General Certificate of Education June 2004 Advanced Subsidiary Examination

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 3

MBP3

Wednesday 23 June 2004 Afternoon Session

In addition to this paper you will require:

- a 12-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 45 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP3.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 80.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P68981/0604/MBP3 6/6/ MBP3

Answer all questions.

- 1 (a) Find the inverse of the matrix $A = \begin{bmatrix} 3 & -5 \\ 4 & 1 \end{bmatrix}$. (2 marks)
 - (b) Use the inverse matrix to solve the simultaneous equations

$$3x - 5y = 11$$

$$4x + y = 7$$
(3 marks)

- 2 (a) A curve has equation $y = \frac{3x+4}{1-2x}$.
 - (i) Find the coordinates of the points where the curve crosses the coordinate axes.

(2 marks)

(ii) State the equations of its asymptotes.

(2 marks)

(iii) Sketch the curve.

(2 marks)

- (b) Calculate the x-coordinate of the point where the curve $y = \frac{3x+4}{1-2x}$ intersects the line y = 1.
- (c) Hence, or otherwise, solve the inequality $\frac{3x+4}{1-2x} \le 1$. (3 marks)
- 3 The roots of the quadratic equation $x^2 + (7+p)x + p = 0$ are α and β .
 - (a) Write down the value of $\alpha + \beta$ and the value of $\alpha\beta$, in terms of p. (2 marks)
 - (b) Find the value of $\alpha^2 + \beta^2$ in terms of p. (2 marks)
 - (c) (i) Show that $(\alpha \beta)^2 = p^2 + 10p + 49$. (2 marks)
 - (ii) Given that α and β differ by 5, find the possible values of p. (3 marks)

4 (a) Find the modulus and argument of the complex number $-1 + \sqrt{3}i$, giving the argument in terms of π .

(b) Prove that
$$(-1 + \sqrt{3}i)^3$$
 is real. (3 marks)

- (c) Given that $-1 + \sqrt{3}i$ is a root of the equation $z^3 + k = 0$, where k is real:
 - (i) state the value of k; (1 mark)
 - (ii) write down another complex root of the equation $z^3 + k = 0$. (1 mark)
- 5 The matrices A and B are such that

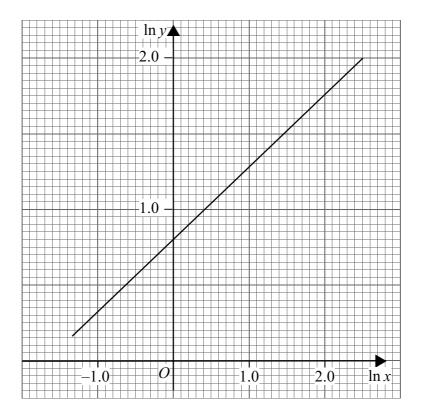
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

- (a) Find the matrix product AB. (2 marks)
- (b) The transformation **T** is given by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \boldsymbol{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Describe fully the geometrical transformation represented by T for each of the following cases.

(i)
$$\mathbf{M} = \mathbf{A}$$
 (2 marks)


(ii)
$$M = B$$
 (2 marks)

(iii)
$$M = AB$$
 (2 marks)

TURN OVER FOR THE NEXT QUESTION

6 A student performs an experiment and records data for two variables x and y.

Values of $\ln x$ and $\ln y$ are calculated and a line of best fit is drawn as shown below.

- (a) Use this graph to find the value of y when x = 3.0, giving your answer to two significant figures. (3 marks)
- (b) The student believes there is a relationship between x and y of the form $y = Ax^n$, where A and n are constants.
 - (i) Express $\ln y$ in terms of $\ln A$, $\ln x$ and n. (1 mark)
 - (ii) Use the graph to estimate the values of A and n, giving your answers to two significant figures. (4 marks)

7 (a) Show that
$$\frac{4}{(k+2)(k+3)} - \frac{4}{(k+2)} \equiv \frac{-4}{(k+3)}$$
. (2 marks)

(b) Prove by mathematical induction that, for all positive integers $n \ge 1$,

$$\sum_{r=1}^{n} \frac{4}{(r+1)(r+2)} = 2 - \frac{4}{(n+2)}$$
 (4 marks)

(c) Hence find:

(i)
$$\sum_{r=3}^{n} \frac{4}{(r+1)(r+2)}$$
; (2 marks)

(ii)
$$\sum_{r=3}^{\infty} \frac{4}{(r+1)(r+2)}$$
. (1 mark)

8 (a) (i) Describe a geometrical transformation that maps the curve with equation

$$x^2 + y^2 = 1$$

onto the curve with equation $(x-1)^2 + y^2 = 1$. (2 marks)

(ii) Sketch the curve with equation
$$(x-1)^2 + y^2 = 1$$
. (2 marks)

(b) Show that the curve with cartesian equation

$$(x-1)^2 + y^2 = 1 + 2\sqrt{x^2 + y^2}$$

has the equation $r = 2 + 2\cos\theta$, where $[r, \theta]$ are polar coordinates. (3 marks)

(c) For the curve with equation $r = 2 + 2\cos\theta$, where $[r, \theta]$ are polar coordinates:

(i) state the greatest and least values of
$$r$$
; (2 marks)

(ii) sketch its graph for
$$-\pi < \theta \leqslant \pi$$
. (3 marks)

TURN OVER FOR THE NEXT QUESTION

9 The binary operation \otimes is defined for all integers a and b by

$$a \otimes b = a + b - 4$$

- (a) Determine, with a reason, whether the set of integers is closed under \otimes . (2 marks)
- (b) Find the identity element, e. (2 marks)
- (c) Find the inverse of the element x. (2 marks)
- (d) Prove that \otimes is associative. (3 marks)

END OF QUESTIONS

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE