General Certificate of Education January 2004 Advanced Level Examination

MBM5

MATHEMATICS AND STATISTICS (SPECIFICATION B) Unit Mechanics 5

Tuesday 27 January 2004 Afternoon Session

In addition to this paper you will require:

- a 12-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MBM5.
- Answer all questions.
- Take $g = 9.8 \,\mathrm{m \, s^{-2}}$ unless stated otherwise.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

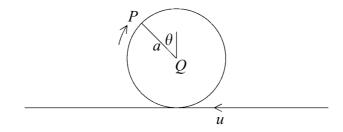
Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

Answer all questions.


1 At time t, a force, $6e^{-2t}$, acts upon a particle which is initially at rest.

Find the momentum of the particle when t = 4.

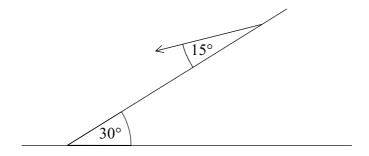
(4 marks)

- A force \mathbf{F} , of magnitude 21 N, acts in the direction AB. The coordinates of the points A and B are (4, -3, 5) and (2, -1, 4) respectively. The three unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are in the directions of the x, y and z axes. The unit of distance is metres.
 - (a) Find the force **F**. (4 marks)
 - (b) Find the work done by the force \mathbf{F} when it acts on a body which moves from point P (-1, 5, 8) to point Q (4, 6, -2).
- 3 In crazy golf, a golf ball is fired along a smooth track and loops the loop inside a section of track.

 Model this loop as a vertical circle of radius a and centre Q, as shown in the diagram.

The golf ball is travelling at speed u as it enters the circle at the lowest point.

Model the ball as a particle P, of mass m.


(a) Show that the reaction of the track on the particle when QP makes an angle of θ with the upward vertical is

$$\frac{mu^2}{a} - 3mg\cos\theta - 2mg \tag{6 marks}$$

(b) Given that the ball completes a vertical circle inside the track, show that

$$u \geqslant \sqrt{(5ag)}$$
 (2 marks)

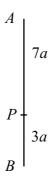
4 A particle is projected down a plane inclined at an angle 30° to the horizontal. It is projected with velocity V at an angle 15° to the inclined plane.

The particle moves in a vertical plane containing the line of greatest slope.

Show that the range down the plane is

$$\frac{2V^2}{3g} \tag{10 marks}$$

- A rocket of initial mass $10\,000\,\mathrm{kg}$ is launched from a space station where gravity can be ignored. At time t seconds after the launch, the mass of the rocket is m kg and it is travelling at v m s⁻¹. The burnt fuel is ejected at $600\,\mathrm{m\,s^{-1}}$ relative to the rocket and at a constant rate of $200\,\mathrm{kg\,s^{-1}}$.
 - (a) Write down the mass of the rocket at time t whilst the fuel is still burning. (1 mark)
 - (b) By considering linear momentum, show that


$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{600}{50 - t} \tag{7 marks}$$

(c) Given that the initial mass of fuel is 7000 kg, find the maximum acceleration of the rocket.

(3 marks)

TURN OVER FOR THE NEXT QUESTION

6 A spring, of natural length 4a and modulus λ , has one end attached to a fixed support A, and a particle P of mass m is attached to its other end. Another spring, of natural length 2a and modulus 4mg, has one end attached to P and the other end attached to a fixed support B, which is situated at a distance of 10a vertically below A. The system is in equilibrium in a vertical line with the upper spring stretched to a length of 7a and the lower spring stretched to a length of 3a as shown in the diagram.

- (a) Show that $\lambda = 4mg$. (4 marks)
- (b) At time t = 0, the particle is lowered to a distance $\frac{a}{2}$ below its equilibrium position and released from rest. The subsequent motion of P is subject to a resistance of magnitude $\frac{1}{5}mkv$, where $k^2 = \frac{6g}{a}$ and v is the speed of the particle at time t.
 - (i) Given that x is the downward displacement of P from its equilibrium position at time t, show that

$$10\frac{d^2x}{dt^2} + 2k\frac{dx}{dt} + 5k^2x = 0$$
 (6 marks)

(ii) Hence find x in terms of a, k and t. (9 marks)

END OF QUESTIONS