General Certificate of Education June 2004 Advanced Level Examination

ASSESSMENT AVA

MBP5

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 5

Wednesday 23 June 2004 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP5.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P68752/0604/MBP5 6/6/ MBP5

Answer all questions.

1 (a) Obtain the binomial expansion in ascending powers of x up to and including the term in x^3 of the following, giving each term in its simplest form.

(i)
$$(1+x)^{-1}$$
 (2 marks)

(ii)
$$(1+4x)^{\frac{1}{2}}$$
 (4 marks)

(b) Hence show that, for small values of x,

$$2(1+4x)^{\frac{1}{2}} + \frac{4}{1+x} \approx 6 + kx^3$$

where k is a constant to be found.

(2 marks)

- 2 By considering rectangular strips of width 0.5, use the mid-ordinate rule to obtain an approximation for $\int_{1}^{2} \frac{2}{e^{2x} 1} dx$, giving your answer to 3 decimal places. (3 marks)
- 3 (a) Express $6\cos x 8\sin x$ in the form $R\cos(x + \alpha)$, where R is a positive constant and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α to the nearest 0.1°. (3 marks)
 - (b) Hence find the general solution, in degrees, of the equation

$$6\cos x - 8\sin x = 3 \tag{4 marks}$$

4 The gradient of a curve, C, at the point (x, y) is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2y(x+2)}, \quad x > 0, \quad y > 0$$

The point P(1, 1) lies on the curve C.

- (a) (i) Write down the gradient of the curve C at the point P. (1 mark)
 - (ii) Show that the equation of the normal at P is y + 6x = 7. (3 marks)
- (b) Find the equation of the curve C in the form $y^2 = f(x)$. (5 marks)

- 5 A curve has equation $y = \frac{x^2}{x+1}$.
 - (a) Find the equations of the two asymptotes to the curve. (3 marks)
 - (b) Given that $y \le -4$ or $y \ge 0$ for all real values of x, and that there are no values of y for which -4 < y < 0, find the coordinates of the two turning points of the curve. (3 marks)
 - (c) Sketch the curve. (3 marks)
- **6** (a) Find the cosine of the angle between the vectors $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$. (3 marks)
 - (b) The equations of two planes are x y + 2z = 0 and 2x + 2y + z = 0.
 - (i) Use your result from part (a) to find the acute angle between the two planes.

 (2 marks)
 - (ii) Verify that the point (-5, 3, 4) lies in both planes. (1 mark)
 - (iii) Given that the origin also lies in both planes, write down a vector equation of the line of intersection of the two planes. (2 marks)

TURN OVER FOR THE NEXT QUESTION

7 The diagram shows part of a curve C.

The curve C is defined parametrically by

$$x = t^2, \qquad y = 1 + \cos t, \qquad 0 \leqslant t \leqslant 2\pi$$

The curve C touches the x-axis at the point P.

- (a) Show that the x-coordinate of P is π^2 . (2 marks)
- (b) Find $\frac{dy}{dx}$ in terms of t. (2 marks)
- (c) (i) Show that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = \frac{\sin t - t \cos t}{2t^2} \tag{2 marks}$$

- (ii) Hence find $\frac{d^2y}{dx^2}$ in terms of t. (2 marks)
- (iii) Hence show that any point of inflection of C must have a parameter t whose value satisfies the equation $\tan t = t$. (1 mark)
- (d) (i) Find $\int t \cos t \, dt$. (3 marks)
 - (ii) Find, in terms of π , the area of the shaded region bounded by the curve C, the y-axis and the line OP. (4 marks)

END OF QUESTIONS