General Certificate of Education June 2004 Advanced Level Examination

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 7

MBP7

Wednesday 23 June 2004 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP7.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P68518/0604/MBP7 6/6/ MBP7

Answer all questions.

1 (a) For $0 \le x \le 2\pi$, draw the graph of $y = 1 + \cos 3x$. (2 marks)

(b) Sketch the curve with polar equation $r = 1 + \cos 3\theta$ $(0 \le \theta \le 2\pi)$. (4 marks)

2 (a) Show that (a-c) is a factor of

$$\Delta = \begin{vmatrix} 1 & -2 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{vmatrix}$$

and factorise Δ completely.

(5 marks)

(b) Hence, or otherwise, show that the three planes

$$x - 2y + z = 10$$

 $5x + 7y + 5z = 21$
 $12x + 10y + 12z = 35$

do not meet at a single point.

(2 marks)

3 (a) Show that the series expansion of $e^x + \sin x$ is

$$1 + 2x + \frac{1}{2}x^2 + px^3 + qx^4 + \dots$$

stating the value of p and the value of q.

(2 marks)

(b) Given that

$$(1+ax)^n = 1 + 2x + \frac{1}{2}x^2 + kx^3 + \dots$$

where a, n and k are constants:

(i) find the value of a and the value of n; (4 marks)

(ii) determine the value of k; (1 mark)

(iii) state the range of values of x for which the expansion of $(1 + ax)^n$ is valid.

(1 mark)

4 A rectangular hyperbola is represented parametrically by

$$x = 2t, \quad y = -\frac{2}{t}, \quad t \neq 0$$

(a) Show that the normal to this hyperbola has equation

$$y + t^2 x = \frac{2}{t} \left(t^4 - 1 \right) \tag{4 marks}$$

- (b) The normal meets the x-axis at P and the y-axis at Q. The midpoint of PQ is M. Determine a cartesian equation for the locus of M as t varies. You need not simplify your answer. (5 marks)
- 5 The group G consists of the set of functions f, f^2 , f^3 , ..., under the operation of composition of functions, defined for complex numbers z by

$$f(z) = f^{1}(z) = iz + i$$

and $f^{n}(z) = f\{f^{n-1}(z)\}$ for $n \ge 2$

- (a) (i) Show that $f^4(z) = z$. (4 marks)
 - (ii) Hence describe the group G as fully as possible. (2 marks)
- (b) State Lagrange's Theorem for groups of finite order, and use it to find possible orders for subgroups of G. For each possible order, describe the corresponding subgroup.

 (3 marks)
- 6 (a) A line has vector equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{d}$.
 - (i) Explain the significance of the vectors **a** and **d** in relation to the line. (1 mark)
 - (ii) By considering a suitable vector product, show that the equation of the line can also be expressed in the form $(\mathbf{r} \mathbf{a}) \times \mathbf{d} = \mathbf{0}$. (2 marks)
 - (b) Two lines have equations

$$(\mathbf{r} - (3\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})) \times (2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) = \mathbf{0}$$

and $(\mathbf{r} - (\mathbf{i} + 2\mathbf{j} + \mathbf{k})) \times (\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = \mathbf{0}$

- (i) Determine $(2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) \times (\mathbf{i} 3\mathbf{j} + \mathbf{k})$. (2 marks)
- (ii) Find, in surd form, the shortest distance between these lines. (3 marks)

7 (a) In the complex plane, the circle C is described by the equation

$$|z - 2 + \mathbf{i}| = \sqrt{3}$$

- (i) State the complex number which is the centre of C. (1 mark)
- (ii) Sketch C on an Argand diagram. (1 mark)
- (iii) Write down a cartesian equation for C. (1 mark)
- (b) The half-line H has cartesian equation

$$y = mx - 1, x > 0$$

You are given that m > 0 and that H is a tangent to C.

- (i) Sketch H on your Argand diagram. (1 mark)
- (ii) Show that $m = \sqrt{3}$. (4 marks)
- (iii) Express the locus of H in the form $arg(z \alpha) = \theta$. (2 marks)
- (iv) Determine the complex number which is represented by the point of contact of H and C. (3 marks)

END OF QUESTIONS