General Certificate of Education June 2005 Advanced Subsidiary Examination

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 2

MBP2

Thursday 9 June 2005 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP2.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P75633/0605/MBP2 6/6/ MBP2

Answer all questions.

1 A geometric series begins

$$8+4+2+1+...$$

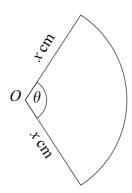
- (a) (i) State the value of the common ratio of the series. (1 mark)
 - (ii) Give a reason why the series is convergent. (1 mark)
- (b) Find the sum to infinity of the series. (2 marks)
- (c) Find the 24th term of the series, giving your answer in the form 2^k , where k is a negative integer.

 (3 marks)
- **2** The function f is defined for all real values of x by f(x) = (x+1)(x-1)(x-4).
 - (a) (i) Write down the **three** values of x for which f(x) = 0. (2 marks)
 - (ii) Sketch the curve with equation y = f(x). Indicate the coordinates of the four points where the curve crosses the axes.

(You are not required to calculate the coordinates of the stationary points.)
(2 marks)

- (iii) Hence solve the inequality f(x) > 0. (2 marks)
- (b) (i) Express f(x) in the form $x^3 + px^2 + qx + 4$, where p and q are integers to be found. (2 marks)

(ii) Hence find
$$\int \frac{(x+1)(x-1)(x-4)}{x} dx$$
. (5 marks)


(iii) Hence show that
$$\int_{1}^{2} \frac{(x+1)(x-1)(x-4)}{x} dx = 4 \ln 2 - \frac{14}{3}.$$
 (2 marks)

- **3** A polynomial is given by $p(x) = 2x^3 3x^2 3x + 2$.
 - (a) Use the factor theorem to show that 2x 1 is a factor of p(x). (2 marks)
 - (b) Find the value of p(-1). (1 mark)
 - (c) Express p(x) as a product of three linear factors. (3 marks)
 - (d) Hence find the three values of y that satisfy the equation

$$2(\ln y)^3 - 3(\ln y)^2 - 3\ln y + 2 = 0$$

giving each answer in the form e^k , where k is a constant. (4 marks)

4 The diagram shows a sector of a circle with centre O and radius x cm. The angle of the sector is θ radians, where $0 < \theta < \pi$.

The area of the sector is 16 cm^2 . The perimeter of the sector is P cm.

- (a) Find θ in terms of x. (2 marks)
- (b) Hence show that $P = 2x + \frac{32}{x}$. (3 marks)
- (c) (i) Find $\frac{dP}{dx}$. (2 marks)
 - (ii) Find the value of x for which P has a stationary value. (2 marks)
- (d) (i) Find $\frac{d^2P}{dx^2}$. (1 mark)
 - (ii) Hence determine whether the stationary value of P is a maximum or a minimum. (2 marks)

5 (a) Write down, in surd form, the value of:

(i)
$$\cos\frac{\pi}{4}$$
; (1 mark)

(ii)
$$\cos \frac{5\pi}{6}$$
. (1 mark)

(b) (i) Write down the four **exact** values of $\cos \theta$ that satisfy the equation

$$(4\cos^2\theta - 3)(2\cos^2\theta - 1) = 0$$
 (2 marks)

(ii) Hence find the four values of θ in the interval $0 < \theta < \pi$ that satisfy the equation

$$(4\cos^2\theta - 3)(2\cos^2\theta - 1) = 0$$

Give your answers in terms of π , in a simplified exact form. (4 marks)

6 It is given that $y = 9e^{2x}$.

(a) Find
$$\frac{dy}{dx}$$
. (2 marks)

- (b) (i) Show that $x = k \ln y \ln 3$, where k is a constant to be found. (4 marks)
 - (ii) Use this expression for x to find $\frac{dx}{dy}$ in terms of y. (1 mark)
- (c) Use your answers to parts (a) and (b) to verify that $\frac{dy}{dx} \times \frac{dx}{dy} = 1$. (1 mark)

END OF QUESTIONS