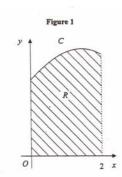
Downloaded from http://www.thepaperbank.co.uk

5.

	•
The function f is given by	
$f: x \mapsto 2 + \frac{3}{x+2}, \ x \in \mathbb{R}, \ x \neq -2.$	
(a) Express $2 + \frac{3}{x+2}$ as a single fraction.	(1)
(b) Find an expression for $f^{-1}(x)$.	
(c) Write down the domain of f^{-1} .	(3)
	(1)
A sequence is defined by the recurrence relation	
$u_{n+1} = \sqrt{\left(\frac{u_n}{2} + \frac{a}{u_n}\right)}, n = 1, 2, 3, \dots,$	

where *a* is a constant.

	(a)	Given that $a=20$ and $u_1=3$, find the values of u_2 , u_3 and u_4 , giving your an 2 decimal places.	swers to
			(3)
	(b)	Given instead that $u_1 = u_2 = 3$,	
		(i) calculate the value of a,	
			(3)
		(ii) write down the value of u_5 .	
			(1)
3.	Giv	ven that $\log_2 x = a$, find, in terms of a , the simplest form of	
	(a)	log ₂ (16x),	
			(2)
	(b)	$\log_2\left(\frac{x^4}{2}\right)$.	(3)
	(c)	Hence, or otherwise, solve	
		$\log_2(16x) - \log_2\left(\frac{x^4}{2}\right) = \frac{1}{2},$	
		giving your answer in its simplest surd form.	
			(4)


4.	The function f is even and has domain \mathbb{R} . For $x \ge 0$, $f(x) = x^2 - 4ax$, where a is a p constant.	ositive
	(a) In the space below, sketch the curve with equation y = f(x), showing the coor of all the points at which the curve meets the axes.	dinates
	na sen constante a la presenta en la senta en la senta de la constante en la constante de sente de la resta en 1 e sent	(3)
	(b) Find, in terms of a , the value of $f(2a)$ and the value of $f(-2a)$.	(2)
	Given that $a=3$,	
	(c) use algebra to find the values of x for which $f(x) = 45$.	(4)
5. (Given that $y = \log_a x$, $x > 0$, where a is a positive constant,	
	(a) (i) express x in terms of a and y ,	(1)
	(ii) deduce that $\ln x = y \ln a$.	(1)
	(b) Show that $\frac{dy}{dx} = \frac{1}{x \ln a}$.	(2)
	The curve C has equation $y = \log_{10} x$, $x > 0$. The point A on C has x-coordinate 10. the result in part (b),	Using
	(c) find an equation for the tangent to C at A .	(4)
	The tangent to C at A crosses the x-axis at the point B .	
	(d) Find the exact x-coordinate of B.	(2)

7. A student tests the accuracy of the trapezium rule by evaluating I, where

$$I = \int_{0.5}^{1.5} \left(\frac{3}{x} + x^4\right) \mathrm{d}x.$$

(-) dent's table giving values to 2 dec

for (c) Use (d) Ver (i) (a) E	the value of		4.32	ues from y	our table, to c	alculate an e	(2 estimat
for (c) Use (d) Ver (i) (a) E	the value of	f I.	th all the val	ues from y	our table, to c	alculate an e	estima
for (c) Use (d) Ver (i) (a) E	the value of	f I.	ith all the val	ues from y	our table, to c	alculate an e	
(c) Use (d) Ver (i) (a) E							6
(d) Ver (i) (a) E	e integratior	to calculat					
(d) Ver (i) (a) E	megration		e the evact us	able of I			
(i) (a) E		445/701005050174	e me exact ve	nue or r.			(
	Express (12)<α<90°.	2 cos θ – 5 s	in θ) in the	e form Ro	$\cos(\theta + \alpha),$	where R>	(0 and (4)
(b) H	Hence solve	the equation	n				
		13	$2\cos\theta - 5\sin\theta$	$\theta = 4,$			
for 0	<θ<90°, g	iving your a	inswer to 1 d	ecimal plac	e.		(3)
(ii) Solve	e						
		1	$8 \cot \theta - 3 \tan \theta$	$\theta = 2,$			
for 0	< 0< 90°, g	giving your a	answer to 1 d	lecimal plac	æ.		(5

The curve C has equation y = f(x), $x \in \mathbb{R}$. Figure 1 shows the part of C for which $0 \leq x \leq 2$.

dv

Given that

6.

$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x - 2x^2,$	
and that C has a single maximum, at $x = k$,	
(a) show that $1.48 < k < 1.49$.	(3)
Given also that the point $(0, 5)$ lies on C ,	
(b) find f(x).	(4)
The finite region R is bounded by C, the coordinate axes and the line $x = 2$.	
(c) Use integration to find the exact area of R .	(4)