General Certificate of Education June 2004 Advanced Level Examination

AQA

MBP6

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 6

Tuesday 29 June 2004 Afternoon Session

In addition to this paper you will require:

- a 12-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 45 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP6.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 80.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P68517/0604/MBP6 6/6/ MBP6

Answer all questions.

1 Show that the curve with equation

$$y = 3 \tanh x + 4 \operatorname{sech} x$$

has a stationary point when $\sinh x = \frac{3}{4}$.

(5 marks)

- **2** The complex number $\omega = 30\sqrt{31} + 194 i$.
 - (a) Express ω in the form $re^{i\theta}$, where r > 0 and θ is to be given to four decimal places in radians between $-\pi$ and π .
 - (b) The complex number z_1 is the complex number with least positive argument such that $z_1^8 = \omega$. Determine $|z_1|$ in an exact form, and find $\arg(z_1)$ to four decimal places.

 (2 marks)
 - (c) On a diagram of the complex plane, mark the position of z_1 , and describe the positions of the remaining seven complex roots of the equation $z^8 = \omega$. (3 marks)
- 3 (a) Find the general solution of the second-order differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = 8\mathrm{e}^{3x} \tag{7 marks}$$

- (b) Given that y = 1 and $\frac{dy}{dx} = 2$ when x = 0, solve this differential equation. (3 marks)
- 4 (a) Prove the identity

$$\sin x + \sin 2x + \sin 3x + \sin 4x \equiv 4\cos\frac{x}{2}\cos x \sin\frac{5x}{2}$$
 (5 marks)

(b) Hence find all solutions in the interval $0 \le x \le \pi$ of the equation

$$\sin x + \sin 2x + \sin 3x + \sin 4x = 0$$

giving your answers in terms of π .

(4 marks)

- 5 (a) Use mathematical induction to prove that $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ for all positive integers n. (4 marks)
 - (b) (i) Express $(-\sqrt{3} + i)^n$ in the form $2^n(\cos n\theta + i\sin n\theta)$, giving the value of θ in terms of π .
 - (ii) Hence find the least positive integer value of n for which $(-\sqrt{3} + i)^n$ is a positive real number. (2 marks)
- 6 (a) Determine the eigenvalues and corresponding eigenvectors of the matrix

$$\mathbf{M} = \begin{bmatrix} 8 & 6 \\ 6 & 17 \end{bmatrix} \tag{6 marks}$$

- (b) The tranformation T has matrix M.
 - (i) Show that the invariant lines of **T** are perpendicular. (2 marks)
 - (ii) Give a full geometrical interpretation of **T**. (3 marks)
- 7 (a) Differentiate $\sqrt{1+t^2}$ with respect to t. (1 mark)
 - (b) (i) Given that $I_n = \int_0^1 \frac{t^n}{\sqrt{1+t^2}} dt$, where $n \ge 0$, show that

$$nI_n = \sqrt{2} - (n-1)I_{n-2}, \qquad n \geqslant 2$$
 (5 marks)

- (ii) Evaluate I_3 in surd form. (3 marks)
- (c) Use the substitution $t = \tan \frac{1}{2}x$ to evaluate

$$\int_{0}^{\frac{\pi}{2}} \sec \frac{1}{2} x \tan^{3} \frac{1}{2} x \, dx \qquad (3 \text{ marks})$$

TURN OVER FOR THE NEXT QUESTION

- **8** (a) Using the definitions $\sinh\theta=\frac{1}{2}\Big(e^\theta-e^{-\theta}\Big)$ and $\cosh\theta=\frac{1}{2}\Big(e^\theta+e^{-\theta}\Big)$, prove that:
 - (i) $2 \sinh \theta \cosh \theta \equiv \sinh 2\theta$;

(ii)
$$2\sinh^2\theta \equiv \cosh 2\theta - 1$$
. (4 marks)

- (b) Use the substitution $\cosh \theta = 2x + 1$ to show that:
 - (i) $\int \sqrt{4x^2 + 4x} \, dx = k \int \sinh^2 \theta \, d\theta$, stating the value of k; (4 marks)
 - (ii) $\int \sqrt{4x^2 + 4x} \, dx = \frac{1}{4}(2x + 1)\sqrt{4x^2 + 4x} \frac{1}{4}\cosh^{-1}(2x + 1) + C, \text{ where } C \text{ is an arbitrary constant.}$ (4 marks)
- (c) Find the length of the arc of the curve with equation

$$y = \frac{1}{4}(2x+1)\sqrt{4x^2+4x} - \frac{1}{4}\cosh^{-1}(2x+1)$$

between the points where x = 77 and x = 89.

(5 marks)

END OF QUESTIONS