac{A1}{A1ft}$	
	$= \frac{\frac{5}{30}}{\frac{1}{5}} = \frac{5}{6} \qquad \text{or equivalent} $ cao	A1	(4) [11]
Notes	Exact decimal equivalents required throughout if fractions not used e.g. 2(b)(i) 0.03 Correct path through their tree given in their probabilities award Ms 2(a) All branches required for first B1. Labels can be words rather than symbols for second B1. Probabilities from question enough for third B1 i.e. bracketed probabilities not required. Probabilities and labels swapped i.e. labels on branches and probabilities at end can be awarded the marks if correct. 2(b)(i) Correct answer only award both marks. 2(b)(ii) At least one correct path identified and attempt at adding all three multiplied pairs award M1 2(c) Require probability on numerator and division by probability for M1.Require numerator correct for their tree for M1. Correct formula seen and used, accept denominator as attempt and award M1 No formula, denominator must be correct for their tree or 1-(ii) for M1 1/30 on numerator only is M0, P(L/F') is M0.		

tion ber	Scheme	Marks	
(a)	1(cm) cao	B1	
(b)	10 cm ² represents 15 10/15 cm ² represents 1 or 1cm ² represents 1.5		
	Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $x \frac{2}{3}$ or $\div 1.5$ height = 6(cm)	M1	
		[3]]
S	If 3(a) and 3(b) incorrect, but their (a) x their (b)=6 then award B0M1A0 3(b) Alternative method: f/cw=15/6=2.5 represented by 5 so factor x2 award M1 So f/cw=9/3=3 represented by 3x2=6. Award A1.		
k	(a)	Scheme (a) $1(cm)$ cao (b) $10 \text{ cm}^2 \text{ represents } 15$ $10/15 \text{ cm}^2 \text{ represents } 1$ Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $x \frac{2}{3}$ or $\div 1.5$ height = 6(cm) (b) $10 \text{ cm}^2 \text{ represents } 15$ Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $x \frac{2}{3}$ or $\div 1.5$ height = 6(cm) (cao)	Scheme Scheme Scheme Marks (a) 1 (cm) $10 \text{ cm}^2 \text{ represents } 15$ $10/15 \text{ cm}^2 \text{ represents } 1$ or $1 \text{ cm}^2 \text{ represents } 1.5$ Therefore frequency of $9 \text{ is } \frac{10}{15} \times 9 \text{ or } \frac{9}{1.5}$ Require $\frac{2}{3} \text{ or } \div 1.5$ M1 height = 6 (cm) A1 If $3 \text{ (a) and } 3 \text{ (b) incorrect, but their (a) } x \text{ their (b)=} 6 \text{ then award } B0M1A0$ $3 \text{ (b) Alternative method:}$ $\frac{10}{15} \times 9 \text{ or } \frac{9}{1.5} \times 9 \text{ or } \frac{9}{1.5} \times 9 \text{ or } \frac{9}{1.5} \times 9 \times $

Question Number	Scheme	Marks	
Q4 (a)	$Q_2 = 17 + \left(\frac{60 - 58}{29}\right) \times 2$	M1	
	= 17.1 (17.2 if use 60.5) awrt 17.1 (or17.2)	A1	(2)
(b)	$\sum fx = 2055.5$ $\sum fx^2 = 36500.25$ Exact answers can be seen below or implied	B1 B1	(2)
	by correct answers. Evidence of attempt to use midpoints with at least one correct	M1	
	Mean = 17.129 awrt 17.1	B1	
	$\sigma = \sqrt{\frac{36500.25}{120} - \left(\frac{2055.5}{120}\right)^2}$	M1	
	= 3.28 (s=3.294) awrt 3.3	A1 ((6)
(c)	$\frac{3(17.129 - 17.1379)}{3.28} = -0.00802$ Accept 0 or awrt 0.0	M1 A1	
	No skew/ slight skew	B1 ((3)
(d)	The skewness is very small. Possible.		(2) 3]
Notes	4(a) Statement of $17 + \frac{\text{freq into class}}{\text{class freq}} \times \text{cw}$ and attempt to sub or $\frac{m-17}{19-17} = \frac{60(.5)-58}{87-58} \text{ or equivalent award M1}$ $\text{cw=2 or 3 required for M1.}$ $17.2 \text{ from cw=3 award A0.}$ $4(b) \text{ Correct } \sum fx \text{ and } \sum fx^2 \text{ can be seen in working for both B1s}$ $\text{Midpoints seen in table and used in calculation award M1}$ $\text{Require complete correct formula including use of square root and attempt to sub for M1. No formula stated then numbers as above or follow from (b) for M1 (\sum fx)^2, \sum (fx)^2 or \sum f^2 x \text{ used instead of } \sum fx^2 \text{ in sd award M0} \text{Correct answers only with no working award } 2/2 \text{ and } 6/6 4(c) \text{ Sub in their values into given formula for M1} 4(d) \text{ No skew } / \text{ slight skew } / \text{ 'Distribution is almost symmetrical' } / 'Mean approximately equal to median' or equivalent award first B1. Don't award second B1 if this is not the case. Second statement should imply 'Greg's suggestion that a normal distribution is suitable is possible' for second B1 dep. If B0 awarded for comment in (c) and (d) incorrect, allow follow through from the comment in (c).$		

Question Number	Scheme	Marks
Q5 (a)	$b = \frac{59.99}{33.381}$	M1
	= 1.79713 1.8 or awrt 1.80	A1
	$a = 32.7 - 1.79713 \times 51.83$ = -60.44525 awrt -60 w = -60.445251 + 1.79713l l and w required and awrt 2sf	M1 A1 A1ft (5)
(b)	$w = -60.445251 + 1.79713 \times 60$ = 47.3825 In range 47.3 – 47.6 inclusive	M1 (2)
(c)	It is extrapolating so (may be) unreliable.	B1, B1dep
		(2) [9]
Notes	5(a) Special case $b = \frac{59.99}{120.1} = 0.4995 \text{ M0A0}$ $a = 32.7 - 0.4995 \times 51.83 \text{ M1A1}$ $w = 6.8 + 0.50l \text{ at least 2 sf required for A1}$ 5(b) Substitute into their answer for (a) for M1 5(c) 'Outside the range on the table' or equivalent award first B1	

Question Number	Scheme	Mark	.s
Q6 (a)	0 1 2 3 3a 2a a b	B1	(1)
(b)	3a + 2a + a + b = 1 or equivalent, using Sum of probabilities =1 or equivalent, using E(X)=1.6	M1 M1	
	14a = 1.4 $a = 0.1$ $b = 0.4$ Attempt to solve cao	M1dep B1 B1	(5)
(c)	P(0.5 < x < 3) = P(1) + P(2) 3a or their $2a$ +their $a= 0.2 + 0.1$	M1	(5)
	= 0.3 Require $0 < 3a < 1$ to award follow through	A1 ft	(2)
(d)	E(3X-2) = 3E(X) - 2 = 3 × 1.6 - 2 = 2.8 cao	M1 A1	
(e)	$E(X^2) = 1 \times 0.2 + 4 \times 0.1 + 9 \times 0.4 (= 4.2)$ Var $(X) = "4.2" - 1.6^2$	M1 M1	(2)
(f)	= 1.64	M1	(3)
	= 14.76 awrt 14.8	A1	(2) [15]
Notes	6(a) Condone a clearly stated in text but not put in table. 6(b) Must be attempting to solve 2 different equations so third M dependent upon first two Ms being awarded. Correct answers seen with no working B1B1 only, 2/5 Correctly verified values can be awarded M1 for correctly verifying sum of probabilities =1, M1 for using $E(X)$ =1.6 M0 as no attempt to solve and B1B1 if answers correct. 6(d) 2.8 only award M1A1 6(e) Award first M for at least two non-zero terms correct. Allow first M for correct expression with a and b e.g. $E(X^2) = 6a + 9b$ Given answer so award final A1 for correct solution. 6(f) 14.76 only award M1A1		

Question Number	Scheme		Mar	ks
Q7(a) (i)	$P(A \cup B) = a + b$	10	B1	
(ii)	$P(A \cup B) = a + b - ab$ or equivalent		B1	(2)
(b)	$P(R \cup Q) = 0.15 + 0.35$ $= 0.5$	5	B1	(1)
(c)	$P(R \cap Q) = P(R Q) \times P(Q)$ = 0.1 \times 0.35		M1	
	= 0.035 0.0 3	5	A1	
				(2)
(d)	$P(R \cup Q) = P(R) + P(Q) - P(R \cap Q) OR P(R) = P(R \cap Q') + P(R \cap Q)$ $= 0.15 + their (c)$		M1	
	0.5 = P(R) + 0.35 - 0.035 = 0.15 + 0.035 P(R) = 0.185 = 0.185 0.18	5	A1	(2) [7]
Notes	7(a) (i) Accept $a + b - 0$ for B1 Special Case If answers to (i) and (ii) are (i) $P(A)+P(B)$ and (ii) $P(A)+P(B)-P(A)P(B)$ award B0B1 7(a)(i) and (ii) answers must be clearly labelled or in correct order for marks to be awarded.			

Question Number	Scheme		М	arks
Q8 (a)	Let the random variable X be the lifetime in hours of bulb $P(X < 830) = P(Z < \pm (830 - 850))$ Stan	dardising with 850 and 50		
	= P(Z < -0.4)	1-(probability>0.5)	M1 M1	
	= 0.3446 or 0.344578 by calculator	awrt 0.345	A1	(3)
(b)	$ \begin{array}{l} 0.3446 \times 500 \\ = 172.3 \end{array} $ Acc	Their (a) x 500 ept 172.3 or 172 or 173	M1 A1	(2)
(c)	Standardise with 860 and σ and equate to z value $\frac{\pm (818-8)}{\sigma}$	$\frac{360}{}$ = z value	M1	
	$\frac{818-860}{\sigma} = -0.84(16) \text{ or } \frac{860-818}{\sigma} = 0.84(16) \text{ or } \frac{902-6}{\sigma}$		A1	
	$\sigma = 49.9$	±0.8416(2) 50 or awrt 49.9	B1 A1	
(d)	Company Y as the <u>mean</u> is greater for Y . They have (approximately) the same <u>standard deviation</u> or	both <u>sd</u>	B1 B1	(4)
				(2) [11]
Notes	8(a) If 1-z used e.g. 1-0.4=0.6 then award second M0 8(c) M1 can be implied by correct line 2 A1 for completely correct statement or equivalent. Award B1 if 0.8416(2) seen Do not award final A1 if any errors in solution e.g. negative 8(d) Must use statistical terms as underlined.	e sign lost.		