General Certificate of Education June 2005 Advanced Level Examination

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 4

MBP4

Monday 20 June 2005 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP4.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P75812/0605/MBP4 6/6/6/ MBP4

Answer all questions.

- 1 Express $\frac{5x+3}{(x-5)(x+2)}$ in partial fractions. (3 marks)
- 2 (a) Find $\frac{dy}{dx}$ for each of the following:

(i)
$$y = (1+2x)^6$$
; (2 marks)

(ii)
$$y = x(1+2x)^6$$
. (2 marks)

(b) The volume, $V \text{m}^3$, of liquid in a container when the depth is x metres is given by

$$V = x(1+2x)^6$$

At the instant when x = 0.5, the depth is increasing at a rate of $0.01 \,\mathrm{m\,s^{-1}}$. Find the rate at which the volume is increasing at this instant.

- (c) Find the binomial expansion of $(1+2x)^6$ in ascending powers of x up to the term in x^3 , simplifying your coefficients. (3 marks)
- 3 (a) Given that $f(x) = x^5 + 5x^2 + 2$, find f'(x). (1 mark)

(b) (i) Find
$$\int \frac{x^4 + 2x}{x^5 + 5x^2 + 2} dx$$
. (2 marks)

- (ii) Hence show that $\int_0^1 \frac{x^4 + 2x}{x^5 + 5x^2 + 2} dx = k \ln 2$, stating the value of the constant k. (2 marks)
- (c) The equation $x^5 + 5x^2 + 2 = 0$ has a single root α . Use the Newton-Raphson method once with first approximation $x_1 = -2$ to find a second approximation, x_2 , for α , giving your answer to three significant figures. (2 marks)

- 4 (a) A sequence is defined by $u_{n+1} = \frac{1}{1 u_n}$, $u_1 = \frac{1}{2}$.
 - (i) Find u_2 , u_3 , u_4 and u_5 .

(2 marks)

(ii) Hence explain why the sequence is periodic and state its period.

(2 marks)

- (b) A second sequence is defined by $t_{n+1} = \frac{5t_n + 2}{4 + t_n}$, $t_1 = 1.5$.
 - (i) Find the values of t_2 and t_3 , giving your answers to three significant figures.

(2 marks)

(ii) Given that the sequence has limit L, show that $L^2 - L - 2 = 0$.

Hence find the value of L.

(4 marks)

- 5 A circle with centre C has equation $x^2 + y^2 4x + 18y + k = 0$, where k is a constant.
 - (a) (i) Find the coordinates of C.

(2 marks)

(ii) Given that the radius of the circle is 7, find the value of k.

(2 marks)

- (b) The line l_1 has equation 3x + 4y + 5d = 0, where d is a constant.
 - (i) Show that the distance from C to l_1 is |d-6|.

(3 marks)

(ii) Hence find the possible values of d so that the line l_1 is a tangent to the circle.

(2 marks)

(iii) The line l_2 has equation y = x - 4. Find the acute angle between l_1 and l_2 in the form $\tan^{-1} N$, where N is a positive integer. (3 marks)

TURN OVER FOR THE NEXT QUESTION

6 (a) Show that the equation

$$\csc^2 \theta + \cot \theta = 7$$

can be written as

$$x^2 + x - 6 = 0$$

where $x = \cot \theta$. (1 mark)

(b) Hence, or otherwise, solve the equation

$$\csc^2 \theta + \cot \theta = 7$$

giving all solutions to the nearest 0.1° in the interval $0^{\circ} < \theta < 360^{\circ}$. (6 marks)

- 7 (a) (i) Differentiate $\tan 3x$ with respect to x. (2 marks)
 - (ii) Find an equation of the tangent to the curve with equation $y = 2 + \tan 3x$ at the point where $x = \frac{\pi}{12}$.
 - (b) (i) Find $\int (4\tan 3x + \sec^2 3x) dx$. (3 marks)
 - (ii) Show that

$$(2 + \tan 3x)^2 \equiv 3 + 4\tan 3x + \sec^2 3x$$
 (1 mark)

(iii) The region bounded by the curve with equation $y = 2 + \tan 3x$, the coordinate axes and the line $x = \frac{\pi}{9}$ is rotated completely about the x-axis to form a solid of revolution. Prove that the volume generated is $\frac{\pi}{3}(\sqrt{3} + \pi + 4 \ln 2)$. (3 marks)

END OF QUESTIONS