General Certificate of Education January 2004 Advanced Subsidiary Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MBP1

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Pure 1

Thursday 8 January 2004 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBP1.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P66630/0104/MBP1 6/6/ MBP1

Answer all questions.

1	The first term of an arithmetic series is 7. The tenth term is 43.			
	(a)	Find	the common difference.	(2 marks)
	(b) Find the sum of the first fifty terms of the series.		(3 marks)	
	(c) The kth term has a value greater than 1000.			
		(i)	Show that $4k > 997$.	(2 marks)
		(ii)	Find the least possible value of k .	(1 mark)
2		The point A has coordinates $(-1,2)$ and the line AB is parallel to the line joining the points $(7,4)$ and $(3,8)$.		
	(a)	(i)	Find the gradient of AB.	(1 mark)
		(ii)	Show that the line AB has equation $x + y = 1$.	(1 mark)
	(b) The point C has coordinates $(5,0)$ and the line BC is perpendicular to the line with equation $x + 3y = 7$.			
		(i)	Find the gradient of BC.	(2 marks)
		(ii)	Find an equation for the line BC.	(1 mark)

(3 marks)

(c) Find the coordinates of the point B.

3 The graph of y = f(x) is sketched below for $0 \le x \le 5$.

(a) Given that f is an even function, sketch the graph of y = f(x) for $-5 \le x \le 5$.

(2 marks)

- (b) Sketch the graph of y = 2 f(x) for $0 \le x \le 5$. (2 marks)
- (c) Describe fully a geometrical transformation that would map the graph of y = f(x) onto the graph of y = 2 f(x). (2 marks)
- 4 The function g has domain $-1 \le x \le 2$ and is defined by $g(x) = x^2 + 5$.
 - (a) Find g(-1) and g(2). (2 marks)
 - (b) Sketch the graph of y = g(x). (2 marks)
 - (c) Find the range of g. (3 marks)
 - (d) State, with a reason, whether the inverse function, g^{-1} , exists. (2 marks)
 - (e) Find gg (x), giving your answer in the form $x^4 + px^2 + q$. (2 marks)
- 5 The quadratic equation

$$x^2 + (3 - k)x + 5 - k^2 = 0$$

is to be considered for different values of the constant k.

- (a) When k = 7:
 - (i) show that $x^2 4x 44 = 0$; (1 mark)
 - (ii) find the roots of this equation, giving your answers in the form $a + b\sqrt{3}$, where a and b are integers. (2 marks)
- (b) When the quadratic equation $x^2 + (3 k)x + 5 k^2 = 0$ has equal roots:
 - (i) show that $5k^2 6k 11 = 0$; (3 marks)
 - (ii) hence find the possible values of k. (2 marks)

6 (a) Express the equation

$$5\sin 2x - 4\cos 2x = 0$$

in the form

$$\tan 2x = k$$
,

where k is a constant. (2 marks)

(b) Hence find all solutions of the equation

$$5\sin 2x - 4\cos 2x = 0$$

in the interval $0^{\circ} < x < 180^{\circ}$, giving your answers to the nearest 0.1°. (4 marks)

7 A curve has equation $y = x^2 + \frac{81}{x^2}$. Its graph is sketched below.

- (a) (i) Find $\frac{dy}{dx}$. (3 marks)
 - (ii) Show that the stationary points of the curve occur when $x^4 = 81$. (2 marks)
 - (iii) Hence find the x-coordinates of the stationary points. (2 marks)
 - (iv) Find the value of the y-coordinate at each stationary point. (1 mark)
- (b) (i) Find $\int \left(x^2 + \frac{81}{x^2}\right) dx$. (3 marks)
 - (ii) Hence find the area of the region bounded by the curve, the lines x = 1, x = 3 and the x-axis. (2 marks)

END OF QUESTIONS