General Certificate of Education January 2005 Advanced Subsidiary Examination

AQA

MBP2

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 2

Tuesday 18 January 2005 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP2.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P74074/0105/MBP2 6/6/6/ MBP2

Answer all questions.

- 1 A geometric series with positive terms is such that the fourth term is 64 times the seventh term.
 - (a) (i) Prove that the common ratio, r, of the series satisfies the equation

$$r^3 = \frac{1}{64} \tag{2 marks}$$

- (ii) Hence find the value of r. (1 mark)
- (b) Given that the first term, a, of the series is 12, find the sum to infinity of the series.

 (2 marks)

2

The diagram shows a sector OAB of a circle with centre O and radius 10 cm. The angle of the sector is θ radians. The point M is the midpoint of the radius OA. The region bounded by AM, MB and the arc AB is shaded.

- (a) Find, in terms of θ , the area of the shaded region. (4 marks)
- (b) Given that θ is small, use the small angle approximation for $\sin \theta$ to show that the area of the shaded region is approximately 25θ cm². (2 marks)

3 An antique is worth $\pounds V$ after t years, where

$$V = 300 + 150 \ln t$$
, for $t \ge 1$

- (a) Find V when t = 1. (1 mark)
- (b) Find t when V = 600. (2 marks)
- (c) (i) Find $\frac{dV}{dt}$. (1 mark)
 - (ii) Find the rate of change of V when t = 3. (2 marks)
- 4 A polynomial is given by $p(x) = 6x^3 7x^2 x + 2$.
 - (a) Find the value of $p(-\frac{1}{2})$. (1 mark)
 - (b) Use the factor theorem to show that (x 1) is a factor of p(x). (2 marks)
 - (c) Write p(x) as a product of three linear factors. (3 marks)
 - (d) Hence find the values of θ , in radians, in the interval $-\pi < \theta < \pi$, for which

$$6\cos^3\theta - 7\cos^2\theta - \cos\theta + 2 = 0 (6 marks)$$

5 A curve has equation $y = e^x - 3x + 7$.

- (a) (i) Find $\frac{dy}{dx}$. (2 marks)
 - (ii) The curve has a single stationary point at P. Show that the y-coordinate of P is $10 \ln 27$. (4 marks)
- (b) (i) Find $\frac{d^2y}{dx^2}$. (1 mark)
 - (ii) Hence determine whether P is a maximum or a minimum point. (2 marks)
- (c) (i) Find $\int (e^x 3x + 7) dx$. (2 marks)
 - (ii) Hence calculate the area of the region bounded by the curve $y = e^x 3x + 7$, the x-axis and the lines x = 0 and x = 2. Give your answer in the form $e^a + b$, where a and b are integers to be found.

(You may assume that this region lies entirely above the x-axis.) (3 marks)

6 (a) Given that $\log_a x = m$ and $\log_a y = n$, find, in terms of m and n:

- (i) $\log_a xy$; (1 mark)
- (ii) $\log_a\left(\frac{x^2}{y}\right)$. (2 marks)
- (b) Find the value of $\log_3 6$, giving your answer to three significant figures. (2 marks)
- 7 The diagram shows a sketch of the curve with equation y = x(x-1)(x-2).

- (a) Use the sketch to solve the inequality x(x-1)(x-2) < 0. (2 marks)
- (b) (i) Expand the brackets x(x-1)(x-2). (2 marks)
 - (ii) Find the x-coordinates of the two points on the curve at which the gradient of the curve is 11. (5 marks)
- (c) (i) Sketch the curve with equation y = |x(x-1)(x-2)|. (2 marks)
 - (ii) The line y = 6 intersects the curve y = |x(x-1)(x-2)| at the point (3, 6) and at the point P. Write down the coordinates of the point P. (1 mark)

END OF QUESTIONS