June 2007 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	Continuous uniform distribution or rectangular distribution.	B1
	$\frac{1}{5}$ 0 may be implied by start at y axis	B1
	5 × _x	B1 (3)
(b)	E(X) = 2.5 ft from their a and b, must be a number	B1ft
	$Var(X) = \frac{1}{12}(5-0)^2 \qquad \text{or attempt to use } \int_0^5 f(x)x^2 dx - \mu^2 \qquad \text{use their } f(x)$	M1
	$=\frac{25}{12}$ or 2.08 o.e awrt 2.08	A1 (3)
(c)	$P(X > 3) = \frac{2}{5} = 0.4$ $P(X = 3) = 0$ 2 times their 1/5 from diagram	B1ft (1) B1 (1)
		(Total 8)

l	Question Number		Scheme			Marks
$X \sim \text{Po } (2.5) \qquad \text{may be implied} \\ P(X \ge 7) = 1 - P(X \le 6) \\ = 1 - 0.9858 \qquad \left[P(X \ge 5) = 1 - 0.8912 = 0.1088 \right] \text{att } P(X \ge 7) \\ P(X \ge 6) = 1 - 0.9580 = 0.0420 \qquad \text{A1} \\ O.0142 < 0.05 \qquad 7 \ge 6 \text{ or } 7 \text{ is in critical region or } 7 \text{ is significant} \\ \text{(Reject Ho.) There is significant evidence at the 5% significance level that the factory is polluting the river with bacteria.} \\ \frac{\text{OT}}{\text{The scientists claim is justified}} \qquad \text{Tota} \\ \frac{\text{Method } 2}{H_0 : \lambda = 5 \ (\lambda = 2.5)} \\ H_1 : \lambda > 5 \ (\lambda > 2.5) \\ X \sim \text{Po } (2.5) \qquad \text{may use } \lambda \text{ or } \mu \\ X = \text{Po } (2.5) \\ Y = \text{Po } (2.5) \qquad \text{may be implied} \\ P(X < 7) \qquad [P(X < 5) = 0.8912] \qquad \text{att } P(X < 7) P(X < 6)$		One tail test Method 1 $H_0: \lambda = 5 \ (\lambda = 2.5)$ μ	n	nay use λ or	B1	
$ \begin{array}{c c} = 0.9858 & CR \ X \geq 6 & wrt \ 0.986 \\ \hline 0.9858 > 0.95 & 7 \geq 6 \ \text{or 7 is in critical region or 7 is significant} \\ \hline (Reject \ H_0.) \ There is significant evidence at the 5% significance level that the factory is polluting the river with bacteria. \\ \hline \ \underline{or} \\ \hline The scientists \ claim \ is justified \\ \hline \end{array} $		$X \sim \text{Po}(2.5)$ $P(X \ge 7) = 1 - P(X \le 6)$ $= 1 - 0.9858$ $= 0.0142$ $0.0142 < 0.05$ (Reject H ₀ .) There is signifi is polluting the river with be or	$P(X \ge 6) = 1 - 0.9580 = 0.0420$ $CR \ X \ge 6$ awrith $7 \ge 6$ or 7 is in critical region or 7 is significant evidence at the 5% significance level that exists $\frac{1}{2}$ is $\frac{1}{2}$ att $\frac{1}{2}$ $\frac{1}$	$ P(X \ge 7) $ $ P(X \ge 6) $ 0.0142 ficant nat the factory may use λ or μ may be implied $ X \le 7 $ $ P(X \le 6) $ 0.986 cant	M1 A1 M1 B1 B1 M1 M1 M1	(7) Total 7

Two tail test Method 1			
$H_o: \lambda = 5 \ (\lambda = 2.5)$ $H_1: \lambda \neq 5 \ (\lambda \neq 2.5)$	may use λ or μ	B1 B0	
<i>X</i> ∼ Po (2.5)		M1	
	$[P(X \ge 6) = 1 - 0.9580 = 0.0420] $ att $P(X \ge 7)$ $P(X \ge 7)$ $P(X \ge 7)$ $P(X \ge 7)$	M1	
= 0.0142	$CR X \ge 7$ awrt 0.0142	A1	
0.0142 < 0.025	$7 \ge 7$ or 7 is in critical region or 7 is significant	M1	
	cant evidence at the 5% significance level that the factory	B1	
is polluting the river with bao or The scientists claim is justif			(7)
$\frac{\text{Method 2}}{\text{H}_{\text{o}}: \lambda = 5 \ (\lambda = 2.5)}$ $\text{H}_{1}: \lambda \neq 5 \ (\lambda \neq 2.5)$	may use λ or μ	B1 B0	
<i>X</i> ∼ Po (2.5)		M1	
P(X < 7)	[P(X < 6) = 0.9580] att $P(X < 7)$ $P(X < 7)$ $P(X < 7)$		
= 0.9858	$CR X \ge 7$ awrt 0.986	M1A1	
0.9858 > 0.975	$7 \ge 7$ or 7 is in critical region or 7 is significant	M1	
(Reject H ₀ .) There is signific is polluting the river with ba	cant evidence at the 5% significance level that the factory acteria.	B1	
or The scientists claim is justif	ied		(7)

Question Number	Scheme			Marks
3(a)	$X \sim \text{Po} (1.5)$	need Po and 1.5	В1	(1
(b)	Faulty components occur at a constant rate. Faulty components occur independently or randomly. Faulty components occur singly.	any two of the 3 only need faulty once	B1 B1	(2
(c)	$P(X=2) = P(X \le 2) - P(X \le 1)$ or $\frac{e^{-1.5}(1.5)^2}{2}$		M1	,
	= 0.8088 - 0.5578			
	= 0.251	awrt 0.251	A1	
				(2
(d)	<i>X</i> ∼ Po(4.5)	4.5 may be implied	В1	
	$P(X \ge 1) = 1 - P(X = 0)$ = 1 - e ^{-4.5}		M1	
	= 1 - 0.0111 = 0.9889	awrt 0.989	A1	(
				Total

Question Number	Scheme		Marks
4	Attempt to write down combinations	at least one seen	M1
	(5,5,5), (5,5,10) any order (10,10,5) any order, (10,10,10)		A1
	(5,10,5), (10,5,5), (10,5,10), (5,10,10),	all 8 cases considered. May be implied by * (10,5,10) and 3 * (5,5,10)	A1
	median 5 and 10		B1
	Median = 5 $P(M = m) = \left(\frac{1}{4}\right)^3 + 3\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right) = \frac{10}{64} = 0.15625$	add at least two probusing $\frac{1}{4}$ and $\frac{3}{4}$. identified by having	M1 A1
		same median of 5 or 10 Allow no 3 for M	
	Median = 10 P(M = m) = $\left(\frac{3}{4}\right)^3 + 3\left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right) = \frac{54}{64} = 0.84375$		A1 (7)
			(7) Total 7

Question Number		Scheme		Marks
5(a)	If $X \sim B(n,p)$ and n is large, $n > 50$ p is small, $p < 0.2$ then X can be approximated by $Po(np)$		B1 B1	(2)
(b)	P(2 consecutive calls) = 0.01 ² = 0.0001		M1 A1	(2
(c)	X~B(5, 0.01)	may be implied	В1	
	$P(X>1) = 1 - P(X=1) - P(X=0)$ $= 1 - 5(0.01)(0.99)^{4} - (0.99)^{5}$ $= 1 - 0.0480298 0.95099$		M1	
	= 0.00098	awrt 0.00098	A1	(3
(d)	$X \sim B(1000, 0.01)$ Mean = $np = 10$ Variance = $np(1 - p) = 9.9$	may be implied by correct mean and variance	B1 B1 B1	(3
(e)	$X \sim \text{Po}(10)$			
	$P(X > 6) = 1 - P(X \le 6)$ = 1 - 0.1301		M1	
	= 0.8699	awrt 0.870	A1	(2
				Total 1

Question Number		Scheme			Marks
6	$\frac{\text{One tail test}}{\text{Method 1}}$ $H_o: p = 0.2$ $H_1: p > 0.2$			B1 B1	
	$X \sim B(5, 0.2)$	may	be implied	М1	
	$P(X \ge 3) = 1 - P(X \le 2)$ = 1 - 0.9421	$[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ $P(X \ge 4) = 1 - 0.9933 = 0.0067$	att $P(X \ge 3)$ $P(X \ge 4)$	M1	
	= 0.0579	$CRX \ge 4$	awrt 0.0579	A1	
	0.0579 > 0.05	$3 \le 4$ or 3 is not in critical region or	3 is not significant	M1	
		insufficient evidence at the 5% signifumber of times the taxi/driver is late. fied	icance level that	B1	(7) Total 7
	$\frac{\text{Method 2}}{H_o: p = 0.2}$ $H_1: p > 0.2$			B1 B1	
	$X \sim B(5, 0.2)$	may	be implied	М1	
	P(X < 3) =	[P(X < 3) = 0.9421] $P(X < 4) = 0.9933$	att $P(X < 3)$ $P(X < 4)$		
	0.9421	$\operatorname{CR} X \ge 4$	awrt 0.942	M1A	1
	0.9421 < 0.95	$3 \le 4$ or 3 is not in critical region or	3 is not significant	M1	
		insufficient evidence at the 5% signifumber of times the taxi/driver is late. fied	icance level that	B1	(7)

Two tail test Method 1 $H_0: p = 0.2$ $H_1: p \neq 0.2$			B1 B0	
$H_1: p \neq 0.2$ $X \sim X \sim B(5, 0.2)$		may be implied	M1 M1	
	$[P(X \ge 3) = 1 - 0.9421 = 0.0579]$ $P(X \ge 4) = 1 - 0.9933 = 0.0067$	att $P(X \ge 3)$ $P(X \ge 4)$	A1	
= 0.0579 $0.0579 > 0.025$	$CR X \ge 4$ $3 \le 4$ or 3 is not in critical region or	awrt 0.0579 3 is not significant	M1 B1	
	insufficient evidence at the 5% signi imber of times the <u>taxi/driver is late.</u> ified			(7)
$\frac{\text{Method } 2}{\text{H}_{\circ}: p = 0.2}$			B1 B0	
$H_1: p \neq 0.2$ $X \sim X \sim B(5, 0.2)$		may be implied	М1	
$P(X \le 3) =$	[P(X < 3) = 0.9421] $P(X < 4) = 0.9933$	att $P(X < 3)$ $P(X < 4)$		
0.9421	$\operatorname{CR} X \ge 4$	awrt 0.942	M1A1	
0.9421 < 0.975	$3 \le 4$ or 3 is not in critical region of	r 3 is not significant	M1	
	sufficient evidence at the 5% significant sufficient evidence at the 5% significant sufficience of times the taxi/driver is late.		B1	(7)
A0 M1 B1.	$rac{1}{7}$ throughout the question they may bork out the probabilities using $rac{1}{7}$	gain B1 B1 M0 M1		

Question Number	Scheme	Marks
7(a) i	If $X \sim B(n,p)$ and n is large or $n > 10$ or $np > 5$ or $nq > 5$ p is close to 0.5 or $nq > 5$ and $np > 5$ then X can be approximated by $N(np,np(1-p))$	B1 B1
ii	mean = np	B1 (2)
	variance = np(1-p) must be in terms of p	B1
		(2)
(b)	$X \sim N (60, 58.2)$ or $X \sim N (60, 7.63^2)$ 60, 58.2	B1, B1
	$P(X \ge 40) = P(X > 39.5)$ using 39.5 or 40.5	M1
	$= 1 - P\left(z < \pm \left(\frac{39.5 - 60}{\sqrt{58.2}}\right)\right)$ standardising 39.5 or 40 or 40.5 and their μ and σ $= 1 - P(z < -2.68715)$	M1
	= 0.9965 allow answers in range 0.996 – 0.997	A1dep on both M
(c)	E(X) = 60 may be implied or ft from part (b)	(5) B1ft
	Expected profit = $(2000 - 60) \times 11 - 2000 \times 0.70$ = £19 940.	M1 A1 (3) Total 12

Question Number	Scheme	Marks
8(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(b)	Mode is $x = 3$	B1 (1)
(c)	$F(x) = \int_0^x \frac{1}{6}t dt (\text{for } 0 \le x \le 3)$ ignore limits for $= \frac{1}{12}x^2$ must use limit $F(x) = \int_3^x 2 - \frac{1}{2}t dt; + \int_0^3 \frac{1}{6}t dt (\text{for } 3 < x \le 4)$ need limit of 3 and variable use limit; fleed limit 0 and $= 2x - \frac{1}{4}x^2 - 3$	or M M1 at of 0 A1 apper M1; M1
(d)	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{12}x^2 & 0 \le x \le 3 \\ 2x - \frac{1}{4}x^2 - 3 & 3 < x \le 4 \\ 1 & x > 4 \end{cases}$ middle part ends $F(m) = 0.5$ either eq eq for their $0 \le x \le 3$ $x = \sqrt{6} = 2.45$ $\sqrt{6}$ or awrt 2.5	M1 A1ft