General Certificate of Education June 2004 Advanced Level Examination

AQA

MBS7

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Statistics 7

Monday 21 June 2004 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBS7.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P68442/0604/MBS7 6/6/6/ MBS7

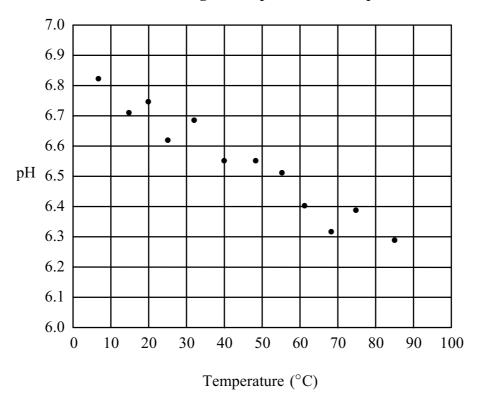
Answer all questions.

1 The weight, in kilograms, of a particular make of paving brick may be assumed to be normally distributed with mean μ and variance σ^2 .

A random sample of 10 bricks gave the following weights, in kilograms.

1.95 2.14 2.25 2.06 2.16 1.95 2.26 1.97 2.05 2.21

- (a) Past experience suggests that $\sigma^2 = 0.01$. Verify that this value continues to be plausible by testing, at the 5% level of significance, the hypothesis that $\sigma^2 = 0.01$. (7 marks)
- (b) Hence construct a 99% confidence interval for μ . (5 marks)
- 2 Between 8 am and 6 pm, the time, T minutes, between successive arrivals of vehicles for fuel at a village garage may be assumed to have an exponential distribution with a mean of 8.
 - (a) Write down the numerical value for the standard deviation of T. (1 mark)
 - (b) Calculate the probability that the time between successive arrivals of vehicles for fuel at the garage is between 5 minutes and 15 minutes. (3 marks)
 - (c) Between 6 pm and 9 pm, the time, S minutes, between successive arrivals of vehicles for fuel at the garage may be assumed to be independent of T and to have an exponential distribution with a mean of 15.


Calculate the probability that no vehicles arrive for fuel at the garage between 5.45 pm and 6.15 pm. (5 marks)

- 3 A manufacturer of 13-amp fuses states that 1.5 per cent of fuses produced are faulty.
 - (a) A wholesaler, who suspects that more than 1.5 per cent of fuses produced are faulty, tests a random sample of 100 fuses and finds that 4 fuses are faulty.
 - (i) Write down null and alternative hypotheses for investigating the wholesaler's suspicion. (2 marks)
 - (ii) Use a Poisson approximation and the 10% level of significance to investigate the wholesaler's suspicion. (6 marks)
 - (b) In view of the wholesaler's suspicion, the manufacturer decides to examine a random sample of 2000 fuses and finds that 36 fuses are faulty.

Use this information to investigate, again at the 10% level of significance, the wholesaler's suspicion. (5 marks)

4 The following scatter diagram illustrates the data collected as part of a study into the effect of temperature, $x \,^{\circ}$ C, on the pH value, y, of a particular liquid.

- (a) Explain what this diagram reveals about the relationship between temperature and pH. (2 marks)
- (b) Given the following information, determine the equation of the least squares regression line, $y = \overset{\wedge}{\alpha} + \overset{\wedge}{\beta} x$.

$$\overline{x} = 44$$
 $\overline{y} = 6.55$ $S_{xx} = 6938$ $S_{xy} = -46.5$ (2 marks)

(c) The relationship between x and y may be modelled by

$$y = \alpha + \beta x + \varepsilon$$
 where $\varepsilon \sim N(0, \sigma^2)$.

- (i) Given that n = 12 and $S_{yy} = 0.3268$, calculate an unbiased estimate of σ^2 . (2 marks)
- (ii) Investigate, at the 1% level of significance, the hypothesis that $\beta < -0.005$. (7 marks)
- (iii) Explain, in context, your conclusion to part (c)(ii). (2 marks)

5 (a) The random variable X has a normal distribution with mean 200 and variance 100.

(i) Show that
$$P(X < x) = P(Z < (0.1x - 20))$$
 where $Z \sim N(0, 1)$. (1 mark)

(ii) **Table A** shows the probability that a value, x, lies within a particular interval.

Table A

Interval	Probability
x < 180	
$180 \leqslant x < 190$	
$190 \leqslant x < 200$	0.34134
$200 \leqslant x < 210$	
$210 \leqslant x < 220$	
<i>x</i> ≥ 220	

Copy and complete this table.

(2 marks)

(b) **Table B** shows the frequency distribution of the times, *X* minutes, taken to complete a post round on a sample of 600 days.

Table B

Time to complete post round	Frequency
<i>x</i> < 180	19
$180 \leqslant x < 190$	74
$190 \leqslant x < 200$	193
$200 \leqslant x < 210$	218
$210 \leqslant x < 220$	85
<i>x</i> ≥ 220	11

Using a goodness of fit test and the 5% level of significance, test the hypothesis that X may be modelled by a normal distribution with mean 200 and variance 100. (Calculate expected frequencies to two decimal places.) (8 marks)

END OF QUESTIONS