General Certificate of Education January 2005 Advanced Level Examination

AQA

MBM4

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Mechanics 4

Friday 21 January 2005 Afternoon Session

In addition to this paper you will require:

- a 12-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBM4.
- Answer all questions.
- Take $g = 9.8 \,\mathrm{m \, s^{-2}}$ unless stated otherwise.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.

- An arrow of mass m, travelling horizontally with speed 63u, hits a block of mass 80m, which is at rest on a smooth horizontal surface. As a result of the impact, the arrow is embedded in the block.
 - (a) Find, in terms of u, the speed of the combined body after the impact. (3 marks)
 - (b) Find the number of such arrows which must be fired into the block to make the block move with speed 7u. (4 marks)
- 2 The gravitational force exerted between two spheres of masses m_1 and m_2 is

$$\frac{Gm_1m_2}{r^2}$$

where G is a constant and r is the distance between the centres of the two spheres.

(a) Find the dimensions of G.

(3 marks)

(b) The speed, v, of a satellite orbiting a planet of mass m is given by

$$v = \frac{G^{\alpha} m^{\beta}}{r^{\gamma}}$$

where r is the radius of the orbit and α , β and γ are constants.

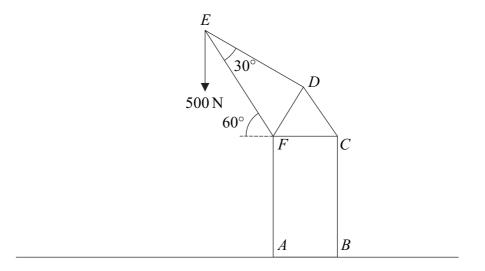
Find the values of α , β and γ for this equation to be dimensionally consistent.

(4 marks)

3 A yacht leaves Cherbourg and sails north-west at a constant speed of $20 \,\mathrm{km}\,\mathrm{h}^{-1}$. A customs boat is $40 \,\mathrm{km}$ due east of Cherbourg.

The customs boat can travel at a maximum speed of $50\,\mathrm{km}\,h^{-1}$ and intercepts the yacht in the shortest possible time.

- (a) Determine the bearing on which the customs boat travels. (5 marks)
- (b) Calculate the time taken for the customs boat to intercept the yacht. (4 marks)
- (c) Calculate the distance that the customs boat has travelled. (1 mark)

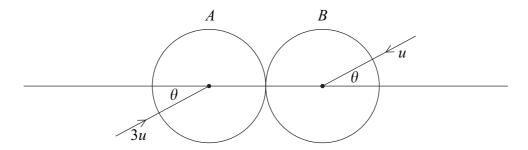

4 An engineer has designed a crane.

He modelled the crane by a framework ABCDEF, fixed to the ground at A and B, as shown in the diagram.

The framework is composed of light, smoothly jointed rods AF, EF, DE, DF, DC, CF and BC.

The framework is at rest in a vertical plane, with rod CF horizontal. Rods AF and BC are fixed in vertical positions. Triangle CDF is equilateral. Rod EF makes an angle of 60° with the horizontal and angle DEF is 30° .

A load of 500 N is attached at E.

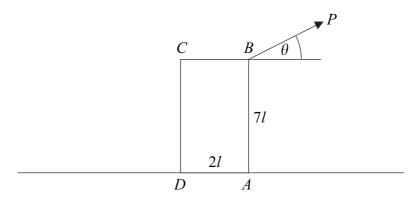

- (a) Find the magnitudes of the forces in the light rods EF, DF and DE. (10 marks)
- (b) State, with reasons, which of the rods *EF*, *DF* and *DE* could be replaced by ropes.

 (2 marks)
- (c) State whether the magnitudes of the forces in the two rods *DC* and *CF* could be the same. Give a reason for your answer. (2 marks)

TURN OVER FOR THE NEXT QUESTION

5 Two smooth spheres, A and B, of equal radii and of masses m and 2m respectively, are moving towards each other on parallel paths in a horizontal plane. Sphere A has speed 3u and sphere B has speed u.

The spheres collide and the velocity of each sphere immediately before impact makes an acute angle θ with the line of centres, as shown in the diagram.



The coefficient of restitution between the spheres is e.

Find, in terms of e, u and θ , the velocity components of A and B along and perpendicular to the line of centres after the impact. (8 marks)

6 A uniform solid cuboid of mass M is placed on a rough horizontal floor. The cuboid has a square base of side 2l and a height of 7l.

A force, P, which is gradually increasing, is applied to the midpoint of, and perpendicular to, a top edge.

This force acts as shown in the diagram, where ABCD is a vertical cross-section through the centre of mass of the cuboid.

The force P makes an angle θ with the horizontal.

The coefficient of friction between the block and the rough horizontal floor is $\frac{1}{5}$.

(a) Show that, if the block is on the point of sliding,

$$P = \frac{Mg}{5\cos\theta + \sin\theta} \tag{6 marks}$$

- (b) Find P when the block is on the point of toppling. (3 marks)
- (c) Find the range of possible values of $\tan \theta$ if the block topples before it slides. (5 marks)

END OF QUESTIONS

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE