

January 2007 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1.	** represents a constant $f(x) = (2 - 5x)^{-2} = (2)^{-2} \left(1 - \frac{5x}{2}\right)^{-2} = \frac{1}{4} \left(1 - \frac{5x}{2}\right)^{-2}$	Takes 2 outside the bracket to give any of $(2)^{-2}$ or $\frac{1}{4}$.	B1
	$=\frac{1}{4}\left\{ \frac{1+(-2)(^{**}x);+\frac{(-2)(-3)}{2!}(^{**}x)^{2}+\frac{(-2)(-3)(-4)}{3!}(^{**}x)^{3}+\ldots \right\}$	Expands $(1+**x)^{-2}$ to give an unsimplified 1+(-2)(**x);	M1
	<u> </u>	A correct unsimplified {} expansion with candidate's (**x)	A1
	$=\frac{1}{4}\left\{\frac{1+(-2)(\frac{-5x}{2});+\frac{(-2)(-3)}{2!}(\frac{-5x}{2})^2+\frac{(-2)(-3)(-4)}{3!}(\frac{-5x}{2})^3+\ldots\right\}$		
	$=\frac{1}{4}\left\{1+5x;+\frac{75x^2}{4}+\frac{125x^3}{2}+\right\}$		
	$=\frac{1}{4}+\frac{5x}{4};+\frac{75x^2}{16}+\frac{125x^3}{8}+$	Anything that cancels to $\frac{1}{4} + \frac{5x}{4}$; Simplified $\frac{75x^2}{16} + \frac{125x^3}{8}$	A1;
	$= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^2 + 15\frac{5}{8}x^3 + \dots$		[5]
			5 marks

Question Number	Scheme	Marks
Aliter 1.	$f(x) = (2 - 5x)^{-2}$	
Way 2	$= \begin{cases} (2)^{-2} + (-2)(2)^{-3}(**x); + \frac{(-2)(-3)}{2!}(2)^{-4}(**x)^2 \\ + \frac{(-2)(-3)(-4)}{3!}(2)^{-5}(**x)^3 + \dots \end{cases}$ Expands $(2-5x)^{-2}$ to give an unsimplified $(2)^{-2} + (-2)(2)^{-3}(**x);$ A correct unsimplified $\{\underbrace{\dots\dots\}}$ expansion with candidate's $(**x)$	B1 M1
	$= \left\{ \begin{aligned} &(2)^{-2} + (-2)(2)^{-3}(-5x); + \frac{(-2)(-3)}{2!}(2)^{-4}(-5x)^2 \\ &+ \frac{(-2)(-3)(-4)}{3!}(2)^{-5}(-5x)^3 + \dots \end{aligned} \right\}$	
	$= \begin{cases} \frac{1}{4} + (-2)(\frac{1}{8})(-5x); + (3)(\frac{1}{16})(25x^2) \\ + (-4)(\frac{1}{16})(-125x^3) + \dots \end{cases}$	
	$= \frac{1}{4} + \frac{5x}{4}; + \frac{75x^2}{16} + \frac{125x^3}{8} + \dots$ Anything that cancels to $\frac{1}{4} + \frac{5x}{4}$; Simplified $\frac{75x^2}{16} + \frac{125x^3}{8}$	A1; A1
	$= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^2 + 15\frac{5}{8}x^3 + \dots$	[5]
		5 marks

Attempts using Maclaurin expansions need to be referred to your team leader.

Question Number	Scheme		Marks
2. (a)	Volume = $\pi \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \frac{\pi}{9} \int_{-\frac{1}{4}}^{\frac{1}{2}} \frac{1}{(1+2x)^2} dx$	Use of $V = \underline{\pi \int y^2} dx$. Can be implied. Ignore limits.	B1
	$= \left(\frac{\pi}{9}\right) \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(1 + 2x\right)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and $\frac{\pi}{9}$	M1
	$= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(1+2x)^{-1}}{-\frac{1}{2}(1+2x)^{-1}}$	M1 A1
	$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2} (1+2x)^{-1} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\frac{\pi}{9}\right) \left[\left(\frac{-1}{2(2)}\right) - \left(\frac{-1}{2(\frac{1}{2})}\right) \right]$		
	$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{4} - (-1)\right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef
(b)	From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units		[5]
	As $\frac{3}{4}$ units \equiv 3cm		
	then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$.		
	Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$	$(4)^3 \times (\text{their answer to part (a)})$	M1
	$V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$	$\frac{\frac{16\pi}{3}}{\text{or } \frac{64\pi}{12}} \text{ or aef}$	
			[2] 7 marks
Ν Ι 4 π (or implied) is not needed for the middle three marks of a		/ mains

Note: $\frac{\pi}{9}$ (or implied) is not needed for the middle three marks of question 2(a).

		edexc	el
Question Number	Scheme		Marks
Aliter			
2. (a)	Volume = $\pi \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \pi \int_{-\frac{1}{4}}^{\frac{1}{2}} \frac{1}{(3+6x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
Way 2	$= (\pi) \int_{-\frac{1}{4}}^{\frac{1}{2}} (3+6x)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and π	M1
	$= (\pi) \left[\frac{(3+6x)^{-1}}{(-1)(6)} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(3+6x)^{-1}}{-\frac{1}{6}(3+6x)^{-1}}$	M1 A1
	$= (\pi) \left[\begin{array}{c} -\frac{1}{6} (3+6x)^{-1} \end{array} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\pi\right) \left[\left(\frac{-1}{6(6)}\right) - \left(\frac{-1}{6(\frac{3}{2})}\right) \right]$		
	$= \left(\pi\right) \left[-\frac{1}{36} - \left(-\frac{1}{9}\right) \right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef
			[5]

Note: π is not needed for the middle three marks of question 2(a).

	$\triangle V$		
CU	ロマ	cel	

Question Number	Scheme		Marks
3. (a)	$x = 7\cos t - \cos 7t$, $y = 7\sin t - \sin 7t$,		
	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the form $\pm A \sin t \pm B \sin 7t$ $\frac{dy}{dt}$ in the form $\pm C \cos t \pm D \cos 7t$	M1
		Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	$\therefore \frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t}$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √ [3]
(b)	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \frac{7\cos\frac{\pi}{6} - 7\cos\frac{7\pi}{6}}{-7\sin\frac{\pi}{6} + 7\sin\frac{7\pi}{6}}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	M1
	$= \frac{\frac{7\sqrt{3}}{2} - \left(-\frac{7\sqrt{3}}{2}\right)}{\frac{-\frac{7}{2} - \frac{7}{2}}{2}} = \frac{7\sqrt{3}}{-7} = -\sqrt{3} = \underbrace{\text{awrt } -1.73}$	to give any of the four underlined expressions oe (must be correct solution only)	A1 cso
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N : $y-4=\frac{1}{\sqrt{3}}(x-4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	M1
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N: $y = \frac{1}{\sqrt{3}}x$ or $y = \frac{\sqrt{3}}{3}x$ or $y = \sqrt{3}x$		
			[6] 9 marks

		edexc	el :::
Question Number	Scheme		Marks
Aliter 3. (a)	$x = 7\cos t - \cos 7t$, $y = 7\sin t - \sin 7t$,		
Way 2	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the form $\pm A \sin t \pm B \sin 7t$ $\frac{dy}{dt}$ in theform $\pm C \cos t \pm D \cos 7t$	M1
		Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	$\frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t} = \frac{-7(-2\sin 4t\sin 3t)}{-7(2\cos 4t\sin 3t)} = \tan 4t$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √ [3]
(b)	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \tan \frac{4\pi}{6}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	M1
	$= \frac{2(\frac{\sqrt{3}}{2})(1)}{2(-\frac{1}{2})(1)} = \frac{-\sqrt{3}}{2} = \frac{2}{2} = $	to give any of the three underlined expressions oe (must be correct solution only)	A1 cso
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N : $y - 4 = \frac{1}{\sqrt{3}} (x - 4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	M1
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y = \sqrt{3}x}$		
			[6]
			9 marks

Beware: A candidate finding an m(T) = 0 can obtain A1ft for $m(N) \to \infty$, but obtains M0 if they write $y - 4 = \infty(x - 4\sqrt{3})$. If they write, however, N: $x = 4\sqrt{3}$, then they can score M1.

Beware: A candidate finding an $m(T) = \infty$ can obtain A1ft for m(N) = 0, and also obtains M1 if they write $y - 4 = 0(x - 4\sqrt{3})$ or y = 4.

	ΔV				
ea	てへ	てし	•	ŏ	ŏ

Question Number	Scheme		Marks
4. (a)	$\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{A}{(x-1)} + \frac{B}{(2x-3)}$		
	$2x-1 \equiv A(2x-3) + B(x-1)$	Forming this identity. NB : A & B are not assigned in this question	M1
	Let $x = \frac{3}{2}$, $2 = B(\frac{1}{2}) \implies B = 4$		
	Let $x = 1$, $1 = A(-1) \Rightarrow A = -1$	either one of $A = -1$ or $B = 4$. both correct for their A, B.	A1 A1
	giving $\frac{-1}{(x-1)} + \frac{4}{(2x-3)}$		
	(X - 1) (ZX - 3)		[3]
(b) & (c)	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	$y = 10, x = 2$ gives $c = \ln 10$	c = In10	B1
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + \ln 10$		
	$ln y = -ln(x-1) + ln(2x-3)^2 + ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{(x-1)} \right) + \ln 10 \text{ or}$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term	M1
	$\ln y = \ln \left(\frac{10(2x-3)^2}{(x-1)} \right)$	with/without constant c.	
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef. isw	A1 aef
			[4]
			12 marks

Question Number	Scheme		Marks
4. (b) & (c) Way 2	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
way 2	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	∴ $\ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1√ A1
	See below for the award of B1	decide to award B1 here!!	B1
	$ln y = -ln(x-1) + ln(2x-3)^2 + c$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{x-1} \right) + c$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$ln y = ln \left(\frac{A(2x-3)^2}{x-1} \right) \qquad \text{where } c = ln A$		
	or $e^{\ln y} = e^{\ln\left(\frac{(2x-3)^2}{x-1}\right) + c} = e^{\ln\left(\frac{(2x-3)^2}{x-1}\right)} e^{c}$		
	$y = \frac{A(2x-3)^2}{(x-1)}$		
	y = 10, x = 2 gives $A = 10$	A = 10 for $B1$	award above
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef & isw	A1 aef [5] & [4]

Note: The B1 mark (part (c)) should be awarded in the same place on ePEN as in the Way 1 approach.

Question Number	Scheme		Marks
	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
Way 3	$= \int \frac{-1}{(x-1)} + \frac{2}{(x-\frac{3}{2})} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	y = 10, x = 2 gives $c = \frac{\ln 10 - 2 \ln \left(\frac{1}{2}\right)}{\ln 40}$	$c = \ln 10 - 2 \ln \left(\frac{1}{2}\right) \text{ or } c = \ln 40$	B1 oe
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + \ln 40$		
	$ln y = -ln(x-1) + ln(x-\frac{3}{2})^2 + ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(x - \frac{3}{2})^2}{(x - 1)} \right) + \ln 40 \text{ or}$ $\ln y = \ln \left(\frac{40 (x - \frac{3}{2})^2}{(x - 1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$ or aef. isw	A1 aef [4]

Note: Please mark parts (b) and (c) together for any of the three ways.

	ΔV					
ea	てハ	ノし	こし	ĕ	ŏ	

Question Number	Scheme		Marks
5. (a)	$\sin x + \cos y = 0.5$ (eqn *)		
	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}} \times \right\} \cos x - \sin y \frac{dy}{dx} = 0 (eqn \#)$	Differentiates implicitly to include $\pm \sin y \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.)	M1
	$\frac{dy}{dx} = \frac{\cos x}{\sin y}$	cos x sin y	A1 cso [2]
(b)	$\frac{dy}{dx} = 0 \implies \frac{\cos x}{\sin y} = 0 \implies \cos x = 0$	Candidate realises that they need to solve 'their numerator' = 0or candidate sets $\frac{dy}{dx} = 0$ in their (eqn #) and attempts to solve the resulting equation.	M1√
	giving $X = -\frac{\pi}{2}$ or $X = \frac{\pi}{2}$	both $\underline{x = -\frac{\pi}{2}, \frac{\pi}{2}}$ or $\underline{x = \pm 90^{\circ}}$ or awrt $\underline{x = \pm 1.57}$ required here	A1
	When $x = -\frac{\pi}{2}$, $\sin(-\frac{\pi}{2}) + \cos y = 0.5$ When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$	Substitutes either their $x = \frac{\pi}{2}$ or $x = -\frac{\pi}{2}$ into eqn *	M1
	⇒ $\cos y = 1.5$ ⇒ y has no solutions ⇒ $\cos y = -0.5$ ⇒ $y = \frac{2\pi}{3}$ or $-\frac{2\pi}{3}$	Only one of $y = \frac{2\pi}{3}$ or $\frac{-2\pi}{3}$ or $\frac{120^{\circ}}{}$ or $\frac{-120^{\circ}}{}$ or awrt $\frac{-2.09}{}$ or awrt $\frac{2.09}{}$	A1
	In specified range $(x, y) = \frac{\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)}{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}$ and $\frac{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}$	Only exact coordinates of $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)$ Do not award this mark if	A1
		candidate states other coordinates inside	
		the required range.	[5]
			7 marks

$\Delta \prime$	7)		Δ I		
e (7U	_/	ノし	てし	Ŏ	

			6 m	arks
	dx = 1.1.00 1.1.1.	<u> </u>	111	[4]
	$\frac{dy}{dx} = \frac{64 \ln 2}{1} = 44.3614$	64ln2 or awrt 44.4	A1	
	 -	or $Ax 2^{(x^2)}$		
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$	which is of the form $\pm k 2^{(x^2)}$	M1	
		Substitutes $x = 2$ into their $\frac{dy}{dx}$		
	W/A	or 2x.y.ln2 if y is defined	ΛI	
(b)	$y = 2^{(x^2)}$ $\Rightarrow \frac{dy}{dx} = 2x. \ 2^{(x^2)}. \ln 2$	2x. 2 ^(x²) .ln2	A1	
		Ax 2 ^(x²)	M1	
	ux			[2]
	Hence $\frac{dy}{dx} = y \ln 2 = 2^x \ln 2$ AG	$2^{x} \ln 2 AG$	A1	cso
	y dx	give $\frac{1}{y}\frac{dy}{dx} = \ln 2$		
	$\frac{1}{y} \frac{dy}{dx} = \ln 2$	and differentiates implicitly to	1711	
Way 2	11. y - 11. (2) 10.000 to 11. y - X 11.2	the power law of logarithms	M1	
Aliter (a)	$ln y = ln(2^x)$ leads to $ln y = x ln 2$	Takes logs of both sides, then uses		
Aliton	 -			[2]
	Hence $\frac{dy}{dx} = \ln 2 \cdot (2^x) = 2^x \ln 2$ AG	$2^{x} \ln 2 AG$	A1	cso
Way 1		dx		
(a)	$\frac{dy}{dx} = \ln 2.e^{x \ln 2}$	$\frac{dy}{dx} = \ln 2.e^{x\ln 2}$	M1	
6.	$y = 2^{x} = e^{x \ln 2}$ $\frac{dy}{dx} = \ln 2 \cdot e^{x \ln 2}$			
Number				
Question	Scheme		Ma	arks

	Δ	//		וב		
ea		11	_'	こ	. 1	

Question	Scheme	Marks
Number	Scheme	Wai K3
Aliter		
6. (b)	$ln y = ln(2^{x^2})$ leads to $ln y = x^2 ln 2$	
Way 2		
	$\frac{1}{y}\frac{dy}{dx} = 2x.\ln 2$ $\frac{1}{y}\frac{dy}{dx} = Ax.\ln 2$ $\frac{1}{y}\frac{dy}{dx} = Ax.\ln 2$	M1
	$\frac{1}{y} \frac{dy}{dx} = 2x. \ln 2$	A1
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$ Substitutes $x = 2$ into their $\frac{dy}{dx}$ which is of the form $\pm k2^{(x^2)}$ or Ax $2^{(x^2)}$	M1
	$\frac{dy}{dx} = \frac{64 \ln 2}{dx} = 44.3614$ 64 ln 2 or awrt 44.4	A1
		[4]

ea	して	

Question Number	Scheme	Marks
7. (a) (b)	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \overrightarrow{OA} = 3$ $\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \Rightarrow \overrightarrow{OB} = \sqrt{18}$ $\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$ $\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$ $\mathbf{c} = \overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$	B1 cao [1]
	$\overrightarrow{OA} \bullet \overrightarrow{OB} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} = \underbrace{2+2-4} = 0 \text{or}$ $\overrightarrow{BO} \bullet \overrightarrow{BC} = \begin{pmatrix} -1 \\ -1 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \underbrace{-2-2+4} = 0 \text{or}$ $\overrightarrow{An attempt to take the dot product between either \overrightarrow{OA} and \overrightarrow{OB}}$ $\overrightarrow{OA} \text{ and \overrightarrow{AC}}, \overrightarrow{AC} \text{ and \overrightarrow{BC}}$ $\overrightarrow{OA} \text{ and \overrightarrow{AC}}, \overrightarrow{AC} \text{ and \overrightarrow{BC}}$ $\overrightarrow{OA} \text{ and \overrightarrow{AC}}, \overrightarrow{AC} \text{ and \overrightarrow{BC}}$ $\overrightarrow{OB} \text{ and \overrightarrow{BC}}$ Showing the result is equal to zero.	<u>M1</u> A1
	and therefore OA is perpendicular to OB and hence OACB is a rectangle. perpendicular and OACB is a rectangle	A1 cso
	Using distance formula to find either the correct height or width. Area = $3 \times \sqrt{18} = 3\sqrt{18} = 9\sqrt{2}$ Multiplying the rectangle's height by its width. exact value of $3\sqrt{18}$, $9\sqrt{2}$, $\sqrt{162}$ or aef	M1 M1 A1
(c)	$\overrightarrow{OD} = \mathbf{d} = \frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$ $\underline{\frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})}$	[6] B1 [1]

$\Delta \prime$	7)		Δ I		
e (7U	_/	ノし	てし	Ŏ	

Question	Scheme		Marks	
Number			Widi No	
(d) Way 1	using dot product formula $\overrightarrow{DA} = \pm \left(\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k}\right) \& \overrightarrow{DC} = \pm \left(\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k}\right)$ or $\overrightarrow{BA} = \pm \left(\mathbf{i} + \mathbf{j} + 5\mathbf{k}\right) \& \overrightarrow{OC} = \pm \left(3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}\right)$	Identifies a set of two relevant vectors Correct vectors ±	M1 A1	
, vuy 1	$\cos D = (\pm) \frac{\begin{pmatrix} 0.5 \\ 0.5 \\ 2.5 \end{pmatrix} \bullet \begin{pmatrix} 1.5 \\ 1.5 \\ -1.5 \end{pmatrix}}{\frac{\sqrt{27}}{2} \cdot \frac{\sqrt{27}}{2}} = (\pm) \frac{\frac{3}{4} + \frac{3}{4} - \frac{15}{4}}{\frac{27}{4}} = (\pm) \frac{\frac{1}{3}}{\frac{3}{4}}$	Applies dot product formula on multiples of these vectors. (\pm) $\frac{3}{4} + \frac{3}{4} - \frac{15}{4} = (\pm) \frac{1}{4}$ Correct ft.		
	$\frac{\sqrt{27}}{2} \cdot \frac{\sqrt{27}}{2} = \frac{(1)}{4} = \frac{27}{4}$	application of dot product formula.	A1√	
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than 180° – D.	ddM1√	
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]	
Aliter	using dot product formula and direction vectors	7.1 101		
(d)	$d\overrightarrow{BA} = \pm (\mathbf{i} + \mathbf{j} + 5\mathbf{k})$ & $d\overrightarrow{OC} = \pm (\mathbf{i} + \mathbf{j} - \mathbf{k})$	Identifies a set of two direction vectors Correct vectors ±	M1 A1	
Way 2	$\cos D = (\pm) \frac{\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}}{\sqrt{3} \cdot \sqrt{27}} = (\pm) \frac{1+1-5}{\sqrt{3} \cdot \sqrt{27}} = (\pm) \frac{1}{3}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> application of dot	dM1	
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than 180° – D.	ddM1√	
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]	

	ΔV	Δ I	
ea		てし	

Question Number	Scheme		Marks
Aliter	using dot product formula and similar triangles	Identifies a set of two	M1
(d)	$d\overrightarrow{OA} = (2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ & $d\overrightarrow{OC} = (\mathbf{i} + \mathbf{j} - \mathbf{k})$	direction vectors Correct vectors	A1
Way 3	$\cos\left(\frac{1}{2}D\right) = \frac{\begin{pmatrix} 2\\2\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\-1 \end{pmatrix}}{\sqrt{9} \cdot \sqrt{3}} = \frac{2+2-1}{\sqrt{9} \cdot \sqrt{3}} = \frac{1}{\sqrt{3}}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u>	dM1
	$\sqrt{9}.\sqrt{3}$ $\sqrt{9}.\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	application of dot product formula.	A1 √
	$D = 2 \cos^{-1} \left(\frac{1}{\sqrt{3}} \right)$	Attempts to find the correct angle D by doubling their angle $for \frac{1}{2}D$.	ddM1√
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]
Aliter (d) Way 4	using cosine rule $\overrightarrow{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} , \overrightarrow{DC} = \frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k} , \overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$		
way 4	$\left \overrightarrow{DA} \right = \frac{\sqrt{27}}{2} \; , \left \overrightarrow{DC} \right = \frac{\sqrt{27}}{2} \; , \left \overrightarrow{AC} \right = \sqrt{18}$	Attempts to find all the lengths of all three edges of \triangle ADC	M1
		All Correct	A1
	$\cos D = \frac{\left(\frac{\sqrt{27}}{2}\right)^{2} + \left(\frac{\sqrt{27}}{2}\right)^{2} - \left(\sqrt{18}\right)^{2}}{2\left(\frac{\sqrt{27}}{2}\right)\left(\frac{\sqrt{27}}{2}\right)} = -\frac{1}{3}$	Using the cosine rule formula with correct 'subtraction'.	dM1
	$ \frac{2\left(\frac{\sqrt{27}}{2}\right)\left(\frac{\sqrt{27}}{2}\right)}{2} $	Correct ft application of the cosine rule formula	A1 √
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than 180° – D.	ddM1√
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]
			[~]

Δ	\Box	ים	V		$oldsymbol{\Omega}$					
e (J	し	$\mathbf{\Lambda}$	U	し	l	•	ō	ī	

Question Number	Scheme		Marks			
Aliter (d)	using trigonometry on a right angled triangle $\overrightarrow{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$					
Way 5	Let X be the midpoint of AC $\left \overline{DA} \right = \frac{\sqrt{27}}{2}$, $\left \overline{DX} \right = \frac{1}{2} \left \overline{OA} \right = \frac{3}{2}$, $\left \overline{AX} \right = \frac{1}{2} \left \overline{AC} \right = \frac{1}{2} \sqrt{18}$	Attempts to find two out of the three lengths in Δ ADX	M1			
	(hypotenuse), (adjacent) , (opposite) $\sin(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{\sqrt{27}}{2}} , \cos(\frac{1}{2}D) = \frac{\frac{3}{2}}{\frac{\sqrt{27}}{2}} \text{ or } \tan(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{3}{2}}$	Any two correct	A1			
		Uses correct sohcahtoa to find $\frac{1}{2}D$ Correct ft application	dM1			
	$\frac{\overline{2}}{2}$ $\frac{\overline{2}}{2}$	of sohcahtoa	A1√			
	eg. $D = 2 \tan^{-1} \left(\frac{\frac{\sqrt{18}}{2}}{\frac{3}{2}} \right)$	Attempts to find the correct angle D by doubling their angle $for \frac{1}{2}D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			
Aliter	using trigonometry on a right angled similar triangle OAC					
(d) Way 6	OC = $3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ OA = $2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ AC = $\mathbf{i} + \mathbf{j} - 4\mathbf{k}$ $\left \overrightarrow{OC} \right = \sqrt{27} , \left \overrightarrow{OA} \right = 3, \left \overrightarrow{AC} \right = \sqrt{18}$	Attempts to find two out of the three lengths in ΔOAC	M1			
	(hypotenuse), (adjacent), (opposite)	Any two correct	A1			
	$sin(\frac{1}{2}D) = \frac{\sqrt{18}}{\sqrt{27}} , cos(\frac{1}{2}D) = \frac{3}{\sqrt{27}} or tan(\frac{1}{2}D) = \frac{\sqrt{18}}{3} $	sohcahtoa to find $\frac{1}{2}$ D	dM1			
		A1√				
	eg. $D = 2 \tan^{-1} \left(\frac{\sqrt{18}}{3} \right)$	Attempts to find the correct angle D by doubling their angle $for \frac{1}{2}D$.	ddM1√			
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]			

Question	Scheme		Marks
Number			
Aliter	$\mathbf{c} = \overrightarrow{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$		
7. (b) (i)	$\overline{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k})$		
Way 2	$\mathcal{M} = \pm (1 - \mathbf{j} - \mathbf{j} \mathbf{k})$		
	$\left \overrightarrow{OC} \right = \sqrt{(3)^2 + (3)^2 + (-3)^2} = \sqrt{(1)^2 + (1)^2 + (-5)^2} = \left \overrightarrow{AB} \right $	A complete method of proving that the diagonals are equal.	M1
	As $\left \overline{OC} \right = \left \overline{AB} \right = \sqrt{27}$	Correct result.	A1
	then the diagonals are equal, and OACB is a rectangle.	diagonals are equal and OACB is a rectangle	A1 cso [3]
	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \left \overrightarrow{OA} \right = 3$		
	$\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \implies \left \overrightarrow{OB} \right = \sqrt{18}$		
	$\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$		
	$\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$		
	$\mathbf{c} = \overrightarrow{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}) \Rightarrow \overrightarrow{OC} = \sqrt{27}$		
	$\overrightarrow{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k}) \Rightarrow \overrightarrow{AB} = \sqrt{27}$		
Aliter			
	$(OA)^2 + (AC)^2 = (OC)^2$		
7. (b) (i)	or $(BC)^2 + (OB)^2 = (OC)^2$ or equivalent		
7. (0) (1)	or $(OA)^2 + (OB)^2 = (AB)^2$		
***	or $(BC)^2 + (AC)^2 = (AB)^2$		
Way 3		A complete method of	
	$\Rightarrow (3)^2 + (\sqrt{18})^2 = \left(\sqrt{27}\right)^2$	proving that Pythagoras	M1
		holds using their values. Correct result	A1
		<u>Correct result</u>	711
	and therefore OA is perpendicular to OB		
	or AC is perpendicular to BC	perpendicular and OACB is a rectangle	A1 cso
	and hence OACB is a rectangle.		[3]
			14 marks

Question Number	Scheme				Marks			
8. (a)							_	
	X	0	1	2	3	4	5	
	у	e ¹	e^2	$\mathrm{e}^{\sqrt{7}}$	$\mathrm{e}^{\sqrt{10}}$	$\mathrm{e}^{\sqrt{13}}$	e ⁴	
	or y	2.71828	7.38906	14.09403	23.62434	36.80197	54.59815	
						Either $e^{\sqrt{7}}$, $e^{\sqrt{10}}$ and $e^{\sqrt{13}}$	
							.1, 23.6 and 36.8	
	or e to the power							
	awrt 2.65, 3.16, 3.61							
	(or mixture of decimals and e's)					B1		
						B1		
						1	in thice confect	[2]
(b)						Outside	brackets $\frac{1}{2} \times 1$	D1.
	1~1~1	$1 \cdot \sqrt{2} $ $\bigcirc 1 + 2 / \bigcirc 2$	$\perp \mathbf{Q}^{\sqrt{7}} \perp \mathbf{Q}^{\sqrt{10}}$	$+ e^{\sqrt{13}} + e^4$			_	B1;
	1~2^	1,, \(\)	<u> </u>	+ 6)+6 }			re of trapezium	$M1\sqrt{}$
						<u>r</u>	$\underline{\text{rule}}\{\underline{\dots}\};$	WIIV
	$=\frac{1}{2} \times 221.1352227 = 110.5676113 = 110.6 $ (4sf)				<u>110.6</u>	A1		
	2 2			<u> </u>	(101)		110.0	cao
								[3]

Beware: In part (b) candidates can add up the individual trapezia:

$$(b) I \approx \tfrac{1}{2}.1 \Big(\underline{e^1 + e^2} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^2 + e^{\sqrt{7}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{7}} + e^{\sqrt{10}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{10}} + e^{\sqrt{13}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{13}} + e^4} \Big)$$

Question Number	Scheme	Marks
(c)	$t = (3x+1)^{\frac{1}{2}} \implies \frac{dt}{dx} = \frac{1}{2} \cdot 3 \cdot (3x+1)^{-\frac{1}{2}}$ A(3x+1) ^{-\frac{1}{2}} or $t = (3x+1)^{-\frac{1}{2}}$	4 M1
	or $t^2 = 3x + 1 \Rightarrow 2t \frac{dt}{dx} = 3$ $\frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = \frac{3}{2}(3x + 1)^{-\frac{1}{2}} \text{ or } 2t \frac{dt}{dx} = 3$	3 A1
	so $\frac{dt}{dx} = \frac{3}{2.(3x+1)^{\frac{1}{2}}} = \frac{3}{2t}$ $\Rightarrow \frac{dx}{dt} = \frac{2t}{3}$ Candidate obtains either $\frac{dt}{dx}$ or $\frac{dx}{dt}$ in terms of t.	
	$\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . \frac{dx}{dt} . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . dt$ $\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t . dt$ $\therefore I =$	o x
	$\therefore I = \int \frac{2}{3} t e^{t} dt$	A1
	change limits: changes limits $x \to t$ s when $x = 0$, $t = 1$ & when $x = 5$, $t = 4$ that $0 \to 1$ and $5 \to 1$	IRI
	Hence $I = \int_{1}^{4} \frac{2}{3} te^{t} dt$; where $a = 1$, $b = 4$, $k = \frac{2}{3}$	[5]
(d)	$\begin{cases} u = t & \Rightarrow \frac{du}{dt} = 1 \\ \frac{dv}{dt} = e^t & \Rightarrow v = e^t \end{cases}$ Let k be any constant for the first three marks of the part of the part of the first three marks of the part of the part of the first three marks of the part	or is
	Use of 'integration by parts' formula in the correct direction Correct expression with	n. M1
	$= k\left(\underline{te^t-e^t}\right) + c$ $= k\left(\underline{te^t-e^t}\right) + c$ $= constant factor in tegration in the constant factor in$	n A1
	$\therefore \int_{1}^{4} \frac{2}{3} t e^{t} dt = \frac{2}{3} \left\{ \left(4e^{4} - e^{4} \right) - \left(e^{1} - e^{1} \right) \right\}$ Substitutes their change limits into the integrand and subtracts of	d dM1 oe
	$= \frac{2}{3}(3e^4) = \underline{2e^4} = 109.1963$ either $2e^4$ or awrt 109 .	[5] 15 marks

- Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark
- ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.