Centre No.			Paper Reference				Surname	Initial(s)			
Candidate No.			6	6	6	3	/	0	1	Signature	

Paper Reference(s)

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Monday 2 June 2008 – Morning

Time: 1 hour 30 minutes

	Examiner's use only				
	Team L	eader's u	ise onl		
Val					

 Materials required for examination
 Items included with question papers

 Mathematical Formulae (Green)
 Nil

Calculators may NOT be used in this examination.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 11 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

Printer's Log. No. H29992A
W850/R6663/57570 3/3/3/3/

Question Leave Number Blank

2

3

4

6

7

8

9

10

11

1. Find $\int (2 + 5x^2) dx$.		Leave blank
1. Time j (2 + 5x) ex.	(3)	
		Q1
(Total 3	marks)	

H 2 9 9 9 2 A 0 2 2 8

2. Factorise completely	Leave blank
x^3-9x .	(3)
	Q2
(Total 3 i	
H 2 9 9 9 2 A 0 3 2 8	3 Turn over

3.

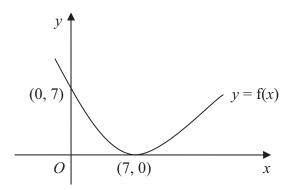
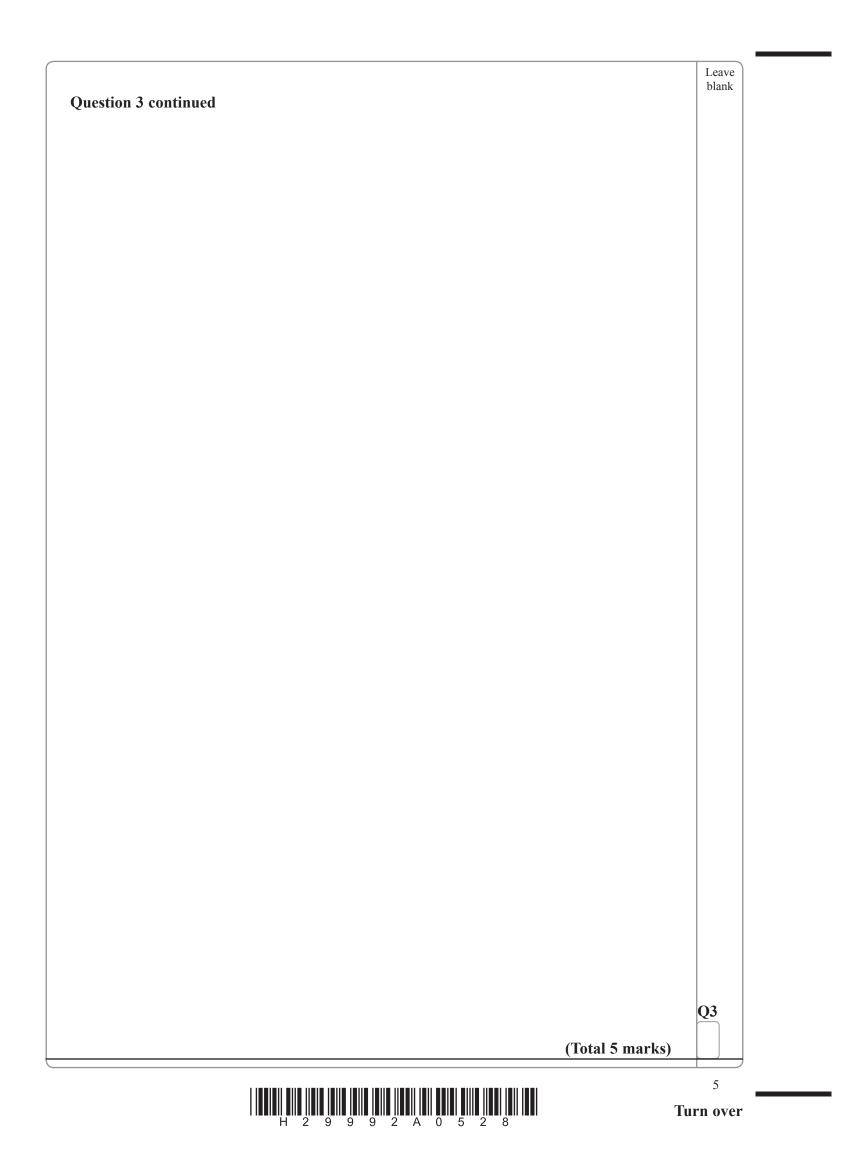


Figure 1


Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the point (0, 7) and has a minimum point at (7, 0).

On separate diagrams, sketch the curve with equation

(a)
$$y = f(x) + 3$$
, (3)

(b)
$$y = f(2x)$$
. (2)

On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the *y*-axis.

			I t
4.	$f(x) = 3x + x^3,$	x > 0.	
(a) Differentiate to fir			
(a) Differentiate to in	iu 1 (λ).		(2)
C: (1 + C/() 15			
Given that $f'(x) = 15$,			
(b) find the value of <i>x</i>	:. :		
			(3)

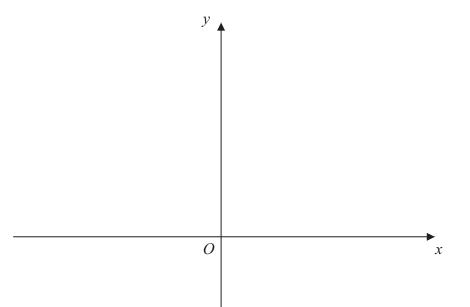
H 2 9 9 9 2 A 0 6 2 8

uestion 4 continued		Leave blank
		Q4
	(Total 5 marks)	
H 2 9 9 2 A 0 7 2 8		7 Turn over

A sequence x_1, x_2, x_3, \dots is defined by	
$x_1 = 1$,	
$x_{n+1} = ax_n - 3, \ n \geqslant 1,$	
where a is a constant.	
(a) Find an expression for x_2 in terms of a .	(1)
(b) Show that $y = a^2 + 2a + 2$	(2)
(b) Show that $x_3 = a^2 - 3a - 3$.	(2)
Given that $x_3 = 7$,	
(c) find the possible values of <i>a</i> .	
(e) This the position (this or the	(3)

H 2 9 9 9 2 A 0 8 2 8

uestion 5 continued	Leave blank
/T-1-1 /	Q5
(Total 6 m	arks)
	Turn over


Leave blank

- **6.** The curve C has equation $y = \frac{3}{x}$ and the line l has equation y = 2x + 5.
 - (a) On the axes below, sketch the graphs of C and l, indicating clearly the coordinates of any intersections with the axes.

(3)

(b) Find the coordinates of the points of intersection of C and l.

(6)

10

stion 6 continued	blank
	Q6
(Total 9 marks)	

		Leav blan
,	• Sue is training for a marathon. Her training includes a run every Saturday startir run of 5 km on the first Saturday. Each Saturday she increases the length of her the previous Saturday by 2 km.	
	(a) Show that on the 4th Saturday of training she runs 11 km.	
		(1)
	(b) Find an expression, in terms of n , for the length of her training run on Saturday.	the <i>n</i> th
		(2)
	(c) Show that the total distance she runs on Saturdays in n weeks of training is $n(n + 1)$	+ 4) km. (3)
	On the <i>n</i> th Saturday Sue runs 43 km.	
	(d) Find the value of <i>n</i> .	
		(2)
	(e) Find the total distance, in km, Sue runs on Saturdays in n weeks of training.	(2)
_		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		

Question 7 continued	I	Leave blank
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	-	
	-	
	-	
	_	

H 2 9 9 9 2 A 0 1 3 2 8

Turn over

13

Question 7 continued	Leave blank

Question 7 continued		Leave blank
	(Total 10 marks)	Q7

8.	Given that the equation $2qx^2 + qx - 1 = 0$, where q is a constant, has no real roots,		Leave blank
	(a) show that $q^2 + 8q < 0$.	(2)	
	(b) Hence find the set of possible values of q .	(3)	

uestion 8 continued	Leave blank
	Q8
(Total 5 marks)	

		Le
9.	The curve C has equation $y = kx^3 - x^2 + x - 5$, where k is a constant.	013
	(a) Find $\frac{dy}{dx}$.	
	dx (2)	
	The point A with x-coordinate $-\frac{1}{2}$ lies on C. The tangent to C at A is parallel to the line with equation $2y - 7x + 1 = 0$.	
	Find	
	(b) the value of k , (4)	
	(c) the value of the <i>y</i> -coordinate of <i>A</i> .	
	(2)	

uestion 9 continued	Leave blank

H 2 9 9 9 2 A 0 1 9 2 8

	Leave blank
Question 9 continued	

blank **10.** Figure 2 The points Q(1, 3) and R(7, 0) lie on the line l_1 , as shown in Figure 2. The length of QR is $a\sqrt{5}$. (a) Find the value of a. (3) The line l_2 is perpendicular to l_1 , passes through Q and crosses the y-axis at the point P, as shown in Figure 2. Find (b) an equation for l_2 , **(5)** (c) the coordinates of P, **(1)** (d) the area of ΔPQR . **(4)**

Question 10 continued	Leave blank

H 2 9 9 9 2 A 0 2 3 2 8

Question 10 continued	Leave blank

Question 10 continued	Le	ank
	Q	10
(T)	Cotal 13 marks)	

	\
Leave	1
blank	1

(2)

(6)

11. The gradient of a curve C is given by $\frac{dy}{dx} = \frac{(x^2 + 3)^2}{x^2}, x \neq 0.$
(a) Show that $\frac{dy}{dx} = x^2 + 6 + 9x^{-2}$.
The point $(3, 20)$ lies on C .
(b) Find an equation for the curve C in the form $y = f(x)$.

Question 11 continued	L	eave lank

H 2 9 9 9 2 A 0 2 7 2 8

Question 11 continued	Lea blar
	Q11
(Total 8 marks) TOTAL FOR PAPER: 75 MARKS	
END	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	