General Certificate of Education June 2004 Advanced Level Examination

MATHEMATICS (SPECIFICATION A) Unit Pure 4

MAP4

Wednesday 16 June 2004 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the AQA booklet of formulae and statistical tables.

You may use a standard scientific calculator only.

Time allowed: 1 hour 20 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MAP4.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- Tie loosely any additional sheets you have used to the back of your answer book before handing it to the invigilator.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- Sheets of graph paper are available on request.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P68889/0604/MAP4 6/6/6/ MAP4

Answer all questions.

1 (a) Show that $(3-i)^2 = 8-6i$. (1 mark)

(b) The quadratic equation

$$az^2 + bz + 10i = 0$$
,

where a and b are real, has a root 3 - i.

- (i) Show that a = 3 and find the value of b. (6 marks)
- (ii) Determine the other root of the quadratic equation, giving your answer in the form p + iq.
- 2 (a) Show that

$$\frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)} = \frac{2}{r(r+1)(r+2)}.$$
 (2 marks)

(b) Hence find the sum of the series

$$\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots + \frac{1}{30 \times 31 \times 32}$$

giving your answer as a rational number.

(5 marks)

3 (a) Sketch on one Argand diagram:

- (i) the locus of points satisfying |z i| = |z 2|; (2 marks)
- (ii) the locus of points satisfying $arg(z i) = \frac{1}{4}\pi$. (2 marks)
- (b) Shade on your diagram the region in which

$$|z - i| \le |z - 2|$$
 and $-\frac{1}{2}\pi \le \arg(z - i) \le \frac{1}{4}\pi$. (3 marks)

4 The roots of the cubic equation

$$x^3 + 9x^2 + 27x + 35 = 0$$

are α , β and γ .

(a) Use the substitution x = y - 3 to show that the cubic equation which has roots $\alpha + 3$, $\beta + 3$ and $\gamma + 3$ is

$$y^3 + 8 = 0$$
. (6 marks)

- (b) (i) Find the **three** roots of $y^3 + 8 = 0$, giving each root in the form a + ib. (3 marks)
 - (ii) Hence, or otherwise, find the roots of the equation

$$x^3 + 9x^2 + 27x + 35 = 0. (2 marks)$$

5 (a) Find the constants A and B in the identity

$$\left(z^2 - \frac{1}{z^2}\right)^3 \equiv A\left(z^2 - \frac{1}{z^2}\right) + B\left(z^6 - \frac{1}{z^6}\right).$$
 (3 marks)

(b) (i) Use the result

$$z^n - \frac{1}{z^n} = 2i\sin n\theta,$$

where

$$z = \cos \theta + i \sin \theta$$
,

to show that

$$\sin^3 2\theta = \frac{3}{4}\sin 2\theta - \frac{1}{4}\sin 6\theta. \tag{4 marks}$$

(ii) Hence, or otherwise, show that

$$\int_0^{\frac{1}{4}\pi} \sin^3 2\theta \, \mathrm{d}\theta = \frac{1}{3} \,. \tag{3 marks}$$

6 (a) Show that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(2 \tan^{-1} e^t \right) = \operatorname{sech} t. \tag{5 marks}$$

(b) A curve C is given parametrically by

$$x = 2 + \tanh t$$
, $y = 2 - \operatorname{sech} t$.

(i) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{sech}\,t\,\mathrm{tanh}\,t. \tag{3 marks}$$

(ii) Express
$$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2$$
 in terms of sech t . (3 marks)

- (c) The arc of the curve C between t = 0 and t = 1 is rotated through 2π radians about the x-axis.
 - (i) Show that S, the surface area generated, is given by

$$S = 2\pi \int_0^1 (2 - \operatorname{sech} t) \operatorname{sech} t \, dt.$$
 (1 mark)

(ii) Hence show that

$$S = 2\pi (4 \tan^{-1} e - \tanh 1 - \pi).$$
 (3 marks)

END OF QUESTIONS