

Figure 1 shows the graph of y = f(x), $-5 \le x \le 5$. The point M(2, 4) is the maximum turning point of the graph.

Sketch, on separate diagrams, the graphs of

(a)
$$y = f(x) + 3$$
,

(2)

(b)
$$y = |f(x)|$$
,

(2)

(c)
$$y = f(|x|)$$
.

(3)

Show on each graph the coordinates of any maximum turning points.

as a single fraction in its simplest form.

	×	
×.	*	6
0	30	3

3. The point P lies on the curve with equation $y = \ln\left(\frac{1}{3}x\right)$. The x-coordinate of P is 3.

Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.

(5)

Leave blank

- 4. (a) Differentiate with respect to x
 - (i) x^2e^{3x+2} ,

(4)

(ii) $\frac{\cos(2x^3)}{3x}$

(4)

(b) Given that $x = 4 \sin(2y + 6)$, find $\frac{dy}{dx}$ in terms of x.

(5)

$$f(x) = 2x^3 - x - 4.$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)},$$

(3)

The equation $2x^3 - x - 4 = 0$ has a root between 1.35 and 1.4.

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{1}{2}\right)},$$

with $x_0 = 1.35$, to find, to 2 decimal places, the values of x_1 , x_2 and x_3 .

(3)

The only real root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.392$, to 3 decimal places.

(3)

Leave blank

 $f(x) = 12\cos x - 4\sin x,$

Given that $f(x) = R \cos(x + \alpha)$, where $R \ge 0$ and $0 \le \alpha \le 90^\circ$,

(a) find the value of R and the value of α.

(4)

(b) Hence solve the equation

6.

 $12\cos x - 4\sin x = 7$

for $0 \le x \le 360^\circ$, giving your answers to one decimal place.

(5)

(c) (i) Write down the minimum value of $12 \cos x - 4 \sin x$.

(1)

(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

(2)

Leave

7. (a) Show that

(i)
$$\frac{\cos 2x}{\cos x + \sin x} \equiv \cos x - \sin x, \quad x \neq (n - \frac{1}{4})\pi, n \in \mathbb{Z},$$

(2)

(ii) $\frac{1}{2}(\cos 2x - \sin 2x) = \cos^2 x - \cos x \sin x - \frac{1}{2}$.

(3)

(b) Hence, or otherwise, show that the equation

$$\cos\theta \left(\frac{\cos 2\theta}{\cos\theta + \sin\theta}\right) = \frac{1}{2}$$

can be written as

$$\sin 2\theta = \cos 2\theta$$
.

(3)

(c) Solve, for $0 \le \theta \le 2\pi$,

$$\sin 2\theta = \cos 2\theta$$
,

giving your answers in terms of π .

(4)

8. The functions f and g are defined by

$$f: x \to 2x + \ln 2$$
, $x \in \mathbb{R}$,

$$g: x \to e^{2x}, \qquad x \in \mathbb{R}.$$

$$x \in \mathbb{R}$$
.

(a) Prove that the composite function gf is

$$gf: x \to 4e^{4x}, \quad x \in \mathbb{R}.$$

(4)

(b) In the space provided on page 19, sketch the curve with equation y = gf(x), and show the coordinates of the point where the curve cuts the y-axis.

(1)

(c) Write down the range of gf.

(1)

(d) Find the value of x for which $\frac{d}{dx}[gf(x)]=3$, giving your answer to 3 significant figures.

(4)