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 (b) Hence find the exact value of . 
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2. Given that 1 + 3i is a root of the equation z3 + 6z + 20 = 0, 
 
 (a) find the other two roots of the equation, 

(3) 

 (b) show, on a single Argand diagram, the three points representing the roots of the equation, 
(1) 

 (c) prove that these three points are the vertices of a right-angled triangle. 
(2) 

  
 

3. Find the general solution of the differential equation 
 

x
y

d
d

x
1 + 2y = ,       x > 0. (x + 1)

 
 giving your answer in the form y = f(x). 

(7) 
 
 

x4.             f(x) = 1 – e  + 3 sin 2x  
      
 The equation f(x) = 0 has a root α in the interval 1.0 < x < 1.4. 
 
 (a) Starting with the interval (1.0, 1.4), use interval bisection three times to find the value 

of α to one decimal place. 
 (3)    

 (b) Taking your answer to part (a) as a first approximation to α, apply the Newton-Raphson 
procedure once to f(x) to obtain a second approximation to α.  

(4) 

 (c) By considering the change of sign of f(x) over an appropriate interval, show that your 
answer to part (b) is accurate to 2 decimal places. 

(2) 
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5.      z = –4 + 6i. 
 

(a) Calculate arg z, giving your answer in radians to 3 decimal places. 
(2) 

 

i2 −
A The complex number w is given by w = , where A is a positive constant. Given that 

⎢w ⎢= √20, 
 
 (b) find w in the form a + ib, where a and b are constants,  

 (4) 

 (c) calculate arg 
z
w . 

(3) 
 
 

6. (a) On the same diagram, sketch the graphs of y = ⎢x2 – 4 ⎢ and y = ⎢2x – 1 ⎢, showing the 
coordinates of the points where the graphs meet the axes. 

(4) 

 (b) Solve  ⎢x2 – 4 ⎢= ⎢2x – 1 ⎢, giving your answers in surd form where appropriate. 
(5) 

(c) Hence, or otherwise, find the set of values of x for which of  ⎢x2 – 4 ⎢> ⎢2x – 1 ⎢. 
(3) 

 
 

7. (a) Find the general solution of the differential equation 
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d
d  + 2x = 2t + 9. 2  + 5

(6) 

t
x

d
d (b) Find the particular solution of this differential equation for which x = 3 and  = –1 

when t = 0. 
(4) 

 
 The particular solution in part (b) is used to model the motion of a particle P on the x-axis. At 

time t seconds (t ≥ 0), P is x metres from the origin O. 
 

 (c) Show that the minimum distance between O and P is 2
1 (5 + ln 2) m and justify that the 

distance is a minimum.  
(4) 
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8.          Figure 1 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 The curve C which passes through O has polar equation 
 

r = 4a(1 + cos θ ),   –π  < θ ≤ π. 
 

 The line l has polar equation 
 

2
π

2
πr = 3a sec θ,   –  < θ < . 

 
 The line l cuts C at the points P and Q, as shown in Figure 1. 
 
 (a) Prove that PQ = 6√3a. 

(6) 
 

 The region R, shown shaded in Figure 1, is bounded by l and C. 
 
 (b) Use calculus to find the exact area of R.  

(7) 
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