General Certificate of Education January 2004 Advanced Level Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MBP4

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 4

Friday 23 January 2004 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP4.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P64263/0104/MBP4 6/6/ MBP4

Answer all questions.

- 1 The population, P, of insects in a colony is given by $P = Ae^{kt}$, where A and k are constants and the time t is measured in months.
 - (a) Given that P = 500 when t = 0 and that P = 750 when t = 10, find the value of k.

 (3 marks)
 - (b) Find the value of t when P = 1500, giving your answer to 3 significant figures. (2 marks)
- 2 A model plane moves so that its height, y metres, above horizontal ground is given by

$$y = \frac{8x}{x^3 + 1}, \qquad x \geqslant 0$$

when its horizontal distance from the take-off point on the ground is x metres.

(a) Find the value of
$$\frac{dy}{dx}$$
 when $x = 1$. (3 marks)

- (b) (i) Find the rate of change of y in $m s^{-1}$ when x = 1 and x is increasing at a rate of $0.8 \, m \, s^{-1}$. (2 marks)
 - (ii) Interpret the sign in your answer to part (i). (1 mark)
- 3 The polynomial p(x) is given by

$$p(x) = (x+3)(x-2)(x-4)$$

- (a) Find the remainder when p(x) is divided by (x + 1). (2 marks)
- (b) (i) Express $\frac{70}{(x+3)(x-2)(x-4)}$ in the form $\frac{A}{x+3} + \frac{B}{x-2} + \frac{C}{x-4}$. (3 marks)
 - (ii) Hence, prove that $\int_{5}^{6} \frac{70}{(x+3)(x-2)(x-4)} dx = N \ln 3 M \ln 2,$ where N and M are positive integers. (5 marks)

- A circle has equation $x^2 + y^2 10x 6y + \frac{111}{4} = 0$.
 - (a) Find the coordinates of the centre, C. (2 marks)
 - Find the radius of the circle. (2 marks)
 - The line l_1 has equation 3x 4y 16 = 0.
 - Find the distance from C to l_1 . (2 marks)
 - Hence determine whether the line l_1 intersects the circle. (1 mark)
 - (iii) The line l_2 has equation y = 2x + 5.

Show that the acute angle between l_1 and l_2 is $\tan^{-1} \frac{1}{2}$. (3 marks)

A sequence is defined by

$$x_{n+1} = \sqrt{(x_n + 12)}, \quad x_1 = 2$$

- Find the values of x_2 , x_3 , and x_4 , giving your answers to 3 decimal places. (3 marks)
- Given that the limit of the sequence is *L*:
 - show that L must satisfy the equation $L^2 L 12 = 0$; (2 marks)
 - (ii) find the value of L. (2 marks)
- The graphs of $y = \sqrt{(x+12)}$ and y = x are sketched below.

On a copy of the sketch, draw a cobweb or staircase diagram to show how convergence takes place.

6 (a) Use the identity

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

to show that the equation

$$\cos\left(x + \frac{5\pi}{6}\right) = \sin x$$

can be written as

$$\cos x + \sqrt{3}\sin x = 0 (4 marks)$$

(b) Hence solve the equation

$$\cos\left(x + \frac{5\pi}{6}\right) = \sin x$$

giving all solutions, in terms of π , in the interval $0 < x < 2\pi$. (3 marks)

7 A curve is defined for $0 \le x < \frac{\pi}{4}$ by the equation $y = \tan 2x$.

- (a) (i) Find $\frac{dy}{dx}$. (2 marks)
 - (ii) Hence, find the equation of the tangent to the curve at the point $\left(\frac{\pi}{6}, \sqrt{3}\right)$.

 (2 marks)
- (b) Find $\int (\sec^2 2x 2\tan 2x) dx$. (3 marks)
- (c) The curve $y = \tan 2x$ intersects the line y = 1 when $x = \alpha$, as shown in the diagram.

- (i) Find the value of α in terms of π . (1 mark)
- (ii) The shaded region bounded by the curve, the y-axis and the line y = 1 is R.

The region R is rotated through 2π radians about the line y = 1.

Show that the volume of the solid of revolution, V, is given by

$$V = \pi \int_0^{\alpha} (\sec^2 2x - 2\tan 2x) dx$$
 (3 marks)

(iii) Prove that
$$V = \frac{\pi}{2}(1 - \ln 2)$$
. (2 marks)

END OF QUESTIONS