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1.          f(x) = 2ax3 – ax2 – 3x + 7, 
 

where a is a constant. 
 
Given that the remainder when f(x) is divided by (x + 2) is –3, 

 
(a) find the value of a, 

(3) 

(b) find the remainder when f(x) is divided by (2x – 1). 
(2) 

 
 

2. (a) Use the formulae for sin (A ± B), with A = 3x and B = x, to show that 2 sin x cos 3x can be 
written as sin px – sin qx, where p and q are positive integers. 

          (3) 

(b) Hence, or otherwise, find .  ⌡
⌠ xxx d3cossin2

(2) 

(c) Hence find the exact value of .d3cossin2
6

5

2
⌡

π

π
xxx

⌠  

(2) 
 
 

3.  A circle C1 has equation 
 

x2 + y2 – 12x + 4y + 20 = 0. 
 

(a) Find the coordinates of the centre of C1. 
(2) 

(b) Find the radius of C1. 
 (2) 

 
 The circle C1 cuts the x-axis at the points A and B. 
 
 (c) Find an equation of the circle C2 with diameter AB. 

 (6) 
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4.            f(x) = 
)1(

1
x−√

 – √(1 + x),       –1 < x < 1. 

 
(a) Find the series expansion of f(x), in ascending powers of x, up to and including the term 

in x3.  
(6) 

 (b) Hence, or otherwise, prove that the function f has a minimum at the origin.  
(4) 

 

5. Relative to a fixed origin O, the point A has position vector 5j + 5k and the point B has position 
vector 3i + 2j – k. 

 
 (a) Find a vector equation of the line L which passes through A and B. 

(2) 
 

The point C lies on the line L and OC is perpendicular to L. 
 
(b) Find the position vector of C.  

(5) 
 

The points O, B and A, together with the point D, lie at the vertices of parallelogram OBAD. 
 

 (c) Find, the position vector of D.  
(2) 

 (d) Find the area of the parallelogram OBAD. 
(4) 
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6.             Figure 1 
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Figure 1 shows a sketch of part of the curve C with parametric equations 
 

x = t2 + 1,      y = 3(1 + t). 
 
The normal to C at the point P(5, 9) cuts the x-axis at the point Q, as shown in Figure 1. 
 
(a) Find the x-coordinate of Q. 

 (6) 

(b) Find the area of the finite region R bounded by C, the line PQ and the x-axis. 
(9) 
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7. (a) Use integration by parts to show that  
 

 ⌡
⌠







 + xxx d

6
cosec2 π = –x cot 





 +

6
πx  + ln 














 +

6
sin πx  + c,         

6
π

−  < x < 
3
π . 

(3) 

(b) Solve the differential equation 

sin2 




+

6
πx

x
y

d
d  = 2xy(y + 1) 

 

 to show that 
1

ln
2
1

+y
y  = –x cot 






 +

6
πx  + ln 














 +

6
sin πx  + c. 

(6) 
 

Given that y = 1 when x = 0, 
 

(c) find the exact value of y when x = 
12
π . 

(6) 
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