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In addition to this paper you will require:

* an 8-page answer book;

* the AQA booklet of formulae and statistical tables.
You may use a standard scientific calculator only.

Time allowed: 1 hour 15 minutes
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¢ Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
¢ Write the information required on the front of your answer book. The Examining Body for this paper

is AQA. The Paper Reference is MBP7.
* Answer all questions.

* All necessary working should be shown; otherwise marks for method may be lost.
* The final answer to questions requiring the use of tables or calculators should normally be given to

three significant figures.
Information
¢ The maximum mark for this paper is 60.

e Mark allocations are shown in brackets.

Advice

¢ Unless stated otherwise, formulae may be quoted, without proof, from the booklet.
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Answer all questions.

1 Find lim (M) (3 marks)
x—0\ 1 —e™*

2 On a sketch of the complex plane, shade the region represented by the inequality

lz—2+1) | <|z+1] (3 marks)

3 The cubic equation x> — 5x> + 6x + 11 = 0 has roots o,  and .

Determine the values of:

@ oa+pf+7y; (1 mark)
(b) o + % +p?; (3 marks)
I 1 1
© —++-. (2 marks)
o By
4 — 37
4 A line L has cartesian equations x — 7 = y—7k _Z c
(a) Find, in the form r = a + Ab, a vector equation for L. (2 marks)
(b) Determine the shortest distance from P(—25, 6, 2) to L. (5 marks)

5 The system of equations

xX— y+2z=26
2x+ y+3z=47
4x + 35y — 5z =39

1S consistent.

(a) Show that this system of equations has no unique solution. (2 marks)
(b) Find the solution of this system of equations. (5 marks)
(c) Interpret this solution geometrically. (1 mark)
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6 (a) The set S consists of all matrices of the form {(1) ﬂ, where a is a real number.

Show that S, under the operation of matrix multiplication, forms a group G.
(You may assume that matrix multiplication is associative.) (4 marks)
(b) Determine, giving a reason in each case, whether the group G is isomorphic to:
(1) the set of real numbers under addition; (2 marks)

(i) the set of real numbers under multiplication. (2 marks)

4 0
7 A curve has polar equation r = 5 + ln(l + 5)

0
(@) (1) Write out the series expansion for ln<1 + §> in ascending powers of 0, up to and

including the term in 0%, and state the range of values of 0 for which the full
expansion is valid. (3 marks)

d
(i1) Use this result to write down a linear approximation for é (1 mark)

(b) Given that 0 is sufficiently small for terms in 0 and higher powers of 0 to be ignored,
show that

r\? 1
2
— | ~—(2 1
r +(d0> 81( 5+ 180) (3 marks)

(c) Hence find an approximation to the length of the arc of this curve between the points
where 6 = —0.5 and 6 = 0, giving your answer to 3 decimal places. (4 marks)

TURN OVER FOR THE NEXT QUESTION

Turn over p
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8 An ellipse has parametric form
x=2cos0, y:%sine (0 <0 <2n)

(a) Show that the tangent to this ellipse at the point P(2cos@, %sin ) can be written in the
form

xcosf +4ysinf =2 (4 marks)
(b) (i) Show that this tangent meets the hyperbola with equation x> — 9y =9 when
(25sin? 0 — 9)y> — (16sin )y + (9sin® 6 — 5) = 0 (4 marks)
(i1)) The tangent to the ellipse is also a tangent to the hyperbola.

Find all possible values of sinf. (6 marks)

END OF QUESTIONS
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