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1.       y = 7 + 2
3

x10 . 
 

(a) Find 
x
y

d
d .                      

(2) 

(b) Find                                 ⌡
⌠ xy d .

(3) 
 
 

2. (a) Sketch, for 0 ≤ x ≤ 360°, the graph of y = sin (x + 30°). 
          (2) 

(b) Write down the coordinates of the points at which the graph meets the axes.  
(3) 

(c) Solve, for 0 ≤ x < 360°, the equation 

sin (x + 30°) = − 2
1 . 

(3) 
 
 

3.  (a) Given that 3x = 9y − 1, show that x = 2y – 2.  
(2) 

(b) Solve the simultaneous equations 

x = 2y – 2, 

x2 = y2 + 7. 

 (6) 
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4. A geometric series has first term 1200. Its sum to infinity is 960.     
 

(a) Show that the common ratio of the series is − 4
1 .  

(3) 

 (b) Find, to 3 decimal places, the difference between the ninth and tenth terms of the series.  
(3) 

 (c) Write down an expression for the sum of the first n terms of the series.  
(2) 

 
Given that n is odd, 
 
(d) prove that the sum of the first n terms of the series is 

960(1 + 0.25n). 
(2) 

 

5. On a journey, the average speed of a car is v m s−1. For v ≥ 5, the cost per kilometre, C pence, of 
the journey is modelled by 

C = 
100

2v
v

+
160 . 

 
 Using this model, 
 

(a) show, by calculus, that there is a value of v for which C has a stationary value, and find this 
value of v.  

(5) 

 (b) Justify that this value of v gives a minimum value of C. 
(2) 

 (c) Find the minimum value of C and hence find the minimum cost of a 250 km car journey.  
(3) 
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6. The straight line l1 with equation y = 2
3 x – 2 crosses the y-axis at the point P. The point Q has 

coordinates (5, −3). 
 
(a) Calculate the coordinates of the mid-point of PQ. 

 (3) 

The straight line l2 is perpendicular to l1 and passes through Q. 
 
(b) Find an equation for l2 in the form ax + by = c, where a, b and c are integer constants. 

(4) 
 

The lines l1 and l2 intersect at the point R.  
 
(c) Calculate the exact coordinates of R.  

(4) 
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7.       Figure 1 7.       Figure 1 
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Figure 1 shows the cross-section ABCD of a chocolate bar, where AB, CD and AD are straight 
lines and M is the mid-point of AD. The length AD is 28 mm, and BC is an arc of a circle with 
centre M.  

Figure 1 shows the cross-section ABCD of a chocolate bar, where AB, CD and AD are straight 
lines and M is the mid-point of AD. The length AD is 28 mm, and BC is an arc of a circle with 
centre M.  
  
Taking A as the origin, B, C and D have coordinates (7, 24), (21, 24) and (28, 0) respectively.  Taking A as the origin, B, C and D have coordinates (7, 24), (21, 24) and (28, 0) respectively.  

  
 (a) Show that the length of BM is 25 mm.   (a) Show that the length of BM is 25 mm.  

 (1)  (1) 

(b) Show that, to 3 significant figures, ∠BMC = 0.568 radians.  (b) Show that, to 3 significant figures, ∠BMC = 0.568 radians.  
(3) (3) 

(c) Hence calculate, in mm2, the area of the cross-section of the chocolate bar. (c) Hence calculate, in mm2, the area of the cross-section of the chocolate bar. 
(5) (5) 

  
Given that this chocolate bar has length 85 mm,  Given that this chocolate bar has length 85 mm,  

  
(d) calculate, to the nearest cm3, the volume of the bar.  (d) calculate, to the nearest cm3, the volume of the bar.  

(2) (2) 
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8.       Figure 2 
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The curve C, shown in Fig. 2, represents the graph of 
 

y = 
25

2x ,  x ≥ 0. 

 
The points A and B on the curve C have x-coordinates 5 and 10 respectively. 
 
(a) Write down the y-coordinates of A and B.  

(1) 

(b) Find an equation of the tangent to C at A.  
(4) 

 
The finite region R is enclosed by C, the y-axis and the lines through A and B parallel to the 
x-axis.  
 
(c) For points (x, y) on C, express x in terms of y. 

(2) 

(d) Use integration to find the area of R. 
(5) 

 
END 
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