General Certificate of Education June 2005 Advanced Level Examination

MATHEMATICS (SPECIFICATION A) Unit Pure 5

MAP5

Thursday 9 June 2005 Morning Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 20 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MAP5.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- Tie loosely any additional sheets you have used to the back of your answer book before handing it to the invigilator.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P77083/0605/MAP5 6/6/6/6/ MAP5 6/6/6/6/

Answer all questions.

1 (a) Find the integrating factor for the differential equation

 $\frac{\mathrm{d}y}{\mathrm{d}x} + y = \mathrm{e}^x. \tag{2 marks}$

- (b) Find the general solution of this differential equation, giving your answer in the form y = f(x).
- 2 The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x, y) = \frac{\sin(x + y)}{xy}$$

and

$$y(1) = 0.8$$
.

Obtain estimates, to **four** decimal places, of the value of y(1.05):

(a) using the Euler formula

$$y_{r+1} = y_r + hf(x_r, y_r)$$

with h = 0.05;

(3 marks)

(b) using the formula

$$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$

where

$$k_1 = hf(x_r, y_r),$$

$$k_2 = hf(x_r + h, y_r + k_1)$$

and h = 0.05.

(7 marks)

3 Find

$$\lim_{x \to 0} \left(\frac{x \ln(1+x)}{1 - \cos x} \right). \tag{4 marks}$$

4 The diagram shows the curve C_1 with polar equation

$$r = \sin 3\theta$$

and the circle C_2 with polar equation

$$r = 1$$

which touches C_1 at the points L, M and N.

(a) For the curve C_1 :

(i) find the values of
$$\theta$$
, $0 \le \theta < \frac{1}{2}\pi$, for which $r = 0$; (2 marks)

(ii) show that the area of one of its loops is $\frac{1}{12}\pi$. (4 marks)

(b) Find the area of the shaded region R, bounded by two arcs OL and OM of the curve C_1 and the arc LM of the circle C_2 .

TURN OVER FOR THE NEXT QUESTION

5 (a) Using the substitution $u = \ln x$, or otherwise, find

$$\int \frac{1}{x \ln x} dx.$$
 (3 marks)

(b) (i) Explain why

$$\int_{1}^{e} \frac{1}{x \ln x} dx$$

is an improper integral.

(1 mark)

(ii) Determine whether

$$\int_{1}^{e} \frac{1}{x \ln x} dx$$

exists, giving a reason for your answer.

(2 marks)

6 Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 3\cos x + 4\sin x. \tag{11 marks}$$

7 (a) (i) Show that the equation

$$3x^2 + 4x + 4y^2 = 4$$

is equivalent to

$$(2-x)^2 = 4(x^2 + y^2). (2 marks)$$

(ii) Hence show that the polar equation of the curve

$$3x^2 + 4x + 4y^2 = 4$$

is $\frac{2}{r} = 2 + \cos \theta . \tag{6 marks}$

(b) A straight line through the pole O meets the curve

$$\frac{2}{r} = 2 + \cos \theta$$

at the points P and Q.

Show that

$$\frac{1}{OP} + \frac{1}{OQ} = 2. (6 marks)$$

END OF QUESTIONS

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE