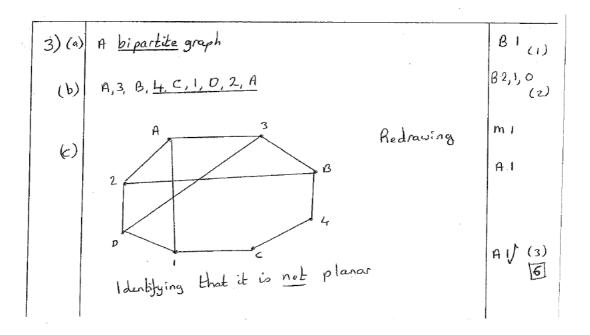


Mark Scheme (Results) January 2007

GCE

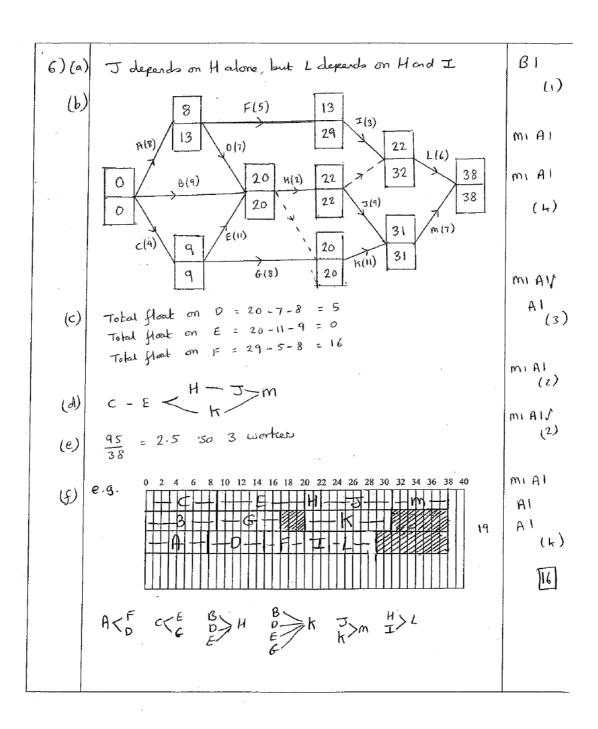
GCE Mathematics

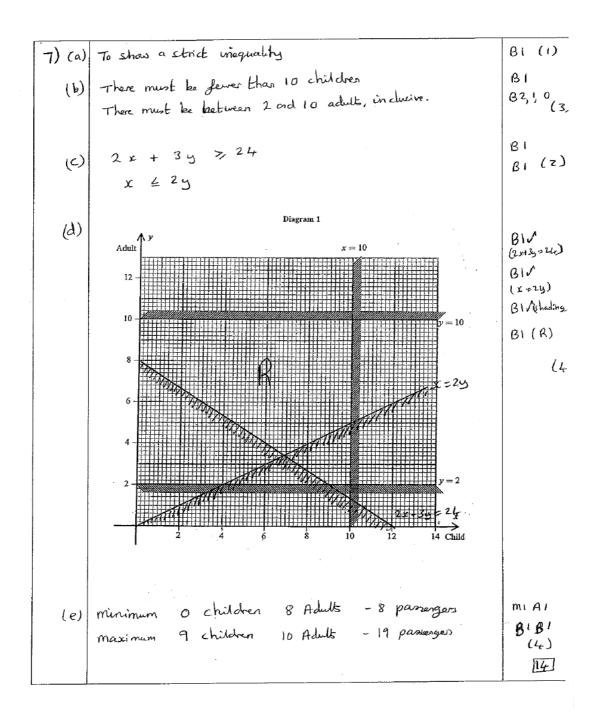
Decision Mathematics D1 (6689)

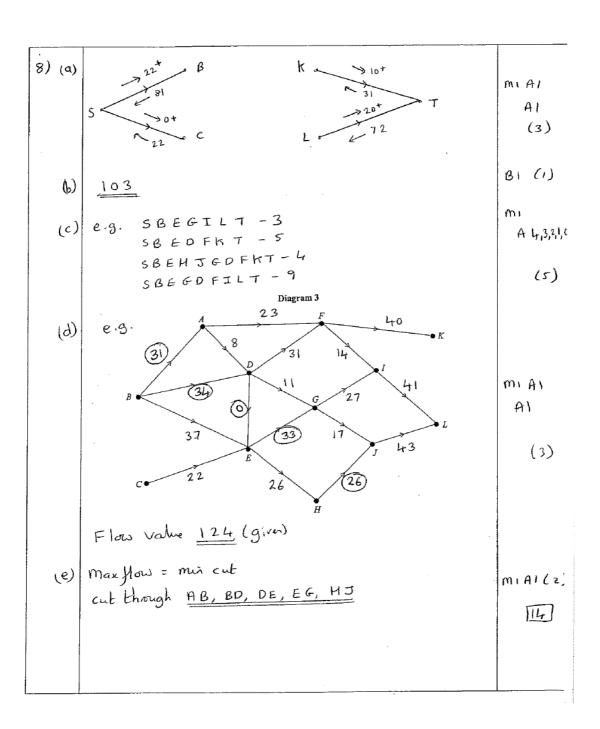


edexcel

January 2007 6689 Decision D1 Mark Scheme


Question Number	Scheme	Marks
I)	$\left[\frac{1+10}{2}\right] = 6 \text{ Nicky } - \text{reject top } d \text{ hist.}$ $\left[\frac{7+10}{2}\right] = 9 \text{ Trevor } - \text{reject bottom } d \text{ list.}$ $\left[\frac{7+87}{2}\right] = 8 \text{ Steve } - \text{reject bottom } d \text{ list.}$	MI Al
	$\begin{bmatrix} \frac{7+8}{2} \end{bmatrix} = \frac{8 \text{ Steve}}{8 \text{ Steve}} = \frac{7 \text{ Geods}}{8 \text{ reject}}$ $\begin{bmatrix} \frac{7}{2} \end{bmatrix} = \frac{7 \text{ Preeby}}{8 \text{ reject}} = \frac{7 \text{ Preeby}}{8 \text{ reject}} = \frac{7 \text{ Preeby}}{8 \text{ reject}}$ Nigel $\frac{7}{2}$ nd ist.	A1 14


Question Number	Scheme	Marks
2) (a)	Change statu: $G = 3 - J = 4 - L = 5$ Unproved matching: $E = 2$ $G = 3$ $J = 4$ $L = 5$ e.g. George and Y: Wen may both only be an igned b 3 $Y - 3 = G - 2 = E - 4 = J - 1$ Change statu: $Y = 3 - G = 2 - E = 4 - J = 1$	M1 A1 B1 (3) B1 (1) M1 A1
	complete making: $E = 4$ $G = 2$ $J = 1$ $L = 5$ $Y = 3$	A1 (3)



4)(a)	b.v.	ىر	y	Z.	٢	5	Value	Ras opes	
	Z	立	0	l	-	O	20	(R1 + 4)	Mr. Al
	s	Ø	4	0	-1/2	1	120	R2-2R1	MIAI
	9	8	-8	0	5	O	400	R3 + 20R1	A15 (5)
(b)	P + 8 x	-89	+5r	· =	400		harin th	, polit row	BIV (1)
(c)	Not optin	nal sin	nce Ehe	ire to	a negai	ive num		-, •	豆

- (-		
	5 (a)	e.g. Each edge contributes 2 to the sum of degrees, hence this sum must be ever.	
		Therefore there must be an even (or zero) number of vertices of odd degree Hence there cannot be an odd number of vertices of odd degree	B2,1,0
	(b)	CD + FH = 200 + 220 = 420 *	m (A)
		CF + DH = 180 + 380 = 560 CH + DF = 400 + 160 = 560	ДІ
		repeat CA, AD and FH	(4)
	(c)	length = 4180 + 420/ = 4600 m	日 (1)
		J	

